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Markov Decision Process (MDP)

We focus on online policy evaluation

Introduction

4

Background
Reinforcement learning is an approach to sequential deci-
sion making in an unknown environment by learning from
past interactions with that environment (e.g., see Sutton &
Barto 1998). This paper specifically considers the class of
environments known as Markov decision processes (MDPs).
An MDP is a tuple, (S,A,Pa

ss� ,Ra
ss� , γ), where S is a set of

states, A is a set of actions, Pa
ss� is the probability of reach-

ing state s� after taking action a in state s, and Ra
ss� is the

reward received when that transition occurs, and γ ∈ [0, 1]
is a discount rate parameter. A trajectory of experience is a
sequence s1, a1, r2, s2, a2, r3, s3, . . ., where the agent in s1

takes action a1 and receives reward r2 while transitioning to
s2 before taking a2, etc.

In this work we focus on the problem of learning an ap-
proximation of a policy’s state-value function from sample
trajectories of experience following that policy. A method
for solving this problem is a key component of many rein-
forcement learning algorithms. In particular, maintaining an
online estimate of the value function can be combined with
policy improvement to learn a controller. The value of a
state given a policy is an expected sum of discounted future
rewards:

V
π(s) = E

� ∞�

t=1

γt−1
rt

����s0 = s,π

�
.

We can write the value function recursively as

V
π(s) =

�

a

π(s, a)
�

s�

Pa
ss� [Ra

ss� + γV
π(s�)]

= E [rt+1 + γV
π(st+1)|st = s,π] . (1)

The recursive relationship involves an implicit expectation
which is made explicit in Equation 1. Notice that trajectories
of experience can be seen as samples of this expectation. For
a particular value function V̂ let the TD error at time t be
defined as,

ξt(V̂ ) = rt+1 + γV̂ (st+1)− V̂ (st). (2)

Then, Et [ξt(V π)] = 0, that is, mean TD error for the policy’s
true value function must be zero.

We are interested in approximating V π using a linear
value function approximator. In particular, suppose we have
a function φ : S → �n, which gives a feature representation
of the state space. We are interested in approximate value
functions of the form V̂ (s) = φ(s)T θ, where θ ∈ �n are
the parameters of the value function. The focus of this work
is on situations where the feature representation is sparse,
i.e., for all states s the number of non-zero features in φ(s)
is no more than k � n. This situation arises often when
using feature representations such as tile-coding. For exam-
ple, in Stone and colleagues’ work on learning in simulated
soccer (Stone, Sutton, & Kuhlmann 2005), they used over
ten thousand features but the number of non-zero features
for any state was only 416.

Because the policy’s true value function is probably not in
our space of linear functions, we want to find a set of param-
eters that approximates the true function. In other words,

TD
0 s← s0

1 Initialize θ arbitrary
2 repeat
3 Take action according to π and observe r, s�

4 θ ← θ + αφ(s)

»
r +

“
γφ(s�)− φ(s)

”T
θ

–

5 end repeat

Algorithm 1: The TD pseudo code.

we want to find a linear value function that has small mean
TD error. The traditional TD algorithm and the more recent
LSTD algorithm both can be viewed as minimizing mean
TD error using sample trajectories of experience.

Temporal Difference Learning
The traditional method for value function approximation is
temporal difference (TD) learning.1 The basic idea of TD is
to adjust a state’s predicted value to reduce the observed TD
error. Given some new experience tuple (st, at, rt+1, st+1),
the update with linear function approximation is,

θt+1 = θt + αtδt(θt), where

δt(θ) = φ(st)ξt(V̂θ). (3)

The vector δt(θ) is like a gradient estimate that specifies how
to change the predicted value of st to reduce the observed
TD error. We will call δt(θ) the TD update at time t. After
updating the parameter vector, the experience tuple is for-
gotten. Pseudocode is shown in Algorithm 1.

The computational costs of TD for each time step is due
mainly to the vector addition, which is linear in the length of
the vector, i.e., O(n). If only k features are non-zero for any
state, then a sparse vector representation can further reduce
the computation to O(k). So, the algorithm is (sub)-linear
in the number of features, which allows it to be applied even
with very large feature representations.

Least-Squares TD
The Least-Squares TD (LSTD) algorithm (Bradtke & Barto
1996) can be seen as immediately solving for the value func-
tion parameters for which the mean TD update over all the
observed data is zero. Let ∆t(θ) be the mean TD update
over the data through time t,

∆t(θ) =
t�

i=1

δi(θ)/t. (4)

Let φt = φ(st). Applying Equation 3 and 2, and the defini-
tion of our linear value functions, we get,

∆t(θ) =
1
t

t�

i=1

φtξt(V̂θ)

1This paper will not consider the use of eligibility traces (e.g.,
see Sutton & Barto 1998) in temporal difference learning. When
referring to TD and LSTD we specifically mean the TD(0) and
LSTD(0) variants.
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We present empirical results comparing TD(0), LSTD, and

iLSTD, showing that iLSTD obtains the key advantages of

both of the other two methods: it is nearly as data efficient

as LSTD and nearly as computationally efficient as TD(0).

We discuss some future directions before concluding.
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states, A is a set of actions, Pa
ss� is the probability of reach-

ing state s� after taking action a in state s, and Ra
ss� is the

reward received when that transition occurs, and γ ∈ [0, 1]
is a discount rate parameter. A trajectory of experience is a

sequence s1, a1, r2, s2, a2, r3, s3, . . ., where the agent in s1

takes action a1 and receives reward r2 while transitioning to

s2 before taking a2, etc.
In this work we focus on the problem of learning an ap-

proximation of a policy’s state-value function from sample

trajectories of experience following that policy. A method

for solving this problem is a key component of many rein-

forcement learning algorithms. In particular, maintaining an

online estimate of the value function can be combined with

policy improvement to learn a controller. The value of a

state given a policy is the expected sum of discounted future

rewards:

V
π(s) = E

� ∞�

t=1

γt−1
rt

����s0 = s,π

�
.

We can write the value function recursively as

V
π(s) =
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π(s, a)
�

s�

Pa
ss� [Ra

ss� + γV
π(s�)]

= E [rt+1 + γV
π(st+1)|st = s,π] . (1)

The recursive relationship involves an implicit expectation

which is made explicit in Equation 1. Notice that trajectories

of experience can be seen as samples of this expectation. For

a particular value function V let the TD error at time t be

defined as,

δt(V ) = rt+1 + γV (st+1)− V (st). (2)

Then, Et [δt(V π)] = 0, that is, the mean TD error for the

policy’s true value function must be zero.

