
1

Co-ordinated Tracking and Planning using Air and
Ground Vehicles

Abraham Bachrach and Alborz Geramifard and Daniel Gurdan and Ruijie He and Sam Prentice and Jan Stumpf
and Nicholas Roy

Abstract—The MAV ’08 competition in Agra, India focused on
the problem of using air and ground vehicles to locate and rescue
hostages being held in a remote building. Executing this mission
required addressing a number of technical challenges, including
the design and operation of micro air vehicles (MAVs), using
the MAVs to geolocate and track ground targets, and planning
the motion of ground vehicles to reach the hostage location with
detection.

In this paper we describe our solutions to these technical
challenges. Firstly, we summarize the design of our micro air
vehicle, focusing on the navigation and sensing payload. Secondly,
we describe the vision and state estimation algorithms usedto
track ground features through a sequence of images from the
MAV, including stationary obstacles and moving adversaries. We
examine different variants of an adaptive tracking algorithm
and report the performance with respect to different target
types. Thirdly, we describe the planning algorithm used to
generate motion plans to using target information from the
MAV, to allow the ground vehicles to approach the hostage
building undetected by adversaries tracked from the air. We
examine different variants of standard search algorithms that
allow us to plan efficiently and describe their performance under
different conditions. Finally, we provide results of our system’s
performance during the mission execution.

1. INTRODUCTION

The MAV ’08 competition in Agra, India focused on the
problem of using air and ground vehicles to locate and rescue
hostages being held in a remote building. Executing this
mission required addressing a number of technical challenges.
The first technical challenge was the design and operation
of micro air vehicles (MAVs) capable of flying the neces-
sary distances and carrying sensor payload to localize the
hostages. The second technical challenge was the design and
implementation of vision and state estimation algorithms to
detect and track ground adversaries guarding the hostages.The
third technical challenge was the design and implementation
of robust planning algorithms for using the co-ordinated MAV
state estimates to generate tactical motion plans for ground
vehicles to reach the hostage location without detection by
the ground adversaries.

In this paper we describe our solutions to these technical
challenges. Firstly, we summarize the design of our micro air

Abraham Bachrach, Alborz Geramifard, Ruijie He, Sam Prentice and
Nicholas Roy are with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 32 Vassar St.,
Cambridge, MA 02139. Email:abachrac@mit.edu,agf@mit.edu,
ruijie@mit.edu, prentice@mit.edu, nickroy@mit.edu
Daniel Gurdan and Jan Stumpf are with Ascending Technologies
GmbH. Graspergerstr. 8, 82131 Stockdorf Germany. Email:
daniel.gurdan@asctec.de, jan@asctec.de

vehicle, focusing on the navigation and sensing payload. Sec-
ondly, we describe the vision and state estimation algorithms
used to track ground features through a sequence of images
from the MAV, including stationary obstacles and moving
adversaries. Specifically, we used an adaptive algorithm that
learned to discriminate image features corresponding to the
target from the background, coupled with standard Bayesian
filtering to track the object in a global co-ordinate system from
image to image. Thirdly, we describe the planning algorithm
used to generate motion plans to allow the ground vehicles
to approach the hostage building undetected by adversaries
tracked from the air. In order to plan with respect to the
changing position of the ground adversaries, we examine
different variants of standard search algorithms that allow
us to plan efficiently and react to unexpected or modeled
changes in the position of the ground adversary. Finally, we
provide results of our system’s performance during the mission
execution.

2. THE MAV ’08 M ISSION

The MAV ’08 mission was a hostage-rescue scenario, in
which commandos must be guided across a field to a remote
building. The hostage building was guarded by a moving
adversary; to allow the commandos to reach the building
undetected, an estimate of the guard vehicle and its field of
view was required. As the guard vehicle moved, the comman-
dos were able to take advantage of known covered positions
throughout the field. When the guard vehicle’s view of the
field was occluded by obstacles such as the hostage building,
the commandos were able to advance from covered position to
covered position, otherwise, the commandos remained hidden.
Further complicating the problem, some of the routes between
covered positions were blocked by unknown obstacles and
terrain, and some of the routes were seeded with mines at
unknown positions. Once detected and geolocated, the mines
could be disposed of using an explosive ordinance disposal
(EOD) vehicle. Finally, the commandos were required to reach
the hostage building in 40 minutes from the start of the
mission, including all surveillance, mine disposal and guard
tracking.

