Incremental Least-Squares Temporal Difference Learning

Alborz Geramifard December, 2006 alborz@cs.ualberta.ca

Incremental Least-Squares Temporal Difference

 Learning
Alborz Geramifard

 December, 2006 alborz@cs.ualberta.ca

Summary

Summary

Summary

Summary

Summary

$$
\begin{aligned}
& \text { - LSTD } \\
& \text { Speed }
\end{aligned}
$$

Summary

(TSTD
 Speed

Contributions

Contributions
© iLSTD: A new policy evaluation algorithm

Extension with eligibility traces
Running time analysis
\& Dimension selection methods
\& Proof of convergence
© Empirical results

Contributions
© iLSTD: A new policy evaluation algorithm
8. Extension with eligibility traces
© Running time analysis
© Dimension selection methods
\& Proof of convergence
© Empirical results

Outline

Outline

© Motivation

8. Introduction

8. The New Approach
9. Eligibility Traces
© Dimension Selection
© Conclusion

Outline

© Motivation
g Introduction

(8) The New Approach
E. Eligibility Traces
© Dimension Selection
© Conclusion

Markov Decision Process

$$
\left\langle\mathcal{S}, \mathcal{A}, \mathcal{P}_{s s^{\prime}}^{a}, \mathcal{R}_{s s^{\prime}}^{a}, \gamma\right\rangle
$$

Markov Decision Process

$$
\left\langle\mathcal{S}, \mathcal{A}, \mathcal{P}_{s s^{\prime}}^{a}, \mathcal{R}_{s s^{\prime}}^{a}, \gamma\right\rangle
$$

Markov Decision Process

$$
\left\langle\mathcal{S}, \mathcal{A}, \mathcal{P}_{s s^{\prime}}^{a}, \mathcal{R}_{s s^{\prime}}^{a}, \gamma\right\rangle
$$

B.S., Working, +60, B.S. Studying, -50, M.S. , ...

Policy Evaluation

Policy Evaluation

Policy Improvement

Policy Evaluation

\uparrow

Policy Improvement

Policy Evaluation

Policy Improvement

Notation

Scalar	Regular	$V^{\pi}(s)$	r_{t+1}
Vector	Bold Lower Case	$\phi(s)$	$\mu(\boldsymbol{\theta})$
Matrix	Bold Upper Case	\mathbf{A}_{t}	$\tilde{\mathbf{A}}$

Policy Evaluation

Linear

Function Approximation

$$
V(s)=\boldsymbol{\theta} \cdot \boldsymbol{\phi}(s)=\sum_{i=1}^{n} \theta_{i} \phi_{i}(s)
$$

Sparsity of features

Sparsity: Only k features are active at any given moment.

$$
k \ll n
$$

Sparsity of features

© Sparsity: Only k features are active at any given moment.

$$
k \ll n
$$

(3) Acrobot [Sutton 96]: $48 \ll 18,648$

Sparsity of features

© Sparsity: Only k features are active at any given moment.

$$
k \ll n
$$

(3) Acrobot [Sutton 96]: $48 \ll 18,648$
(9) Card game [Bowling et al. 02]: $3 \ll 10^{\wedge} 6$

Sparsity of features

© Sparsity: Only k features are active at any given moment.

$$
k \ll n
$$

8. Acrobot [Sutton 96]: $48 \ll 18,648$
(8. Card game [Bowling et al. O2]: $3 \ll 10^{\wedge} 6$
(3) Keep away soccer [Stone et al. 05]: $416 \ll 10^{\wedge} 4$

Temporal Difference Learning TD(0)

Temporal Difference Learning TD(0)
 $s_{t} \xrightarrow{(\pi) a, r} s_{t+1}$

[Sutton 88]

Temporal Difference Learning TD(0) $s_{t} \xrightarrow{(\pi) \mathrm{ar}} s_{t+1}$