We are interested in approximating V π
using a linear

function approximator. In particular, suppose we have a

function φ : S → �n
, which gives a feature representation

of the state space. We are interested in approximate value

functions of the form Vθ(s) = φ(s)T θ, where θ ∈ �n
are

the parameters of the value function. The focus of this work

is on situations where the feature representation is sparse,

i.e., for all states s the number of non-zero features in φ(s)
is no more than k � n. This situation arises often when us-

ing feature representations such as tile-coding. For example,

in Stone, Sutton, and Kuhlmann’s (2005) work on learning

0 s← s0

1 Initialize θ arbitrarily

2 repeat
3 Take an action according to π and observe r, s�

4 θ ← θ + αφ(s)
�
r +

�
γφ(s�)− φ(s)

�T
θ
�

5 end repeat

Algorithm 1: TD(0)

in simulated soccer, there were over ten thousand features

but the number of non-zero features for any state was only

416.

Because the policy’s true value function is probably not

in our space of linear functions, we want to find a set of pa-

rameters that approximates the true function. One possible

approach is to use the observed TD error on sample trajecto-

ries of experience to guide the approximation. Both TD(0)

and LSTD take this approach.

Temporal Difference Learning
The standard one-step TD method for value function ap-

proximation is TD(0).
1

The basic idea of TD(0) is to ad-

just a state’s predicted value to reduce the observed TD er-

ror. Given some new experience tuple (st, at, rt+1, st+1),
the update with linear function approximation is,

θt+1 = θt + αtut(θt), where

ut(θ) = φ(st)δt(Vθ). (3)

Vθ is the estimated value with respect to θ and αt is the

learning rate. The vector ut(θ) is like a gradient estimate

that specifies how to change the predicted value of st to re-

duce the observed TD error. We will call ut(θ) the TD up-

date at time t. After updating the parameter vector, the ex-

perience tuple is forgotten. Pseudocode for TD(0) is shown

above as Algorithm 1.

The computational costs of TD(0) for each time step is

due mainly to the vector addition, which is linear in the

length of the vector, i.e., O(n). If only k features are non-

zero for any state, then a sparse vector representation can

further reduce the computation to O(k). So, the algorithm is

(sub)-linear in the number of features, which allows it to be

applied even with very large feature representations.

Least-Squares TD
The Least-Squares TD algorithm (LSTD) (Bradtke & Barto

1996) can be seen as immediately solving for the value func-

tion parameters for which the sum TD update over all the ob-

served data is zero. Let µt(θ) be the sum of the TD updates

over the data through time t,

µt(θ) =
t�

i=1

ui(θ). (4)

1
Although in this paper we treat only one-step methods, our

ideas can probably be extended to multi-step methods such as

TD(λ) and LSTD(λ).
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that specifies how to change the predicted value of st to re-

duce the observed TD error. We will call ut(θ) the TD up-
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The computational costs of TD(0) for each time step is

due mainly to the vector addition, which is linear in the

length of the vector, i.e., O(n). If only k features are non-

zero for any state, then a sparse vector representation can

further reduce the computation to O(k). So, the algorithm is

(sub)-linear in the number of features, which allows it to be

applied even with very large feature representations.
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over the data through time t,
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It minimizes the mean squared TD errors over all 
past experiences.

It takes advantage of all experiment and does the 
update (Sum of  the TD updates)

Least-Square Methods
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Et(θ) =
1
t

�

t

δ2
t (θ)

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1

� �� �
bt

−
t�

i=1

φt(φt − γφt+1)
T

� �� �
At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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amount on each time step, A−1
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of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are
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Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
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ing that b and A can be computed in an incremental fashion
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µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-
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we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD
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trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1

� �� �
bt

−
t�

i=1

φt(φt − γφt+1)
T

� �� �
At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD
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and then solves for a new θ. Notice that, once b and A are
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ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-
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problems with a large number of features even if they are
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efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.
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In this section we present the incremental least-squares tem-
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computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:
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update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)
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after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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and then solves for a new θ. Notice that, once b and A are
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amount on each time step, A−1
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neither the matrix nor the vector are necessarily sparse. The
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tationally expensive. Instead, the sum TD update is used in
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µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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9 Ã← A−1

10 else

11 Ã← Ã
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update is zero, we set Equation 5 to zero and solve for the

new parameter vector,
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t bt.
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ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-
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putation per time step. If the feature vector is sparse, some
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others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.
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rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.
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In this section we present the incremental least-squares tem-
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computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.
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eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in
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reduce it to zero.

Incremental Computation
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ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:
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update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-
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�
Ã
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update is zero, we set Equation 5 to zero and solve for the
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and then solves for a new θ. Notice that, once b and A are
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ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-
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like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.
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eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in
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Incremental Computation
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transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:
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Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

Tuesday, December 13, 2011



Pros

Minimized the sum of  TD errors with respect to 
all of the past experiences.

Least-Square Methods

9

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)
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and then solves for a new θ. Notice that, once b and A are
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ing any information. Because A changes by only a small
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maintaining the matrix inversion still requires O(n2) com-
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of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are
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Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational
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rithm that seeks to provide a compromise between these ex-
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step when a small number of features are non-zero.
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computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
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transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:
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Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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LSTD
0 s← s0, Ψ← 0, R← 0
1 Initialize θ arbitrary

2 repeat
3 Take action according to π and observe r, s�

5 R← R + φ(s)r
6 µ← (φ(s)− γφ(s�))T

7 Ψ← Ψ + µθ
8 if (first update)

9 Ψ̃← Ψ−1

10 else

11 Ψ̃← Ψ̃

0

@I −
„

φ(s)µ

1 + µΨ̃φ(s)

«
Ψ̃

1

A

12 end if
13 θ ← Ψ̃R
14 end repeat

Algorithm 2: The online LSTD pseudo code.
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Ψt

θ

�

=
1
t
(Rt −Ψtθ). (5)

Because we want to choose parameters such that the mean

TD update is zero, we set Equation 5 to zero and solve for

the new parameter vector,

θt+1 = Ψ−1
t Rt.

The online version of LSTD incorporates each observed re-

ward and state transition into the R vector and the Ψ matrix

and then solves for a new θ. Notice that once R and Ψ are

updated the experience tuple can be forgotten without losing

any information. Because Ψ changes by only a small amount

on each time step, Ψ−1
can also be maintained incremen-

tally. This version of the algorithm for LSTD is shown in

Algorithm 2.

