Arian Agents: A Set of Implemented Agents for
RoboCupRescue Simulation Environment

Jafar Habibi Mazda Ahmadi Ali Nouri Mayssam M. Nevisi
Alborz Geramifard Peyman Nayyeri Mayssam Sayyadian
Hassan Khaleghi Mehran Motamed Reza Zamaninasab

Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran
arian@ce.sharif.edu http://ce.sharif.edu/robocup/arian

Abstract. Arian agents are a set of implemented agents for RoboCupRes-
cue simulation environment. They ranked first at RoboCup 2002 com-
petitions at Fukuoka. The main reason for Arian’s success is its flexible
architecture. In this paper, we introduce Arian agents’ overall architec-
ture.

1 introduction

Recently, multi-agent systems have gained a lot of attention. Robotic soccer
[2], intelligent control of multiple agents, automated driving (e.g. [1]) , and e-
commerce agents are examples of challenging multi-agent domains.

RoboCupRescue Simulation with heterogeneous agents with different abili-
ties and of course responsibilities with a limited communication, is an excellent
framework for multi-agent planning, communication techniques, coalition forma-
tion and task allocation.

Arian was the champion of the RoboCup2002 rescue simulation league in
Fukuoka and won the second place in the RoboCup2001 in Seattle. They have
done different works in agent communication languages[5], coalition formation|[3]
and agent architectures[4].

2 Arian Architecture

The overall architecture of Arian agents is presented in figure 1. Each module is
independent of the others and can be implemented separately. As we will see, the
main benefit of using Arian as the basis of developing agents for RoboCupRes-
cue simulation environment, is that the researchers can only design the decision
making module. In the rest of this section we will briefly describe Arian archi-
tecture’s modules.



/ nestsion Making \

World Model Macro Actions
\\\\\\\\\ Executer
Predictor

Micro Actions

Sensor
Executer

. -
ks -

- s
Sensory Ian\rmation 5 g o Corm}lands

Fig. 1. Arian agents’ overall architecture.

2.1 Sensor

As mentioned before the communication protocol used in RoboCupRescue sys-
tem is based on UDP. The sensor module facilitates communication between
server and agents with the help of a simple interface. This module parses the
received sensory information.

2.2 World Model

This module provide an interface for manipulation and extraction of high-level
information from a world model database. This world model database is updated
in the beginning of every cycle. The class hierarchy of objects in the Arian’s
world model is shown in figure 2. Each of these objects has the properties of the
corresponding objects in the world.

2.3 Predictor

Given a macro action, a world state, and a prediction time, this module predicts
the state of the world in the given time. This module works based on hundreds
of previous runs and statistical methods.

2.4 Macro Actions Executer

A macro action is an action that lasts more than one single cycle. The macro
actions in current version of Arian is as follows:

— Extinguish a Building till totally extinguished: In this macro action,
the agent spreads water on the specified building with maximum power until
the building gets extinguished.



— Clear a long Road: In the simulated world, each long road consists of a
number of short roads. In each cycle an agent is able to clear only a short
road, so clearing a long road takes more than one cycle.

— Rescue a Civilian: Rescuing of a civilian consists of several primitive ac-
tions that this module takes care of. First, the civilian should be taken out
of the building he is in, then it should be transferred to an ambulance and
the ambulance should take the civilian to the closest refuge and finally, drop
him there.

— Explore the City: In many situations, agents tend to explore the city in
order to get the most possible information about the world. This module
handles this matter with some graph based algorithms.

— GotoXY: By executing this macro action, the agent tends to move to an-
other position that can probably take more than one cycle. There can be dif-
ferent, algorithms for finding a path between two positions. In Arian agents
there are two implemented algorithms for path planning, one based on the A*
algorithm and the other on the Floyd algorithm. These methods get current
and final positions and return a route between these two positions. Although
these algorithms may not be optimal, but are useful for those whose research
focus is not path planning.

2.5 Micro Actions Executer

This module handles communication with the kernel and sends commands to
the kernel. For each of the legal commands that agents can send to the kernel,
there exists an interface in this module.

2.6 Decision Making

Usually this module is the one that most researchers are interested in designing
and implementing it. Researchers can use our architecture and just design a
decision algorithm.

So far we faced the decision-making problem as a riddle, which can be best,
completed by an optimum heuristic function, which is based on CBR and De-
cision Tree but from another aspect we can see each agent decision making
algorithm as a gene so we can also apply evolutionary methods to optimize their
behavior. Respectively we also have a total value function which computes the
value of the hole process of the agents in total cycles so we can set this as our
base function for optimization.

Implementation of the decision algorithms can be one of Finite State Au-
tomaton, Binary Decision Diagram or Neural Networks; but in this specific en-
vironment that we probably tend to enforce some heuristic functions, we better
use BDD as the implementation of the genes because our state space is so huge
that neural network implementation will fail to converge in a logical period and
from another aspect experiences show that in such situations BDDs do far better
than DFAs and converge faster.



Amb. Center Police Office Fire Station m
Building

Fig. 2. Objects’ hierarchy in the world model. The nodes represent objects and two
nodes are connected if the lower node inherits the upper one.

References

1.

2.

A. Deshpande, D. N. Godbole, A. G. and P. Varaiya, ”Design and Evaluation Tools
for Automated Highway Systems”, Hybrid Systems pp. 138-148, 1995.

I. Noda and P. Stone, " The RoboCup Soccer Server and CMUnited Clients: Im-
plemented Infrastructure for MAS Research” Journal of Autonomous Agents and
Multi-Agent Systems, Kluwer Academic Publisher, 2002.

M. Ahmadi, M. Sayyadian, H. R. Rabiee, ” A Coalition Formation for Task Allo-
cation via Genetic Algorithms”, In Proceedings of The First Eurasian Conference
on Advances in Information and Communication Technology (EurAsia ICT 2002),
LNCS, Springer, 2002.

M. Ahmadi, M. M. Nevisi, "An Architecture for Multi-layred learning in Au-
tonomous agents”, Proceeding of FSCCSI, Isfahan, Iran, 2002 (in persian).

M. Ahmadi, M. Sayyadian, J. Habibi, ” A Learning Method for Evaluating Messages
in Multi Agent Systems”, In proceedings of the Agent Communicatin Languages
and Conversation Policies, AAMAS’02 Workshop, Italy, Bologna, 2002.