(3) Tabular Representation
$\delta_{t}=r_{t}+\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right)$
© Linear Function Approximation
$\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\alpha_{t} \boldsymbol{\phi}\left(s_{t}\right) \delta_{t}(V)$
[Sutton 88]

TD(0) Properties

8 Computational complexity

$O(k)$ per time step

© Data inefficient
8. Only last transition

TD(0) Properties

3 Computational complexity Constant
$O(k)$ per time step
© Data inefficient
8. Only last transition

Least-Squares TD (LSTD)

© Sum of TD updates

Least-Squares TD (LSTD)

Sum of TD updates
[Bradtke, Barto 96]

Least-Squares TD (LSTD)

8. Sum of TD updates
[Bradtke, Barto 96]

$$
\mu_{t}(\boldsymbol{\theta})=\sum_{i=1}^{t} \phi_{i} \delta_{i}\left(V_{\boldsymbol{\theta}}\right)
$$

Least-Squares TD (LSTD)

8. Sum of TD updates

[Bradtke, Barto 96]

$$
\begin{aligned}
\mu_{t}(\boldsymbol{\theta}) & =\sum_{i=1}^{\sum_{i}^{t} \boldsymbol{\phi}_{i} \delta_{i}\left(V_{\boldsymbol{\theta}}\right)} \\
& =\underbrace{\sum_{i=1}^{t} \phi_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} \phi_{i}\left(\boldsymbol{\phi}_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta}
\end{aligned}
$$

Least-Squares TD (LSTD)

8. Sum of TD updates
[Bradtke, Barto 96]

$$
\begin{aligned}
\boldsymbol{\mu}_{t}(\boldsymbol{\theta}) & =\sum_{i=1}^{\sum_{i}^{t} \boldsymbol{\phi}_{i} \delta_{i}\left(V_{\boldsymbol{\theta}}\right)} \\
& =\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} \phi_{i}\left(\boldsymbol{\phi}_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta} \\
& =\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
\end{aligned}
$$

Least-Squares TD (LSTD)

© Sum of TD updates
[Bradtke, Barto 96$]$

$$
\begin{aligned}
\boldsymbol{\mu}_{t}(\boldsymbol{\theta}) & =\sum_{i=1}^{\sum_{i}^{t}} \phi_{i} \delta_{i}\left(V_{\boldsymbol{\theta}}\right) \\
& =\underbrace{\sum_{i=1}^{t} \phi_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} \phi_{i}\left(\phi_{i}-\gamma \phi_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta} \\
& =\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
\end{aligned}
$$

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{0} \quad \square \boldsymbol{\theta}=\mathbf{A}^{-1} \mathbf{b}
$$

LSTD Properties

8. Computational complexity
$O\left(n^{2}\right)$ per time step
9. Data efficient
© Look through all data

LSTD Properties

8. Computational complexity

Quadratic

 $O\left(n^{2}\right)$ per time step8. Data efficient
© Look through all data

Outline

Outline

© Motivation
8. Introduction
© The New Approach
4
E. Eligibility Traces
© Dimension Selection
© Conclusion

The New Approach

The New Approach

© \mathbf{A} and \mathbf{b} matrices change on each iteration.

The New Approach

© \mathbf{A} and \mathbf{b} matrices change on each iteration.

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{i}\left(\boldsymbol{\phi}_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T} \boldsymbol{\theta}}_{\mathbf{A}_{t}}
$$

The New Approach

© \mathbf{A} and \mathbf{b} matrices change on each iteration.

$$
\begin{aligned}
& \boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} \boldsymbol{\phi}_{i}\left(\boldsymbol{\phi}_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta} \\
& \mathbf{b}_{t}=\mathbf{b}_{t-1}+\underbrace{\boldsymbol{b}_{t}}_{\mathbf{b}_{t} \boldsymbol{\phi}_{t}} \\
& \mathbf{A}_{t}=\mathbf{A}_{t-1}+\underbrace{\boldsymbol{\phi}_{t}\left(\boldsymbol{\phi}_{t}-\gamma \boldsymbol{\phi}_{t+1}\right)^{T}}_{\Delta \mathbf{A}_{t}}
\end{aligned}
$$