LSTD after each time step computes the value function

parameters that have zero mean TD update. It essentially

fully exploits all of the observed data to find optimal param-

eters. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating Ψ become O(k2) (where

k is the number of non-zero elements) but others such as

multiplying Ψ−1R are still O(n2) because neither the ma-

trix nor the vector are necessarily sparse. The result is that

LSTD can be computationally impractical for problems with

a large number of features even if they are sparse.

Practitioners are currently faced with a serious tradeoff:

they must either choose data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the mean TD update over all observed

trajectories, thus making more efficient use of the data than

TD. However, iLSTD does not immediately solve for the

parameters that give a zero mean TD update, which is too

computationally expensive. Instead, the mean TD update is

used in a gradient fashion to move the parameters in the di-

rection to reduce it to zero.

Incremental Computation
The key computation in iLSTD is incrementally updating

∆t(θ) as transitions are observed and θ changes. We will

find it more convenient to incrementally update Dt(θ) =
t∆t(θ), and we can recover ∆t(θ) by simply dividing by

t. We begin by showing that R and Ψ can be updated in

an incremental fashion given a newly observed reward and

transition,

Rt = Rt−1 + rtφt����
δRt

Ψt = Ψt−1 + φt(φt − γφt+1)T

� �� �
δΨt

.

We can also incrementally update Dt(θt) for this new obser-

vation,

Dt(θt) = Dt−1(θt)+
�
(δRt)− (δΨt)θt

�
.

We also have to incrementally update D for changes to θ as

well. After updating θt+1 = θt + (δθt),

Dt(θt+1) = Dt(θt)−Ψt(δθt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve already seen that solving for θt+1 such that

∆t(θt+1) = 0 requires quadratic time in the number of fea-

tures. Instead we might consider taking a step in the di-

rection of ∆. This can be thought of as applying the mean

change to θ if TD were applied to a randomly selected tran-

sition from our previously observed trajectories. As such,

it both makes use of all the past data and will have a much

lower variance than TD’s traditional single sample update.

Unfortunately, it too is computationally expensive, as Equa-

tion 6 takes O(n2) to compute if δθt has no non-zero com-

ponents.

The lack of non-zero components in δθt suggests the com-

promise that will be used by iLSTD. Instead of updating all

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1

� �� �
bt

−
t�

i=1

φt(φt − γφt+1)
T

� �� �
At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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Can we do something about the inverse ?

We are interested in case of having k features “on” 
at any given moment (Tile Coding, RBFs, etc. ) 
where k << n. 
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since we change A matrix and b vector on each 
iteration.
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0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1

� �� �
bt

−
t�

i=1

φt(φt − γφt+1)
T

� �� �
At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

µt(θ)

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1
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bt

−
t�

i=1

φt(φt − γφt+1)
T
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At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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[Bradtke, Barto 96]

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
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i=1
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−
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φt(φt − γφt+1)
T
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θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −
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1 + dT Ãφ(s)
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�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT

t+1θ − φT
t θ

�

=
t�

i=1

�
φtrt+1 − φt(φt − γφt+1)

T θ
�

=
� t�

i=1

φtrt+1

� �� �
bt

−
t�

i=1

φt(φt − γφt+1)
T

� �� �
At

θ

�

= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

Tuesday, December 13, 2011



iLSTD

13

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)

�
Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
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i=1
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=
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= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã
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1 + dT Ãφ(s)
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12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
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= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
I −

� φ(s)dT

1 + dT Ãφ(s)
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12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)

=
t�

i=1

φt

�
rt+1 + γφT
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t θ
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φt(φt − γφt+1)
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= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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* Note that θ is fixed.

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
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� φ(s)dT

1 + dT Ãφ(s)

�
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�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,
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Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T
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∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
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8 if (first update)
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Ã

�

12 end if
13 θ ← Ãb
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Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,
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Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.

0 s← s0, A← 0, b← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

5 b← b + φ(s)r
6 d← (φ(s)− γφ(s�))
7 A← A + φ(s)dT

8 if (first update)

9 Ã← A−1

10 else

11 Ã← Ã

�
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� φ(s)dT

1 + dT Ãφ(s)
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Ã

�

12 end if
13 θ ← Ãb
14 end repeat

Algorithm 2: LSTD

Let φt = φ(st). Applying Equations 3 and 2, and the defi-

nition of our linear value functions, we get,

µt(θ) =
t�

i=1

φtδt(Vθ)
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= (bt −Atθ). (5)

Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T

� �� �
∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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9 Ã← A−1

10 else

11 Ã← Ã
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neither the matrix nor the vector are necessarily sparse. The
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eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.
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The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:
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∆bt
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Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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Since we want to choose parameters such that the sum TD

update is zero, we set Equation 5 to zero and solve for the

new parameter vector,

θt+1 = A−1
t bt.

The online version of LSTD incorporates each observed re-

ward and state transition into the b vector and the A matrix

and then solves for a new θ. Notice that, once b and A are

updated, the experience tuple can be forgotten without los-

ing any information. Because A changes by only a small

amount on each time step, A−1
can also be maintained in-

crementally. This version of LSTD is shown above as Algo-

rithm 2.

LSTD after each time step computes the value function

parameters that have zero sum TD update. It essentially fully

exploits all of the observed data to compute its approxima-

tion. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating A become O(k2), but

others such as multiplying A−1b are still O(n2) because

neither the matrix nor the vector are necessarily sparse. The

result is that LSTD can be computationally impractical for

problems with a large number of features even if they are

sparse.

Practitioners are currently faced with a serious tradeoff:

they must choose between data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step when a small number of features are non-zero.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the sum TD update over all observed tra-

jectories, thus making more efficient use of the data than TD.

However, iLSTD does not immediately solve for the param-

eters that give a zero sum TD update, which is too compu-

tationally expensive. Instead, the sum TD update is used in

a gradient fashion to move the parameters in the direction to

reduce it to zero.

Incremental Computation
The key step in iLSTD is incrementally computing µt(θ) as

transitions are observed and θ changes. We begin by show-

ing that b and A can be computed in an incremental fashion

given a newly observed reward and transition:

bt = bt−1 + rtφt����
∆bt

At = At−1 + φt(φt − γφt+1)
T
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∆At

.

Given a new b and A, we can incrementally compute

µt(θt):

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt.

