Incremental Least-Square Temporal Difference Learning (iLSTD)

Alborz Geramifard, Michael Bowling, Richard Sutton

T

{alborz, bowling, sutton}@cs.ualberta.ca

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Results

Discussion

Outline

- iLSTD (Algorithm & Properties)
- Results
- Discussion

Notations

Scalar	Regular	$V^{\pi}(s)$	r_{t+1}
Vector	Bold Lower Case	ϕ_t	$oldsymbol{\mu}_t(oldsymbol{ heta})$
Matrix	Bold Upper Case	\mathbf{A}_t	Ã

Markov Decision Process (MDP)

 $(\mathcal{S}, \mathcal{A}, \mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'}, \gamma)$

We focus on online policy evaluation

Markov Decision Process (MDP)

$$(\mathcal{S}, \mathcal{A}, \mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'}, \gamma)$$

We focus on online policy evaluation

$$V^{\pi}(s) = E\left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \middle| s_0 = s, \pi\right]$$
$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s')\right]$$
[Sutton, Barto 98]

4

Tabular Case

$$\delta_t(V) = r_{t+1} + \gamma V(s_{t+1}) - V(s_t).$$

Using Linear Function Approximation

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \mathbf{u}_t(\boldsymbol{\theta}_t),$$

$$\mathbf{u}_t(\boldsymbol{\theta}) = \boldsymbol{\phi}(s_t) \delta_t(V_{\boldsymbol{\theta}}).$$

$$\delta_t(V) = r_{t+1} + \gamma V(s_{t+1}) - V(s_t).$$

Using Linear Function Approximation

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t \mathbf{u}_t(\boldsymbol{\theta}_t),$$

$$\mathbf{u}_t(\boldsymbol{\theta}) = \boldsymbol{\phi}(s_t) \delta_t(V_{\boldsymbol{\theta}}).$$

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Results

Discussion

Outline

Introduction

iLSTD (Algorithm & Properties)

Discussion

It minimizes the mean squared TD errors over all past experiences.

$$E_t(\theta) = \frac{1}{t} \sum_{t} \delta_t^2(\theta)$$

It takes advantage of all experiment and does the update (Sum of the TD updates) [Bradtke, Barto 96]

$$\boldsymbol{\mu}_t(\boldsymbol{\theta}) = \sum_{i=1}^t \boldsymbol{\phi}_t \delta_t(V_{\boldsymbol{\theta}})$$

It minimizes the mean squared TD errors over all past experiences.

$$E_t(\theta) = \frac{1}{t} \sum_{t} \delta_t^2(\theta)$$

It takes advantage of all experiment and does the update (Sum of the TD updates) [Bradtke, Barto 96]

$$\boldsymbol{\mu}_t(\boldsymbol{\theta}) = \sum_{i=1}^t \boldsymbol{\phi}_t \delta_t(V_{\boldsymbol{\theta}})$$

We call it "TD Gradient"

By plugging the definitions, we will have:

$$\boldsymbol{\mu}_{t}(\boldsymbol{\theta}) = \left(\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{t} r_{t+1}}_{\mathbf{b}_{t}} - \underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{t} (\boldsymbol{\phi}_{t} - \gamma \boldsymbol{\phi}_{t+1})^{T} \boldsymbol{\theta}}_{\mathbf{A}_{t}}\right)$$
$$= (\mathbf{b}_{t} - \mathbf{A}_{t} \boldsymbol{\theta}).$$

[Bradtke, Barto 96]

 $[\]boldsymbol{\theta}_{t+1} = \mathbf{A}_t^{-1} \mathbf{b}_t.$

By plugging the definitions, we will have:

Least-Square Methods $\theta_{t+1} = \mathbf{A}_t^{-1} \mathbf{b}_t.$

Least-Square Methods
$$\theta_{t+1} = \mathbf{A}_t^{-1} \mathbf{b}_t.$$

Pros P

Minimized the sum of TD errors with respect to all of the past experiences.

Least-Square Methods
$$\theta_{t+1} = \mathbf{A}_t^{-1} \mathbf{b}_t.$$

Pros

- Minimized the sum of TD errors with respect to all of the past experiences.
- Cons
 - Solution Needs at least needs $O(n^2)$ computation per time step (Using iterative matrix inversion)
 - In is the number of features which can be potentially large.

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Results

Discussion

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Discussion

Can we do something about the inverse ?