Incremental LSTD

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
$$

Incremental LSTD

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
$$

[Geramifard, Bowling, Sutton 06]

Incremental LSTD

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
$$

© Fixed θ

8 Fixed \mathbf{A} and \mathbf{b}
[Geramifard, Bowling, Sutton 06]

Incremental LSTD

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
$$

© Fixed θ

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\boldsymbol{\mu}_{t-1}(\boldsymbol{\theta})+\Delta \mathbf{b}_{t}-\left(\Delta \mathbf{A}_{t}\right) \boldsymbol{\theta} .
$$

8. Fixed \mathbf{A} and \mathbf{b}

Incremental LSTD

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\mathbf{b}_{t}-\mathbf{A}_{t} \boldsymbol{\theta}
$$

© Fixed θ

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\boldsymbol{\mu}_{t-1}(\boldsymbol{\theta})+\Delta \mathbf{b}_{t}-\left(\Delta \mathbf{A}_{t}\right) \boldsymbol{\theta}
$$

8. Fixed \mathbf{A} and \mathbf{b}

$$
\mu_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\mu_{t}\left(\boldsymbol{\theta}_{t}\right)-\boldsymbol{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)
$$

[Geramifard, Bowling, Sutton 06]
iLSTD
$\mu_{t}\left(\theta_{t+1}\right)=\mu_{t}\left(\theta_{t}\right)-\mathbf{A}_{t}\left(\Delta \theta_{t}\right)$.

iLSTD

$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?

iLSTD

$\mu_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\mu_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\boldsymbol{\mu}_{t}(\boldsymbol{\theta})$?

iLSTD

$$
\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right) .
$$

3. How to change $\boldsymbol{\theta}$?
8) Descent in the direction of $\boldsymbol{\mu}_{t}(\boldsymbol{\theta})$?

iLSTD

$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?

3 Descent in the direction of $\boldsymbol{\mu}_{t}(\boldsymbol{\theta})$?

iLSTD

$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\boldsymbol{\mu}_{t}(\boldsymbol{\theta})$?

iLSTD

$$
\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right) .
$$

© How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\mu_{t}(\boldsymbol{\theta})$? $O\left(n^{2}\right)$

iLSTD
$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\mu_{t}(\boldsymbol{\theta})$? $O\left(n^{2}\right)$

iLSTD
$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\mu_{t}(\boldsymbol{\theta})$? $O\left(n^{2}\right)$

iLSTD
$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
8. Descent in the direction of $\mu_{t}(\boldsymbol{\theta})$? $O\left(n^{2}\right)$

iLSTD

$\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t+1}\right)=\boldsymbol{\mu}_{t}\left(\boldsymbol{\theta}_{t}\right)-\mathbf{A}_{t}\left(\Delta \boldsymbol{\theta}_{t}\right)$.
8. How to change $\boldsymbol{\theta}$?
(9. Descent in the direction of $\mu_{t}(\boldsymbol{\theta})$? $O\left(n^{2}\right)$

iLSTD Algorithm

$0 \quad s \leftarrow s_{0}, \mathbf{A} \leftarrow \mathbf{0}, \boldsymbol{\mu} \leftarrow \mathbf{0}, t \leftarrow 0$
1 Initialize $\boldsymbol{\theta}$ arbitrarily