Finally, we can incrementally compute µt(θt+1), given an

update θt+1 = θt + ∆θt, as:

µt(θt+1) = µt(θt)−At(∆θt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve observed that solving for θt+1 such that µt(θt+1) =
0 requires quadratic time in the number of features. Instead

we might consider taking a step in the direction of µ. This

can be thought of as applying the total change to θ if TD

were applied to all transitions from our previously observed

trajectories in a batch fashion. As such, it both makes use of

all the past data and will have a lower variance than TD’s tra-

ditional single sample update. Unfortunately, it too is com-

putationally expensive, as Equation 6 takes O(n2) to com-

pute if ∆θt has few zero components.
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0 s← s0, A← 0, µ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 ∆b← φ(s)r
6 ∆A← φ(s)(φ(s)− γφ(s�))T

7 A← A + ∆A
8 µ← µ + ∆b− (∆A)θ
9 for i from 1 to m do
10 j ← argmax(|µj |)
11 θj ← θj + αµj

12 µ← µ− αµjAei

13 end for
14 end repeat

Algorithm 3: iLSTD

The lack of many zero components in ∆θt suggests the

compromise that will be used by iLSTD. Instead of updating

all of θ, iLSTD only considers updating a small number of

components of θ. For example, consider updating only the

ith components:

θt+1 = θt + αtµt(i)ei

µt(θt+1) = µt(θt)− αtµt(i)Atei,

where µt(i) is the ith component of µt and ei is the column

vector with a single one in the ith row (thus Atei selects the

ith column of the matrix At). Multiple components can be

updated by repeatedly selecting a component and perform-

ing the one component update above. Our algorithm takes a

parameter m � n that specifies the number of updates that

are performed per time step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the sum TD update, we can simply choose the compo-

nent with the largest sum TD update using the values main-

tained in µt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. A and µ are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the sum TD update vector (µt) is chosen.

After the update, µ is recomputed and so may affect the next

component chosen.

2b is not computed because it is implicitly included in µ.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.
Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Aei is just the ithe column of A, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states, s > 2, there exists equal probability of

ending up in states (s− 1) or (s− 2), and reward of all tran-

sitions are −3, except from state 2 to 1 (when reward is −2)

and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was based on

experimentally finding the best parameters in the set α0 ∈
{0.01, 0.1, 1} and N0 ∈ {100, 1000, 106}. We only report

the results for the best set of parameters for each algorithm.

The m parameter for iLSTD was set to one, so on each time

step only one component was updated.
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2 repeat
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13 end for
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Algorithm 3: iLSTD
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all of θ, iLSTD only considers updating a small number of
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ith components:

θt+1 = θt + αtµt(i)ei
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where µt(i) is the ith component of µt and ei is the column

vector with a single one in the ith row (thus Atei selects the

ith column of the matrix At). Multiple components can be

updated by repeatedly selecting a component and perform-

ing the one component update above. Our algorithm takes a

parameter m � n that specifies the number of updates that

are performed per time step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the sum TD update, we can simply choose the compo-

nent with the largest sum TD update using the values main-

tained in µt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. A and µ are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the sum TD update vector (µt) is chosen.

After the update, µ is recomputed and so may affect the next

component chosen.

2b is not computed because it is implicitly included in µ.
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number of states.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.
Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Aei is just the ithe column of A, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states, s > 2, there exists equal probability of

ending up in states (s− 1) or (s− 2), and reward of all tran-

sitions are −3, except from state 2 to 1 (when reward is −2)

and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was based on

experimentally finding the best parameters in the set α0 ∈
{0.01, 0.1, 1} and N0 ∈ {100, 1000, 106}. We only report

the results for the best set of parameters for each algorithm.

The m parameter for iLSTD was set to one, so on each time

step only one component was updated.
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0 s← s0, A← 0, µ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 ∆b← φ(s)r
6 ∆A← φ(s)(φ(s)− γφ(s�))T

7 A← A + ∆A
8 µ← µ + ∆b− (∆A)θ
9 for i from 1 to m do
10 j ← argmax(|µj |)
11 θj ← θj + αµj

12 µ← µ− αµjAei

13 end for
14 end repeat

Algorithm 3: iLSTD

The lack of many zero components in ∆θt suggests the

compromise that will be used by iLSTD. Instead of updating

all of θ, iLSTD only considers updating a small number of

components of θ. For example, consider updating only the

ith components:

θt+1 = θt + αtµt(i)ei

µt(θt+1) = µt(θt)− αtµt(i)Atei,

where µt(i) is the ith component of µt and ei is the column

vector with a single one in the ith row (thus Atei selects the

ith column of the matrix At). Multiple components can be

updated by repeatedly selecting a component and perform-

ing the one component update above. Our algorithm takes a

parameter m � n that specifies the number of updates that

are performed per time step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the sum TD update, we can simply choose the compo-

nent with the largest sum TD update using the values main-

tained in µt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. A and µ are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the sum TD update vector (µt) is chosen.

After the update, µ is recomputed and so may affect the next

component chosen.

2b is not computed because it is implicitly included in µ.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.
Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Aei is just the ithe column of A, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states, s > 2, there exists equal probability of

ending up in states (s− 1) or (s− 2), and reward of all tran-

sitions are −3, except from state 2 to 1 (when reward is −2)

and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was based on

experimentally finding the best parameters in the set α0 ∈
{0.01, 0.1, 1} and N0 ∈ {100, 1000, 106}. We only report

the results for the best set of parameters for each algorithm.

The m parameter for iLSTD was set to one, so on each time

step only one component was updated.
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of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best
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of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

Number of gradient descent iterations
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of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

Number of gradient descent iterations

Number of features
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of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

Number of gradient descent iterations

Number of features
Maximum number of “On” features
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[Boyan 99]

of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best
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of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

N0 ∈ {100, 1000, 106}

of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

of θ, iLSTD only considers updating a single component of

θ at a time. For example, consider updating only the ith

component,

θt+1 = θt +
αtDt(i)

t
ei

Dt(θt+1) = Dt(θt)−
αtDt(i)

t
Ψtei,

where ei is the column vector with a single one in the ith

row and thus Ψtei selects the ith column of the matrix Ψt.

Multiple components can still be updated by repeatedly se-

lecting a component and performing the one component up-

date above. Our algorithm takes a parameter m � n that

specifies the number of updates that are performed per time

step.

What remains is to select which components to update.

Because we want to select a component that will most re-

duce the mean TD update, we can simply choose the com-

ponent with the largest TD update using the values main-

tained in Dt(θt). This approach has a resemblance to pri-

oritized sweeping (Moore & Atkeson 1993), but rather than

updating the state with the largest TD update, we choose

to update the parameter component with the largest TD up-

date. Like prioritized sweeping, iLSTD can tradeoff data ef-

ficiency and computational efficiency by increasing m, the

number of components updated per time step.