- Can we do something about the inverse ?
- We are interested in case of having k features "on" at any given moment (Tile Coding, RBFs, etc.) where k << n.</p>

- Can we do something about the inverse ?
- We are interested in case of having k features "on" at any given moment (Tile Coding, RBFs, etc.) where k << n.</p>
- We do not have to compute the exact solution since we change A matrix and b vector on each iteration.

ilstd

ilstd

Incremental Computation

$$\mathbf{b}_{t} = \mathbf{b}_{t-1} + \underbrace{r_{t} \phi_{t}}_{\Delta \mathbf{b}_{t}}$$
$$\mathbf{A}_{t} = \mathbf{A}_{t-1} + \underbrace{\phi_{t} (\phi_{t} - \gamma \phi_{t+1})^{T}}_{\Delta \mathbf{A}_{t}}.$$
[Bradtke, Barto 96]

iLSTD $\mu_t(\theta) = \mathbf{b}_t - \mathbf{A}_t \theta$

$\boldsymbol{\mu}_t(\boldsymbol{\theta}_t) = \boldsymbol{\mu}_{t-1}(\boldsymbol{\theta}_t) + \Delta \mathbf{b}_t - (\Delta \mathbf{A}_t)\boldsymbol{\theta}_t$

iLSTD $\boldsymbol{\mu}_t(\boldsymbol{\theta}) = \mathbf{b}_t - \mathbf{A}_t \boldsymbol{\theta}$

Incremental Computation (when A and b are changed).

$$\boldsymbol{\mu}_t(\boldsymbol{\theta}_t) = \boldsymbol{\mu}_{t-1}(\boldsymbol{\theta}_t) + \Delta \mathbf{b}_t - (\Delta \mathbf{A}_t)\boldsymbol{\theta}_t$$

* Note that θ is fixed.

 \bigcirc Incremental Computation (When θ is changed).

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \Delta \boldsymbol{\theta}_t$$
$$\boldsymbol{\mu}_t(\boldsymbol{\theta}_{t+1}) = \boldsymbol{\mu}_t(\boldsymbol{\theta}_t) - \boldsymbol{A}_t(\Delta \boldsymbol{\theta}_t)$$

* Note that **A** is fixed.

- Use Gradient Descent in "best" dimension to update θ (w.r.t TD Gradient Vector)
- Similar to prioritized sweeping idea

- Use Gradient Descent in "best" dimension to update θ (w.r.t TD Gradient Vector)
- Similar to prioritized sweeping idea

- Use Gradient Descent in "best" dimension to update θ (w.r.t TD Gradient Vector)
- Similar to prioritized sweeping idea

- Use Gradient Descent in "best" dimension to update θ (w.r.t TD Gradient Vector)
- Similar to prioritized sweeping idea

- Use Gradient Descent in "best" dimension to update θ (w.r.t TD Gradient Vector)
- Similar to prioritized sweeping idea

iLSTD Algorithm

- $0 \quad s \leftarrow s_0, \mathbf{A} \leftarrow \mathbf{0}, \boldsymbol{\mu} \leftarrow \mathbf{0}, t \leftarrow 0$
- 1 Initialize θ arbitrarily

iLSTD Algorithm

$s \leftarrow s_0, \mathbf{A} \leftarrow \mathbf{0}, \boldsymbol{\mu} \leftarrow \mathbf{0}, t \leftarrow 0$

Initialize θ arbitrarily

repeat

Take action according to π and observe $r,\,s'$

$$t \leftarrow t + 1$$

$$\Delta \mathbf{b} \leftarrow \boldsymbol{\phi}(s)r$$

$$\Delta \mathbf{A} \leftarrow \boldsymbol{\phi}(s)(\boldsymbol{\phi}(s) - \gamma \boldsymbol{\phi}(s'))^{T}$$

$$\mathbf{A} \leftarrow \mathbf{A} + \Delta \mathbf{A}$$

$$\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} + \Delta \mathbf{b} - (\Delta \mathbf{A})\boldsymbol{\theta}$$

Updating A,b and µ according to the interaction

[Geramifard, Bowling, Sutton 06]

iLSTD Algorithm
$O(mn + k^2)$

 $O(mn + k^2)$ Number of gradient descent iterations

 $O(mn + k^2)$ Number of features Number of gradient descent iterations

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Results

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)
- Results
- Discussion

Results

Chain example with correlated features

[Boyan 99]

Results

$$\bigcirc$$
 m = I
 $\alpha_t = \alpha_0 \frac{N_0 + 1}{N_0 + \text{Episode#}}$

- $\bigcirc N_0 \in \{100, 1000, 10^6\}$
- \bigcirc Best selection for $lpha_0$ and N_0
- Averaged over 30 runs
- Same random seed for all methods.

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)

Results

Outline

Introduction

- Least-Square Methods
- iLSTD (Algorithm & Properties)
- Results

Which algorithm to pick?

- Which algorithm to pick?
 - Solution Set is a set of the set of the

- Which algorithm to pick?
 - Solution Set is a set of the set of the
 - \bigcirc Data is cheap but we need fast reaction with environment \Rightarrow TD

- Which algorithm to pick?
 - Solution Set is a set of the set of the
 - \bigcirc Data is cheap but we need fast reaction with environment \Rightarrow TD
 - \bigcirc Between criteria \Rightarrow iLSTD

- Important facts
 - State of the Still St

Important facts

- LSTD is still the optimum solution with respect to all past experiences and using TD methods.
- TD is faster than iLSTD, and in case of having k features "on" in any moment, it is O(k) per time-step.

Important facts

- LSTD is still the optimum solution with respect to all past experiences and using TD methods.
- TD is faster than iLSTD, and in case of having k features "on" in any moment, it is O(k) per time-step.
- iLSTD can be fit in many constraints by adjusting *m* parameter.