iLSTD Algorithm

$0 \quad s \leftarrow s_{0}, \mathbf{A} \leftarrow \mathbf{0}, \boldsymbol{\mu} \leftarrow \mathbf{0}, t \leftarrow 0$
1 Initialize $\boldsymbol{\theta}$ arbitrarily
2 repeat
3 Take action according to π and observe r, s^{\prime}
$4 \quad t \leftarrow t+1$
$5 \quad \Delta \mathbf{b} \leftarrow \phi(s) r$
$6 \quad \Delta \mathbf{A} \leftarrow \boldsymbol{\phi}(s)\left(\phi(s)-\gamma \boldsymbol{\phi}\left(s^{\prime}\right)\right)^{T}$
$7 \quad \mathbf{A} \leftarrow \mathbf{A}+\Delta \mathbf{A}$
$8 \quad \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}+\Delta \mathbf{b}-(\Delta \mathbf{A}) \boldsymbol{\theta}$

iLSTD Algorithm

$0 \quad s \leftarrow s_{0}, \mathbf{A} \leftarrow \mathbf{0}, \boldsymbol{\mu} \leftarrow \mathbf{0}, t \leftarrow 0$
1 Initialize $\boldsymbol{\theta}$ arbitrarily
2 repeat
3 Take action according to π and observe r, s^{\prime}
$4 \quad t \leftarrow t+1$
$5 \quad \Delta \mathbf{b} \leftarrow \phi(s) r$
$6 \quad \Delta \mathbf{A} \leftarrow \boldsymbol{\phi}(s)\left(\boldsymbol{\phi}(s)-\gamma \boldsymbol{\phi}\left(s^{\prime}\right)\right)^{T}$
$7 \quad \mathbf{A} \leftarrow \mathbf{A}+\Delta \mathbf{A}$
$8 \quad \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}+\Delta \mathbf{b}-(\Delta \mathbf{A}) \boldsymbol{\theta}$
$9 \quad$ for i from 1 to m do
$10 \quad j \leftarrow$ choose an index of $\boldsymbol{\mu}$ using a dimension selection mechanism
$11 \quad \theta_{j} \leftarrow \theta_{j}+\alpha \mu_{j}$
$12 \boldsymbol{\mu} \leftarrow \boldsymbol{\mu}-\alpha \mu_{j} \mathbf{A} \boldsymbol{e}_{j}$
13 end for
$14 \quad s \leftarrow s^{\prime}$
15 end repeat

iLSTD

(5) Per-time-step computational complexity
$O\left(m n+k^{2}\right)$
© More data efficient than TD

iLSTD

(5) Per-time-step computational complexity $O\left(m n+k^{2}\right)$

Number of iterations per time step
© More data efficient than TD

iLSTD

(5) Per-time-step computational complexity $O\left(m n+k^{2}\right)$

Number of features
Number of iterations per time step
© More data efficient than TD

iLSTD

8) Per-time-step computational complexity
$O\left(m n+k^{2}\right)$
Maximum number of activer of features
Number of iterations per time step
© More data efficient than TD

iLSTD

8. Per-time-step computational complexity
$O\left(m n+k^{2}\right) \quad$ Linear
Maximum number of active features
Number of features
Number of iterations per time step
© More data efficient than TD

iLSTD

© Theorem : iLSTD converges with probability one to the same solution as TD, under the usual step-size conditions, for any dimension selection method such that all dimensions for which μ_{t} is non-zero are selected in the limit an infinite number of times.

Empirical Results

Settings

Settings

Averaged over 30 runs
Same random seed for all methods
Sparse matrix representation
iLSTD
8 Non-zero random selection
© One descent per iteration

Boyan Chain

Boyan Chain

[Boyan 99]

Boyan Chain

© $\mathrm{n}=4$ (Small) $\mathrm{n}=25$ (Medium) $\mathrm{n}=\mathrm{IOO}$ (Large)
[Boyan 99]

Boyan Chain

© $\mathrm{n}=4$ (Small)
(8) $\mathrm{k}=2$ $\mathrm{n}=25$ (Medium) $\mathrm{n}=100$ (Large)
[Boyan 99]