Algorithm
Algorithm 3 gives the complete iLSTD algorithm. After set-

ting the initial values, the agent begins interacting with the

environment. Ψ and D are computed incrementally in Lines

5–8.
2
. It is followed by updating selected parameter compo-

nents in Lines 9–13. For each of the m updates performed

during the single time step, the component with the highest

absolute value of the mean TD update vector (∆t) is chosen.

Notice that the component that maximizes D is the same as

the component that maximizes D/t. After the update, D is

recomputed and so may affect the next component chosen.

Time Complexity
We now examine iLSTD’s time complexity.

Theorem 1 If there are n features and for any given state
s, φ(s) has at most k non-zero elements, then the iLSTD
algorithm is O(mn + k2) per time step.

Proof Lines 6–8 are the most computationally expensive

parts of iLSTD outside the inner loop. Because each feature

vector does not have more than k non-zero elements, φ(s)r
has only k non-zero elements and the matrix φ(s)(φ(s) −
γφ(s�))T

has at most 2k2
non-zero elements. Therefore

lines 6-8 are computable in O(k2) with sparse matrices and

vectors. Inside the parameter update loop (Line 9), the ex-

pensive lines are 10 and 12. The argmax can be computed in

O(n) and because Ψei is just the ithe column of Ψ, the pa-

rameter update is also O(n). This will lead to O(mn + k2)
as the final bound for the algorithm per time step. �

2
R is not computed because it is implicitly included in D.

iLSTD
0 s← s0, Ψ← 0, D ← 0, t← 0
1 Initialize θ arbitrarily

2 repeat
3 Take action according to π and observe r, s�

4 t← t + 1
5 δR← φ(s)r
6 δΨ← φ(s)(φ(s)− γφ(s�))T

7 Ψ← Ψ + δΨ
8 D ← D + (δR)− (δΨ)θ
9 for i from 1 to m do
10 j ← argmax(|D(j)|)

11 θ(j)← θ(j) +
αD(j)

t

12 D ← D − αD(j)
t

Ψei

13 end for
14 end repeat

Algorithm 3: The iLSTD pseudo-code.
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Figure 1: The extended Boyan chain example with a variable

number of states.

Empirical Results
The experimental results in this paper follow closely with

Boyan’s experiments with LSTD(λ) (Boyan 1999). The

problem we examine is the Boyan chain problem: Figure 1

depicts the problem in the general form. In order to demon-

strate the computational complexity of iLSTD, results were

conducted with three different problem sizes: 14 (original

problem), 102 and 402 states. We will call these the small,

medium, and large problems, respectively. It is an episodic

problem, starting at state N and being terminated in state

zero. For all states s greater than two, there exists equal

probability of ending up in states (s− 1) or (s− 2), and re-

ward of all transitions are−3, except from state 2 to 1 (when

reward is −2) and transitions to state 0 (when reward is 0).

The α step size used in these experiments takes the same

form as that used in Boyan’s original experiments.

αt = α0
N0 + 1

N0 + Episode#

The selection of N0 and α0 for TD and iLSTD was

based on experimentally finding the best parameters in

the set α0 ∈ {0.01, 0.1, 1, 5, 10, 50, 100, 200} and N0 ∈
{100, 1000, 106}. We only report the results for the best

α0 ∈ {0.01, 0.1, 1}
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Important facts

LSTD is still the optimum solution with respect to all 
past experiences and using TD methods.

TD is faster than iLSTD, and in case of having k 
features “on” in any moment, it is O(k) per time-step.

iLSTD can be fit in many constraints by adjusting 
m parameter.
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Can we use Coordinate Decent?

Equivalent to Gauss-Seidel method to solve a 
linear system of equations.

No step size parameter to tune!
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”The Gauss-Seidel method is applicable to strictly diagonally 
dominant, or symmetric positive definite matrices.”

Eric W. Weisstein et al. "Gauss-Seidel Method." From MathWorld--A Wolfram Web 
Resource.

= μ is neither symmetric nor 
diagonally dominant.

LSTD
0 s← s0, Ψ← 0, R← 0
1 Initialize θ arbitrary

2 repeat
3 Take action according to π and observe r, s�

5 R← R + φ(s)r
6 µ← (φ(s)− γφ(s�))T

7 Ψ← Ψ + µθ
8 if (first update)

9 Ψ̃← Ψ−1

10 else

11 Ψ̃← Ψ̃

0

@I −
„

φ(s)µ

1 + µΨ̃φ(s)

«
Ψ̃

1

A

12 end if
13 θ ← Ψ̃R
14 end repeat

Algorithm 2: The online LSTD pseudo code.
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(Rt −Ψtθ). (5)

Because we want to choose parameters such that the mean

TD update is zero, we set Equation 5 to zero and solve for

the new parameter vector,

θt+1 = Ψ−1
t Rt.

The online version of LSTD incorporates each observed re-

ward and state transition into the R vector and the Ψ matrix

and then solves for a new θ. Notice that once R and Ψ are

updated the experience tuple can be forgotten without losing

any information. Because Ψ changes by only a small amount

on each time step, Ψ−1
can also be maintained incremen-

tally. This version of the algorithm for LSTD is shown in

Algorithm 2.

LSTD after each time step computes the value function

parameters that have zero mean TD update. It essentially

fully exploits all of the observed data to find optimal param-

eters. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating Ψ become O(k2) (where

k is the number of non-zero elements) but others such as

multiplying Ψ−1R are still O(n2) because neither the ma-

trix nor the vector are necessarily sparse. The result is that

LSTD can be computationally impractical for problems with

a large number of features even if they are sparse.

Practitioners are currently faced with a serious tradeoff:

they must either choose data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the mean TD update over all observed

trajectories, thus making more efficient use of the data than

TD. However, iLSTD does not immediately solve for the

parameters that give a zero mean TD update, which is too

computationally expensive. Instead, the mean TD update is

used in a gradient fashion to move the parameters in the di-

rection to reduce it to zero.

Incremental Computation
The key computation in iLSTD is incrementally updating

∆t(θ) as transitions are observed and θ changes. We will

find it more convenient to incrementally update Dt(θ) =
t∆t(θ), and we can recover ∆t(θ) by simply dividing by

t. We begin by showing that R and Ψ can be updated in

an incremental fashion given a newly observed reward and

transition,

Rt = Rt−1 + rtφt����
δRt

Ψt = Ψt−1 + φt(φt − γφt+1)T

� �� �
δΨt

.