In order to obtain the position of the guard vehicle, detect
the route blockages and geolocate the mines, aerial surveil-
lance was essential. However, the MAV ’08 rules dictated a
maximum size of air vehicle of 30cm. Our approach to the
mission was to use a set of rotorcraft to survey the field,
search for mines and obstacles, and also maintain a position

2

(a) Prior Map

(b) Hostage building

(c) View from the ingress point

Fig. 1. (a) The map of the environment from the ingress point (IP, lower right) to the hostage building (top middle). The light blue squares are cover points
for the commandos, the red dots are mine locations and the black boxes are potential terrain obstacles. The cover points were provideda priori but the MAV
was required to detect the mines and obstacles. (b) The view of the hostage building from the on-board MAV camera. (c) The view of the hostage building
from the ingress point, 1km away. The light blue cover positions can be seen faintly.

estimate of the guard vehicle. Figure 1(a) shows a map of
the field, containing the known covered positions (A1, ...,
F2). The red dots are mine positions and the black bars are
route blockages (these positions were not provided during the
competition). The ingress point for MAV launch, commando
and EOD vehicle entry is shown at the bottom right and the
hostage building is at the top middle (shown in figure 1(b)
from the on-board MAV camera). The view from the ingress
point to the hostage building across the 1km field is shown in
figure 1(c).

3. THE M ICRO A IR VEHICLE

Our vehicle design consists of a custom-designed carbon-
fiber airframe, with 6 brushless motors as the propulsion
system. The vehicle is 29 cm rotor-tip to rotor-tip and weighs
142 grams without the navigation electronics, camera or
communication hardware. The vehicle is shown in figure 2.
The total flight time of the vehicle is 10-12 minutes, with
maximum speed of 10 m/sec, depending on wind conditions,
temperature, etc.

The navigation system consists of a 60MHz Philips ARM
microprocessor, u-blox GPS receiver, compass, IMU and pres-
sure sensor. The ARM microprocessor integrates the IMU and
GPS measurements to provide a consistent state estimate at
1000 Hz. The on-board software accepts waypoints in the GPS
(world) co-ordinate frame and uses PID control to achieve the
desired position. The height estimate is relative to the position
of the vehicle on take-off. The waypoint controller attempts to
achieve the desired position initially with 15m accuracy, and
then takes an additional 30 seconds to achieve the position with
2.5 m accuracy. If the waypoint is not achieved to within 2.5 m
in the 30 seconds, the control software assumes that external
factors (i.e., wind) are interfering and ends the attempt. In this
way, we are guaranteed some baseline level of performance
(15m), and the vehicle will attempt to achieve a higher level
of accuracy without excessive time delays.

The vehicle additionally carries a Digi 900MHz Xtend RF
module operating at 100 mW. We communicate with the MAV
with a USB-serial converter to the Xtend base station; the
bandwidth is such that we typically can get telemetry at 40

3

Fig. 2. Our six-rotor helicopter with bird’s-eye video camera. The helicopter
is 29cm in diameter and weighs 142g without the navigation electronics,
camera or communication hardware.

Hz. The vehicle is configured to use the digital data link as the
primary communication mechanism. If the digital data link is
lost, then the vehicle throttles back to 30% and attempts to
land safely. This can be over-ridden with an auxiliary RC link
operating at 72 MHz. If a safety pilot observes the vehicle
behaving incorrectly, then an RC transmitter can be used to
assume control over the vehicle and return it to base or land
it safely.

The camera sensor is a Panasonic KX141 480 line CCD
camera with a 90◦ field-of-view lens. Additionally, we use a
LawMate TM-240500 2.4 GHz 500 mW transmitter, and a
Iftron Technologies YellowJacket 2.4 GHz diversity receiver
at the ground station. This camera and transmitter provide
excellent video capability at long ranges, and the 2.4 GHz
frequency does not interfere with our 900 MHz data link. The
camera is mounted on a small servo that provides 90◦ motion
along one degree of freedom, allowing the camera to tilt from
directly forward to straight down. The servo is controlled from
the ARM navigation computer, which in turn receives servo
instructions from the base station. The camera lens extends
below the frame of the vehicle when pointing straight down,
so that the camera is automatically returned to the forward
view when the vehicle is below5m.