Small Boyan Chain

Small Boyan Chain

Medium Boyan Chain

Medium Boyan Chain

Large Boyan Chain

Large Boyan Chain

Large Boyan Chain

Mountain Car

Mountain Car

\& Mountain Car
Position $=-1 \quad$ (Easy)
(9) Tile coding

Position $=-.5$ (Hard) $\mathrm{n}=10,000$
$\mathrm{k}=10$
[For details see RL-Library]

Easy Mountain Car

Loss $=\left\|\mathbf{b}^{*}-\mathbf{A}^{*} \boldsymbol{\theta}\right\|_{2}$

Hard Mountain Car

Hard Mountain Car

Running Time

Running Time

Outline

Outline

© Motivation

8. Introduction

8. The New Approach
E. Eligibility Traces
© Dimension Selection
© Conclusion

Eligibility Traces for Function Approximation

$\mathbf{z}_{t}(i)= \begin{cases}\gamma \lambda \boldsymbol{z}_{t-1}(i)+1 & \mathbf{z}(i) \in \text { active features of } \boldsymbol{\phi}\left(s_{t}\right) ; \\ \gamma \lambda \mathbf{z}_{t-1}(i) & \text { otherwise; }\end{cases}$
\% A threshold for faster computation

$$
\lambda^{l}<\xi
$$

$$
\begin{gathered}
\mathrm{TD}(\lambda) \\
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\alpha \mathbf{z}_{t} \delta_{t}\left(V_{\boldsymbol{\theta}_{t}}\right)
\end{gathered}
$$

5 Per-time-step computational complexity

$$
O(l k)
$$

8. More data efficient than TD(0)

$$
\mathbb{Z}_{t}
$$

$$
\begin{gathered}
\mathrm{TD}(\lambda) \\
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\alpha \mathbf{z}_{t} \delta_{t}\left(V_{\boldsymbol{\theta}_{t}}\right)
\end{gathered}
$$

8) Per-time-step computational complexity

$$
O(l k)
$$

© More data efficient than TD(0)

$$
\mathbf{z}_{t}
$$

[Sutton 88]

$$
\begin{gathered}
\mathrm{TD}(\lambda) \\
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\alpha \mathbf{z}_{t} \delta_{t}\left(V_{\boldsymbol{\theta}_{t}}\right)
\end{gathered}
$$

© Per-time-step computational complexity

$$
O(l k) \text { Constant }
$$

© More data efficient than TD(0)

$$
\mathbb{Z}_{t}
$$

[Sutton 88]

$$
\boldsymbol{\theta}_{t}=\boldsymbol{\theta}_{t-1}+\alpha \mathbf{z}_{t} \delta_{t}\left(V_{\boldsymbol{\theta}_{t}}\right)
$$

8 Per-time-step computational complexity

$O(l k)$ Constant

8. More data efficient than TD(0)

\mathbf{Z}_{t}

[Sutton 88$]$

$\operatorname{LSTD}(\lambda)$

$$
\mu_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta}
$$

3 Per-time-step computational complexity

$$
O\left(n^{2}\right)
$$

$\operatorname{LSTD}(\lambda)$

$$
\mu_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta}
$$

3 Per-time-step computational complexity

$$
O\left(n^{2}\right)
$$

[Boyan 99]

$\operatorname{LSTD}(\lambda)$

$$
\boldsymbol{\mu}_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta}
$$

8 Per-time-step computational complexity
$O\left(n^{2}\right)$ Quadratic
[Boyan 99]

$$
\begin{aligned}
& \operatorname{LSTD}(\lambda) \\
& \mu_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \phi_{i+1}\right)^{T}}_{\mathbf{A}_{t}} \boldsymbol{\theta}
\end{aligned}
$$

8 Per-time-step computational complexity

[Boyan 99]

iLSTD (λ)

$$
\mu_{t}(\theta)=\underbrace{\sum_{i=1}^{t} z i_{i+1}}_{\mathrm{b}_{t}} \underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \phi_{i+1}\right)^{T}}_{A_{i}} \theta
$$