We can also incrementally update Dt(θt) for this new obser-

vation,

Dt(θt) = Dt−1(θt)+
�
(δRt)− (δΨt)θt

�
.

We also have to incrementally update D for changes to θ as

well. After updating θt+1 = θt + (δθt),

Dt(θt+1) = Dt(θt)−Ψt(δθt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve already seen that solving for θt+1 such that

∆t(θt+1) = 0 requires quadratic time in the number of fea-

tures. Instead we might consider taking a step in the di-

rection of ∆. This can be thought of as applying the mean

change to θ if TD were applied to a randomly selected tran-

sition from our previously observed trajectories. As such,

it both makes use of all the past data and will have a much

lower variance than TD’s traditional single sample update.

Unfortunately, it too is computationally expensive, as Equa-

tion 6 takes O(n2) to compute if δθt has no non-zero com-

ponents.

The lack of non-zero components in δθt suggests the com-

promise that will be used by iLSTD. Instead of updating all
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LSTD
0 s← s0, Ψ← 0, R← 0
1 Initialize θ arbitrary

2 repeat
3 Take action according to π and observe r, s�

5 R← R + φ(s)r
6 µ← (φ(s)− γφ(s�))T

7 Ψ← Ψ + µθ
8 if (first update)

9 Ψ̃← Ψ−1

10 else

11 Ψ̃← Ψ̃

0

@I −
„

φ(s)µ

1 + µΨ̃φ(s)

«
Ψ̃

1

A

12 end if
13 θ ← Ψ̃R
14 end repeat

Algorithm 2: The online LSTD pseudo code.
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θ

�

=
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t
(Rt −Ψtθ). (5)

Because we want to choose parameters such that the mean

TD update is zero, we set Equation 5 to zero and solve for

the new parameter vector,

θt+1 = Ψ−1
t Rt.

The online version of LSTD incorporates each observed re-

ward and state transition into the R vector and the Ψ matrix

and then solves for a new θ. Notice that once R and Ψ are

updated the experience tuple can be forgotten without losing

any information. Because Ψ changes by only a small amount

on each time step, Ψ−1
can also be maintained incremen-

tally. This version of the algorithm for LSTD is shown in

Algorithm 2.

LSTD after each time step computes the value function

parameters that have zero mean TD update. It essentially

fully exploits all of the observed data to find optimal param-

eters. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating Ψ become O(k2) (where

k is the number of non-zero elements) but others such as

multiplying Ψ−1R are still O(n2) because neither the ma-

trix nor the vector are necessarily sparse. The result is that

LSTD can be computationally impractical for problems with

a large number of features even if they are sparse.

Practitioners are currently faced with a serious tradeoff:

they must either choose data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the mean TD update over all observed

trajectories, thus making more efficient use of the data than

TD. However, iLSTD does not immediately solve for the

parameters that give a zero mean TD update, which is too

computationally expensive. Instead, the mean TD update is

used in a gradient fashion to move the parameters in the di-

rection to reduce it to zero.

Incremental Computation
The key computation in iLSTD is incrementally updating

∆t(θ) as transitions are observed and θ changes. We will

find it more convenient to incrementally update Dt(θ) =
t∆t(θ), and we can recover ∆t(θ) by simply dividing by

t. We begin by showing that R and Ψ can be updated in

an incremental fashion given a newly observed reward and

transition,

Rt = Rt−1 + rtφt����
δRt

Ψt = Ψt−1 + φt(φt − γφt+1)T

� �� �
δΨt

.

We can also incrementally update Dt(θt) for this new obser-

vation,

Dt(θt) = Dt−1(θt)+
�
(δRt)− (δΨt)θt

�
.

We also have to incrementally update D for changes to θ as

well. After updating θt+1 = θt + (δθt),

Dt(θt+1) = Dt(θt)−Ψt(δθt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve already seen that solving for θt+1 such that

∆t(θt+1) = 0 requires quadratic time in the number of fea-

tures. Instead we might consider taking a step in the di-

rection of ∆. This can be thought of as applying the mean

change to θ if TD were applied to a randomly selected tran-

sition from our previously observed trajectories. As such,

it both makes use of all the past data and will have a much

lower variance than TD’s traditional single sample update.

Unfortunately, it too is computationally expensive, as Equa-

tion 6 takes O(n2) to compute if δθt has no non-zero com-

ponents.

The lack of non-zero components in δθt suggests the com-

promise that will be used by iLSTD. Instead of updating all
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LSTD
0 s← s0, Ψ← 0, R← 0
1 Initialize θ arbitrary

2 repeat
3 Take action according to π and observe r, s�

5 R← R + φ(s)r
6 µ← (φ(s)− γφ(s�))T

7 Ψ← Ψ + µθ
8 if (first update)

9 Ψ̃← Ψ−1

10 else

11 Ψ̃← Ψ̃

0

@I −
„

φ(s)µ

1 + µΨ̃φ(s)

«
Ψ̃

1

A

12 end if
13 θ ← Ψ̃R
14 end repeat

Algorithm 2: The online LSTD pseudo code.
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θ
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=
1
t
(Rt −Ψtθ). (5)

Because we want to choose parameters such that the mean

TD update is zero, we set Equation 5 to zero and solve for

the new parameter vector,

θt+1 = Ψ−1
t Rt.

The online version of LSTD incorporates each observed re-

ward and state transition into the R vector and the Ψ matrix

and then solves for a new θ. Notice that once R and Ψ are

updated the experience tuple can be forgotten without losing

any information. Because Ψ changes by only a small amount

on each time step, Ψ−1
can also be maintained incremen-

tally. This version of the algorithm for LSTD is shown in

Algorithm 2.

LSTD after each time step computes the value function

parameters that have zero mean TD update. It essentially

fully exploits all of the observed data to find optimal param-

eters. However, this data efficiency is at the cost of com-

putational efficiency. In the non-incremental form, the ma-

trix inversion alone is O(n3). Using the incremental form,

maintaining the matrix inversion still requires O(n2) com-

putation per time step. If the feature vector is sparse, some

of the operations such as updating Ψ become O(k2) (where

k is the number of non-zero elements) but others such as

multiplying Ψ−1R are still O(n2) because neither the ma-

trix nor the vector are necessarily sparse. The result is that

LSTD can be computationally impractical for problems with

a large number of features even if they are sparse.

Practitioners are currently faced with a serious tradeoff:

they must either choose data efficiency or computational

efficiency. In the next section, we introduce a new algo-

rithm that seeks to provide a compromise between these ex-

tremes. In particular, our algorithm exploits all of the data

like LSTD, while requiring only linear computation per time

step.