4. OBJECT DETECTION AND TRACKING

The first phase of the MAV ’08 mission involved surveying
the field, identifying obstacles and mines, and then beginning
to track the guard vehicle, leading to the second challenge
of identifying the positions of targets on the ground. Our
approach was to locate objects in the image, then use the
known position of the MAV from GPS and a calibrated camera
model to geolocate the objects, assuming the objects were on
the known ground plane. However, due to noisy estimates of
the vehicle pose and fast vehicle dynamics, it was necessaryto
combine projections from many successive images to achieve
a more accurate geolocation estimate. For example, when we
analyzed the geolocation estimates for an object with known

Fig. 3. Target geolocation estimates for an obstacle with a known location.
The true location is mapped to(0, 0).

location, we see in Figure 3 that the individual estimates
deviated from the ground-truth by up to6m. On the other
hand, the mean of the measurements deviated by only3.3m.
This residual error was likely due to errors in the calibration
of the transformation between the body coordinates and the
camera coordinates.

We were given minimal prior information of the appearance
of the guards, obstacles and mines and therefore did not
have enough information regarding a specific color, shape,
or motion to allow general object detection of any of the
target objects. As a result, focused on object tracking, relying
on a human operator to detect the initial appearance of each
object in the scene, and then tracking the object in successive
frames. To accomplish this, we used a modified version of the
classifier-based adaptive ensemble tracker, developed in [1].
While this approach did not allow completely autonomous
operation, it significantly reduced the amount of attention
required from the operator.

4.1. Learning Object Appearance Models

Once an initial estimate of the target object is identified by
a human operator in an image, we pose the tracking problem
as a classification problem, where a classifier is trained in an
online fashion to separate pixels which belong to the object
from background pixels. To train the classifier, we assume that
the object is localized within a knownn×n sub-block of the
image; pixels within that sub-block are given positive labels,
and pixels outside that sub-block are given negative labels.
Each pixel is described byd local features, e.g., local color
features and a histogram of local oriented gradient features
[6]. Each pixel i is therefore a separate training instance
consisting of ad-dimensional feature vectorxi and a labelyi.
AdaBoost requires a weak classifier, which in this algorithm
is implemented as a separating hyperplaneh, such that

ŷ(xi) = sign(hT
xi) (1)

where ŷ(x) is the classifier output label for instancex. The
separating hyperplane for a set of examples is computed using
weighted least squares given a training data set consistingof

4

pixel features and labels,{xi, yi}. We then boost to learn
an ensemble of classifiersh1, . . . , hn with associated weights
α1, . . . , αn. In addition, we train a separate ensemble of
classifiers for each ofw image scales in order to capture
the distinctive appearance characteristics at different scales.
Finally, we can classify the pixels of a new image using the
multi-scale boosted ensemble classifier, such that each pixel
receives a (normalized) weighted vote for each label from each
classifier. The output of the classifier is a new image where
each pixel represents the probability that a given pixel belongs
to tracked object.

Figure 4(a) illustrates an example training image, where the
pixels in the inner block are positive training instances and
the pixels in the outer block are negative training instances.
Figure 4(b) shows the response of the classifiers to the same
image after training. Notice that the classifiers have the most
response along the sharply distinct color boundaries.

(a) Original Image

(b) Ensemble Filter Response

Fig. 4. (a) An example training sub-block. The pixels in the smaller,
inner block are assumed to be positive training instances, and the
pixels in the outer block are negative training instances. (b) The
response of the weighted classifiers across the sub-image ofthe
detected car.

During tracking, the object appearance will vary over time;
for instance, the orientation of edge features will change as
objects rotate in the image. We therefore continually learnnew
classifiers on the incoming images. After tracking is completed
on each image, the image is used as a new training instance.
The k best classifiers are retained, andn − k additional
classifiers are trained, again using boosting. In order to ensure
that this retraining of the classifier does not cause the original
concept to become lost over time, we also investigated a model
in which m of the originaln classifiers are kept, regardless of
their weight. This ensures that at least some of the classifiers
where trained with labels that were known to be correct.