(5) Per-time-step computational complexity

$$
O\left(m n+l k^{2}\right)
$$

iLSTD (λ)

$$
\mu_{t}(\theta)=\underbrace{\sum_{i=1}^{t} z z_{i+1}}_{\mathrm{b}_{i}} \underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \phi_{i+1}\right)^{T}}_{A_{i}} \theta
$$

8 Per-time-step computational complexity

$$
O\left(m n+l k^{2}\right)
$$

[Geramifard, Bowling, Zinkevich, Sutton 07]

iLSTD (λ)

$$
\mu_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z r_{i+1}}_{\mathrm{b}_{i}} \underbrace{\sum_{i=1}^{t} z_{i}\left(\phi_{i}-\gamma \phi_{i+1}\right)^{T}}_{A_{i}} \boldsymbol{\theta}
$$

© Per-time-step computational complexity

iLSTD (λ)

$$
\mu_{t}(\boldsymbol{\theta})=\underbrace{\sum_{i=1}^{t} z_{i} r_{i+1}}_{\mathbf{b}_{t}}-\underbrace{\sum_{i=1}^{t} z_{i}\left(\boldsymbol{\phi}_{i}-\gamma \boldsymbol{\phi}_{i+1}\right)^{T} \boldsymbol{\theta}}_{\mathbf{A}_{t}}
$$

8 Per-time-step computational complexity

$O\left(m n+l k^{2}\right)$

Linear

[Geramifard, Bowling, Zinkevich, Sutton o7]

Results on Small Boyan Chain

Results on Small Boyan Chain

Results on

Hard mountain car

Running Time

Hard Mountain Car

Outline

Outline

© Motivation

8. Introduction
9. The New Approach
(9) Eligibility Traces
© Dimension Selection 4
© Conclusion

Dimension Selection

Random \checkmark

Dimension Selection

Random \checkmark

Greedy

Dimension Selection

Random \checkmark

Greedy
ε-Greedy

Dimension Selection

Random \checkmark

Greedy
ε-Greedy
Boltzmann

Greedy Dimension Selection

9. Pick the one with highest value of

$$
\left|\mu_{t}(i)\right|
$$

Greedy Dimension Selection

3. Pick the one with highest value of

$$
\left|\boldsymbol{\mu}_{t}(i)\right|
$$

3. Not proven to converge.

ε-Greedy Dimension Selection

๕ ع : Non-Zero Random
3 (1-ع) : Greedy

ε-Greedy Dimension Selection

๕. ε : Non-Zero Random

3 (1-ع) : Greedy
(3) Convergence proof applies.

Boltzmann Component Selection

Boltzmann Distribution + Non-Zero Random
© Convergence proof applies.

Boltzmann Component Selection

g Boltzmann Distribution + Non-Zero Random

© Convergence proof applies.

Boltzmann Component Selection

Boltzmann Distribution + Non-Zero Random

$\psi \times m$
© Convergence proof applies.

Boltzmann Component Selection

(2) Boltzmann Distribution + Non-Zero Random

Boltzmann Distribution
$\psi \times m$
© Convergence proof applies.

Boltzmann Component Selection

(2) Boltzmann Distribution + Non-Zero Random

Boltzmann Distribution
$\psi \times m$
© Convergence proof applies.

Empirical Results

3 ε-Greedy: $\varepsilon=.1$
(9) Boltzmann: $\psi=10^{\wedge}-9, \tau=\mathrm{I}$

Empirical Results

Empirical Results

Empirical Results

Running Time

Outline

Outline

© Motivation
9. Introduction
© The New Approach
9. Eligibility Traces

9 Dimension Selection
9 Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

Conclusion

 No learning rate!

Questions

Questions ...

8. What if someone uses batch-LSTD?

Questions ...

© What if someone uses batch-LSTD?
© Why iLSTD takes simple descent?

Questions ...

\& What if someone uses batch-LSTD?
(Why iLSTD takes simple descent?
© Hmm ... What about control?