New Algorithm
In this section we present the incremental least-squares tem-

poral difference learning algorithm (iLSTD). The algorithm

computes and uses the mean TD update over all observed

trajectories, thus making more efficient use of the data than

TD. However, iLSTD does not immediately solve for the

parameters that give a zero mean TD update, which is too

computationally expensive. Instead, the mean TD update is

used in a gradient fashion to move the parameters in the di-

rection to reduce it to zero.

Incremental Computation
The key computation in iLSTD is incrementally updating

∆t(θ) as transitions are observed and θ changes. We will

find it more convenient to incrementally update Dt(θ) =
t∆t(θ), and we can recover ∆t(θ) by simply dividing by

t. We begin by showing that R and Ψ can be updated in

an incremental fashion given a newly observed reward and

transition,

Rt = Rt−1 + rtφt����
δRt

Ψt = Ψt−1 + φt(φt − γφt+1)T

� �� �
δΨt

.

We can also incrementally update Dt(θt) for this new obser-

vation,

Dt(θt) = Dt−1(θt)+
�
(δRt)− (δΨt)θt

�
.

We also have to incrementally update D for changes to θ as

well. After updating θt+1 = θt + (δθt),

Dt(θt+1) = Dt(θt)−Ψt(δθt). (6)

We will examine the time complexity of these computations

after presenting the complete algorithm.

Updating the Parameters
We’ve already seen that solving for θt+1 such that

∆t(θt+1) = 0 requires quadratic time in the number of fea-

tures. Instead we might consider taking a step in the di-

rection of ∆. This can be thought of as applying the mean

change to θ if TD were applied to a randomly selected tran-

sition from our previously observed trajectories. As such,

it both makes use of all the past data and will have a much

lower variance than TD’s traditional single sample update.

Unfortunately, it too is computationally expensive, as Equa-

tion 6 takes O(n2) to compute if δθt has no non-zero com-

ponents.

The lack of non-zero components in δθt suggests the com-

promise that will be used by iLSTD. Instead of updating all
Tuesday, December 13, 2011
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Figure 5: Total running time of each method with respect to
the problem size for all 1000 episodes. The inset shows the
same results plotted with a linear scale.

in the middle ground where neither data nor computation
are prohibitively costly, for which iLSTD may be the best
choice. Even when data is free, iLSTD can still outperform
other methods. In all of the problems above, iLSTD’s total
computation was much less than twice that of TD, but TD
with twice the training episodes was still inferior.

The step sizes used for both TD and iLSTD were op-
timized for the particular problem. TD performed best
with (0.1, 1000), (1.0, 1000), and (1.0, 106) for the small,
medium, and large problems respectively. iLSTD performed
best with (5, 1000), (50, 106), (200, 106), respectively. The
increasing step sizes used by iLSTD make sense in this prob-
lem because the mean TD update for a particular component
decreases linearly with the number of states. Note that iL-
STD can employ much larger step sizes because its mean
update vector has much lower variance than TD’s stochastic
update. In the first episode, though, iLSTD’s update vector
still has a large variance, and so we delay any component
updates till the second episode. Neither TD nor LSTD ben-
efit from such a delay. These step size details can be ad-
dressed by using a simple feature frequency count to scale
the step size appropriately to the problem. It would also
naturally perform small updates early in learning when the
update vector has high variance. In contrast, one of LSTD’s
advantages remains that it doesn’t require a step size param-
eter.

Conclusions
Our experiments show that as the number of features grow,
computationally expensive methods like LSTD can become
impractical. However, computationally cheap methods like
TD do not make efficient use of the data. We introduced iL-
STD as an alternative when neither computation nor data are
prohibitively expensive. iLSTD has complexity that grows
only linearly with the number of features. Our experiments
show that iLSTD can perform nearly as well as the LSTD.

There are a number of interesting directions for future

work. Eligibility traces have proven to be effective at im-
proving the performance of TD methods, giving birth to
the TD(λ) (Sutton 1988) and LSTD(λ) (Boyan 1999) algo-
rithms. It would be interesting to see if they can be used
with iLSTD. Although they would have to be used carefully
to avoid changing the computational complexity. We would
also like to apply the iLSTD algorithm to a practical problem
with a large number of features for which LSTD is currently
infeasible such as RoboCup soccer keepaway (as in Stone,
Sutton, & Kuhlmann 2005).
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in the middle ground where neither data nor computation
are prohibitively costly, for which iLSTD may be the best
choice. Even when data is free, iLSTD can still outperform
other methods. In all of the problems above, iLSTD’s total
computation was much less than twice that of TD, but TD
with twice the training episodes was still inferior.

The step sizes used for both TD and iLSTD were op-
timized for the particular problem. TD performed best
with (0.1, 1000), (1.0, 1000), and (1.0, 106) for the small,
medium, and large problems respectively. iLSTD performed
best with (5, 1000), (50, 106), (200, 106), respectively. The
increasing step sizes used by iLSTD make sense in this prob-
lem because the mean TD update for a particular component
decreases linearly with the number of states. Note that iL-
STD can employ much larger step sizes because its mean
update vector has much lower variance than TD’s stochastic
update. In the first episode, though, iLSTD’s update vector
still has a large variance, and so we delay any component
updates till the second episode. Neither TD nor LSTD ben-
efit from such a delay. These step size details can be ad-
dressed by using a simple feature frequency count to scale
the step size appropriately to the problem. It would also
naturally perform small updates early in learning when the
update vector has high variance. In contrast, one of LSTD’s
advantages remains that it doesn’t require a step size param-
eter.

Conclusions
Our experiments show that as the number of features grow,
computationally expensive methods like LSTD can become
impractical. However, computationally cheap methods like
TD do not make efficient use of the data. We introduced iL-
STD as an alternative when neither computation nor data are
prohibitively expensive. iLSTD has complexity that grows
only linearly with the number of features. Our experiments
show that iLSTD can perform nearly as well as the LSTD.

There are a number of interesting directions for future

work. Eligibility traces have proven to be effective at im-
proving the performance of TD methods, giving birth to
the TD(λ) (Sutton 1988) and LSTD(λ) (Boyan 1999) algo-
rithms. It would be interesting to see if they can be used
with iLSTD. Although they would have to be used carefully
to avoid changing the computational complexity. We would
also like to apply the iLSTD algorithm to a practical problem
with a large number of features for which LSTD is currently
infeasible such as RoboCup soccer keepaway (as in Stone,
Sutton, & Kuhlmann 2005).