- Can we use Coordinate Decent?
 - Equivalent to Gauss-Seidel method to solve a linear system of equations.
 - No step size parameter to tune!

Can we use Coordinate Decent?

Equivalent to Gauss-Seidel method to solve a linear system of equations.

Can we use Coordinate Decent?

- Equivalent to Gauss-Seidel method to solve a linear system of equations.
- No step size parameter to tune!

"The Gauss-Seidel method is applicable to <i>strictly diagonally dominant, or symmetric positive definite matrices."

Eric W. Weisstein et al. "Gauss-Seidel Method." From <u>MathWorld</u>--A Wolfram Web Resource.

Can we use Coordinate Decent?

- Equivalent to Gauss-Seidel method to solve a linear system of equations.
- No step size parameter to tune!

"The Gauss-Seidel method is applicable to **strictly diagonally** dominant, or symmetric positive definite matrices."

Eric W. Weisstein et al. "Gauss-Seidel Method." From MathWorld--A Wolfram Web Resource.

 $\sum \phi_t (\phi_t - \gamma \phi_{t+1})^T \theta = \mu \text{ is neither symmetric nor}$

diagonally dominant.
We can make our matrix symmetric.

$$\mathbf{b}_t - \mathbf{A}_t \boldsymbol{\theta} = 0$$
$$\mathbf{A}_t^T \mathbf{b}_t - \mathbf{A}_t^T \mathbf{A}_t \boldsymbol{\theta} = 0$$

- A can be skewed, and this will make the convergence much slower.
- Solution This is computationally more expensive. Choosing the best dimension would take ${\cal O}(n^2)$

$\mathbf{A}_t^T \mathbf{b}_t - \mathbf{A}_t^T \mathbf{A}_t \boldsymbol{\theta} = 0$

Discussion $\mathbf{A}_{t}^{T}\mathbf{b}_{t} - \mathbf{A}_{t}^{T}\mathbf{A}_{t}\boldsymbol{\theta} = 0$

Choosing the best dimension X

Discussion $\mathbf{A}_{t}^{T}\mathbf{b}_{t} - \mathbf{A}_{t}^{T}\mathbf{A}_{t}\boldsymbol{\theta} = 0$

- Choosing the best dimension X
- \bigcirc Sweeping through dimensions \checkmark

Discussion $\mathbf{A}_{t}^{T}\mathbf{b}_{t} - \mathbf{A}_{t}^{T}\mathbf{A}_{t}\boldsymbol{\theta} = 0$

- Choosing the best dimension X
- \bigcirc Sweeping through dimensions \checkmark
- \bigcirc Pick dimensions randomly \checkmark

- Generalized Minimal Residual method (GMRES) [Saad, Schultz 86]
 - Used for non symmetric matrices
 - lterative
 - $\ensuremath{\,{\rm S}}$ Results are interesting but the algorithm would be $O(n^2)$ per time step ...

Interesting Problems, Mountain Car, 10000 Memory, 10 Tilings

Interesting Problems, Mountain Car, 10000 Memory, 10 Tilings

iLSTD

- Can iterative methods be superior than LSTD?
 - Many samples are needed to make A and b accurate when the environment is Stochastic
 - Small descents might be better than jumping to the solution of the estimated model ... (Future Work)

- Can iterative methods be superior than LSTD?
 - Many samples are needed to make A and b accurate when the environment is Stochastic
 - Small descents might be better than jumping to the solution of the estimated model ... (Future Work)
- \bigcirc iLSTD(λ) \rightarrow O((m+k)n), Still O(n)

- Can iterative methods be superior than LSTD?
 - Many samples are needed to make A and b accurate when the environment is Stochastic
 - Small descents might be better than jumping to the solution of the estimated model ... (Future Work)
- \bigcirc iLSTD(λ) \rightarrow O((m+k)n), Still O(n)
- Larger Problems

- Can iterative methods be superior than LSTD?
 - Many samples are needed to make A and b accurate when the environment is Stochastic
 - Small descents might be better than jumping to the solution of the estimated model ... (Future Work)
- \bigcirc iLSTD(λ) \rightarrow O((m+k)n), Still O(n)
- Larger Problems
- Proof of convergence

Acknowledgments

Dale Schuurmans

Dan Lizotte

Amirmasoud Farahmand

Mark Ring

References

[Sutton, Barto 98]

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An introduction.

[Bradtke, Barto 96]

Bradtke, S., and Barto, A. 1996. Linear least-squares algorithms for temporal difference learning. In *Machine Learning*, volume 22, 33–57.

[Boyan 99]

Boyan, J. A. 1999. Least-squares temporal difference learning. In *Proc. 16th International Conf. on Machine Learning*, 49–56. Morgan Kaufmann, San Francisco, CA.

References

[Saad, Schultz 86]

Saad, Y. and Schultz, M. "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems." *SIAM J. Sci. Statist. Comput.* **7**, 856-869, 1986.

[Geramifard, Bowling, Sutton 06]

A. Geramifard, M. Bowling, R. S. Sutton, "Iterative Lease Square Temporal Difference Learning" submitted to American Association for Artificial Intelligence (AAAI) 2006

Questions