4.2. Object Tracking

In [1], a mean-shift tracker is applied to the probability
image to update the estimate of the object location, in which
a region of the image is classified and the maximum likelihood
pixel in the image is assumed to be the new center of object.
While this approach works quite well for relatively stationary
cameras, we found that the mean-shift approach was not able
to handle the fast motion of the MAV platform.

For example, the tracker was regularly able to follow the
EOD vehicle (figures 4(a) and 5(a)) for the entire duration of
its time in the field of view, usually 10-20 seconds. This good
performance was due to the fact that the EOD vehicle had a
distinctive appearance, leading to computed features thatwere
very discriminative. In addition, the large object sizes made
the relative motion of the MAV less significant. In contrast,
tracking the mine in figure 5(b) and the walking person in
figure 5(c), was more challenging. Tracking the mine was
particularly difficult due to its extremely small size and non-
distinct circular shape. Although the person had a very distinct
appearance in the image, its small size relative to the motion
of the MAV in the image caused the tracker to lose the tracked
person almost immediately without an ego-motion estimation.

As a result, we modified the tracking algorithm to use a
motion model coupled with Bayesian filtering to update the
object position estimate. The tracker can more robustly esti-
mate the object position in the image by using the ego-motion
estimate to bias the motion update. This ego-motion estimate
is essential for compensating for unpredictable motions ofthe
camera, which would otherwise cause the tracker to get lost.
The motion estimate is computed using the Pyramidal-Lucas-
Kanade optical flow implementation available in OpenCV [5].
The optical flow algorithm computes a set of displacements for
features in the image, which are clustered using expectation-
maximization to identify the single largest flow direction.The
flow direction is then used to compute the affine transform
that best explains the apparent motion.

The affine transformation is used as a motion model and
the ensemble tracker as the sensor model, in order to more
accurately estimate the object trajectory. We use a particle filter
to implement the probabilistic estimatep(xt|z0:t), wherext is
the location of the object in the image at timet, p(xt|z0:t)
is the probability of the object at the location after having
received measurementsz0:t, such that

p(xt|z0:t) = αp(zt|xt)

∫
Xt−1

p(xt|xt−1)p(xt−1|z0:t−1)dt,

(2)
wherep(xt−1|z0:t−1) is the object distribution on the previous
time-step, andp(zt|xt) is our sensor model (the likelihood of
detecting the object at positionzt given the object is atxt).
p(xt|xt−1) is the model of how the object moved in the image,
which we assume to be Gaussian motion with mean given by
the optical flow algorithm and some fixed variance. In contrast
to more conventional filtering techniques such as the Kalman
filter [13], the particle filter is useful for modeling the non-
linear sensor and motion models and the non-Gaussian noise
distributions. In contrast to ground vehicles and fixed-wing
aircraft that have generally stable attitudes, the attitude of the

5

(a) EOD Vehicle (b) Mine (c) Person

Fig. 5. Examples of the variety of objects tracked. (a) The EOD vehicle for mine disposal. (b) A mine embedded in a route between covered
positions. (c) A walking person. (a) was relatively easy to track, but (b) and (c) required a better motion prediction model.

No optical flow, no retraining 0 errors
No retraining 0 errors
Keep first 3 classifiers 0 errors
Full retraining 0 errors

TABLE I
EOD VEHICLE (FIGURE 5A), 250FRAMES OVER17 SECONDS.

No optical flow, no retraining 0 errors
No retraining 0 errors
Keep first 3 classifiers 0 errors
Full retraining 0 errors

TABLE II
VEHICLE (FIGURE 4A), 88 FRAMES OVER9 SECONDS.

MAV rotorcraft is particularly dynamic and non-linear; the
frequent attitude changes of the MAV generally cause very
large displacements of the object in the image.

Returning to figure 5(b) and 5(c), when tracking the person,
we were able to maintain the track for over 2 minutes,
requiring human intervention only once when the person left
the frame for a few seconds. This good performance was
made possible by the motion model provided by optical flow.
Similarly, when tracking the mine in figure 5(c), given the
motion model from optical flow, the tracker was able to track
for over 30 seconds, only needing human intervention once
due to an abrupt perturbation of the MAV attitude.