Acknowledgments
We’d like to thank Dale Schuurmans, Dan Lizotte and Amir
Masoud Farahmand for their invaluable insights. This re-
search was supported by iCore, Alberta Ingenuity through
the Alberta Ingenuity Centre for Machine Learning, and
NSERC.

References
Albus, J. S. 1971. A theory of cerebellar function. Mathe-
matical Biosciences 10:25–61.
Boyan, J. A. 1999. Least-squares temporal difference
learning. In Proc. 16th International Conf. on Machine
Learning, 49–56. Morgan Kaufmann, San Francisco, CA.
Boyan, J. A. 2002. Technical update: Least-squares tem-
poral difference learning. Machine Learning 49:233–246.
Bradtke, S., and Barto, A. 1996. Linear least-squares algo-
rithms for temporal difference learning. In Machine Learn-
ing,, volume 22, 33–57.
Hinton, G. E. 1984. Distrributed representation. Technical
report cmu-cs-84-157, Department of Computer Science,
Carnegie-Mellon University.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares pol-
icy iteration. In Journal of Machine Learning Research,
volume 4, 1107–1149.
Lin, L. J. 1993. Reinforcement Learning for Robots Us-
ing Neural Networks. Ph.D. Dissertation, Carnegie Mellon
University.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103–130.
Poggio, T., and Girosi, F. 1989. A theory of networks for
approximation and learning. Technical Report AIM-1140,
MIT AI Lab.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for robocup soccer keepaway. Interna-
tional Society for Adaptive Behavior 13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Touretzky, D. S.; Mozer, M. C.; and Hasselmo, M. E., eds.,
Advances in Neural Information Processing Systems, vol-
ume 8, 1038–1044. The MIT Press.

4 26 101 201 501

101

102

103

104

105

Features

Ti
m

e 
(s

)

TD
iLSTD
LSTD

Figure 5: Total running time of each method with respect to
the problem size for all 1000 episodes. The inset shows the
same results plotted with a linear scale.

in the middle ground where neither data nor computation
are prohibitively costly, for which iLSTD may be the best
choice. Even when data is free, iLSTD can still outperform
other methods. In all of the problems above, iLSTD’s total
computation was much less than twice that of TD, but TD
with twice the training episodes was still inferior.

The step sizes used for both TD and iLSTD were op-
timized for the particular problem. TD performed best
with (0.1, 1000), (1.0, 1000), and (1.0, 106) for the small,
medium, and large problems respectively. iLSTD performed
best with (5, 1000), (50, 106), (200, 106), respectively. The
increasing step sizes used by iLSTD make sense in this prob-
lem because the mean TD update for a particular component
decreases linearly with the number of states. Note that iL-
STD can employ much larger step sizes because its mean
update vector has much lower variance than TD’s stochastic
update. In the first episode, though, iLSTD’s update vector
still has a large variance, and so we delay any component
updates till the second episode. Neither TD nor LSTD ben-
efit from such a delay. These step size details can be ad-
dressed by using a simple feature frequency count to scale
the step size appropriately to the problem. It would also
naturally perform small updates early in learning when the
update vector has high variance. In contrast, one of LSTD’s
advantages remains that it doesn’t require a step size param-
eter.

Conclusions
Our experiments show that as the number of features grow,
computationally expensive methods like LSTD can become
impractical. However, computationally cheap methods like
TD do not make efficient use of the data. We introduced iL-
STD as an alternative when neither computation nor data are
prohibitively expensive. iLSTD has complexity that grows
only linearly with the number of features. Our experiments
show that iLSTD can perform nearly as well as the LSTD.

There are a number of interesting directions for future

work. Eligibility traces have proven to be effective at im-
proving the performance of TD methods, giving birth to
the TD(λ) (Sutton 1988) and LSTD(λ) (Boyan 1999) algo-
rithms. It would be interesting to see if they can be used
with iLSTD. Although they would have to be used carefully
to avoid changing the computational complexity. We would
also like to apply the iLSTD algorithm to a practical problem
with a large number of features for which LSTD is currently
infeasible such as RoboCup soccer keepaway (as in Stone,
Sutton, & Kuhlmann 2005).

Acknowledgments
We’d like to thank Dale Schuurmans, Dan Lizotte and Amir
Masoud Farahmand for their invaluable insights. This re-
search was supported by iCore, Alberta Ingenuity through
the Alberta Ingenuity Centre for Machine Learning, and
NSERC.

References
Albus, J. S. 1971. A theory of cerebellar function. Mathe-
matical Biosciences 10:25–61.
Boyan, J. A. 1999. Least-squares temporal difference
learning. In Proc. 16th International Conf. on Machine
Learning, 49–56. Morgan Kaufmann, San Francisco, CA.
Boyan, J. A. 2002. Technical update: Least-squares tem-
poral difference learning. Machine Learning 49:233–246.
Bradtke, S., and Barto, A. 1996. Linear least-squares algo-
rithms for temporal difference learning. In Machine Learn-
ing,, volume 22, 33–57.
Hinton, G. E. 1984. Distrributed representation. Technical
report cmu-cs-84-157, Department of Computer Science,
Carnegie-Mellon University.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares pol-
icy iteration. In Journal of Machine Learning Research,
volume 4, 1107–1149.
Lin, L. J. 1993. Reinforcement Learning for Robots Us-
ing Neural Networks. Ph.D. Dissertation, Carnegie Mellon
University.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13:103–130.
Poggio, T., and Girosi, F. 1989. A theory of networks for
approximation and learning. Technical Report AIM-1140,
MIT AI Lab.
Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Rein-
forcement learning for robocup soccer keepaway. Interna-
tional Society for Adaptive Behavior 13(3):165–188.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Touretzky, D. S.; Mozer, M. C.; and Hasselmo, M. E., eds.,
Advances in Neural Information Processing Systems, vol-
ume 8, 1038–1044. The MIT Press.

Tuesday, December 13, 2011



[Saad, Schultz 86]
Saad, Y. and Schultz, M. "GMRES: A Generalized Minimal 
Residual Algorithm for Solving Nonsymmetric Linear Systems." 
SIAM J. Sci. Statist. Comput. 7, 856-869, 1986.

[Geramifard, Bowling, Sutton 06]
 A. Geramifard, M. Bowling, R. S. Sutton, "Iterative Lease 
Square Temporal Difference Learning" submitted to American 
Association for Artificial Intelligence (AAAI) 2006

40

References

Tuesday, December 13, 2011



Questions

Thanks...

41

Tuesday, December 13, 2011



Questions

Thanks...

41

Tuesday, December 13, 2011