Given the tracked position of an object in the image, we can
recover the position of the object in the world co-ordinates
from knowledge of the intrinsic camera properties, such as
camera focal length, center of projection, etc., the rigid trans-
formation from the camera image plane to the center of body
of the vehicle, and the knowledge of the MAV GPS position
and attitude. We recover the camera parameters and camera
transformation in a standard least-squares calibration process.
However, the GPS localization and attitude of the MAV are
not known perfectly and in particular, small errors in attitude
can lead to substantial errors in projecting from image co-
ordinates to world co-ordinates. As a result, we apply a second
level of Bayesian filtering to maintain a cleaner estimate of
the target location in the global coordinates. In contrast to the
image-space filter, where we generally assume that the motion
variance is large and emphasize the measurement model,
when tracking in global coordinates, we place more weight
on the motion model and model the projections from image
coordinates to world coordinates as very noisy measurements.
In this way, we average over many measurements to attain a
more accurate estimate of the target location.

4.3. Tracking Analysis

Human intervention is still required for continuous tracking
of the objects to initialize the tracker for new objects, and
to potentially restart the tracker when it fails. We evaluated
the tracker in a number of configurations and test cases, with
and without optical flow, retaining different numbers of the
original classifiers, and measured the number of times that the
tracker object estimate diverged from a hand-labeled ground
truth image track after the initialization step. We tested the
object tracking across a wide variety of scenes with very
different targets, and were able to see performance that allowed
unattended tracking for extended periods of time.

The easiest object tracking problem was the EOD vehicle,
shown in figure 5(a). This data set consisted of a 17 seconds of
video, for a total of 250 frames1, and led to good performance
for all tracker configurations due to the large vehicle size,crisp
features, and stable hover of the MAV. As table I shows, even
without the motion model from the optical flow, or the online
classifier retraining, the tracker never lost the vehicle after the
initialization. We also examined the effect of not retraining
the classifier after each image, or retraining all but the first
three classifiers (to ensure the original concepts does not get
lost). Again, table I shows that retraining the classifier had no
effect on the tracker performance with this target. Similarly,
the tracker performed equally well in all configurations when
tracking the vehicle shown in figure 4(a), with results in
table II.

Tracking the walking person shown in figure 5(c) was
challenging due to the small size of the person from the
MAV height. However the algorithm was still able to maintain
excellent performance. The MAV experienced relatively stable

1We typically received data from the vehicle at approximately 15 Hz., but
this number could vary depending on the characteristics of the local RF field.

6

No opt. flow, no retrain. 0.140 Hz (21)
No retraining 0.040 Hz (6)
Keep first 3 classifiers 0.027 Hz (4)
Full retraining 0.007 Hz (1)

TABLE III
PERSON, 2683FRAMES, 150SECS. FREQUENCY OF REQUIRED TRACK

REINITIALIZATIONS (TOTAL NUMBER OF ERRORS SHOWN IN

PARENTHESES).

flight, which made the task easier than in other datasets,
however due to the small object size, the ego-motion estimate
was critical. As table III shows, the optical flow played a
critical role in keeping the tracking estimate on target. In
addition, it is clear that the adaptation to the object appearance
led to improved tracking. As the person moved around the
field, its appearance remained relatively constant, however
the background changed drastically when the person moved
from the green grass to the gray dirt patches. As a result, by
retraining, and adapting the classifier it was able to maintain
enough discrimination between the person and the background
to maintain the track.

Finally, we evaluated the tracker performance in tracking the
guard vehicle in the MAV ’08 competition. Due to the mission
profile, the MAV observed the bank building from a distance
with the camera pointed forward rather than hovering directly
above the bank building. With the camera pointed forwards,
the motion of the scene in the image due to the MAV motion
became more pronounced from frame to frame. In addition,
as can be seen in table IV, the hedges surrounding the bank
building were exactly the same color and similar shape to the
guard vehicle. As a result, the tracker lost the track of the guard
vehicle far more often than in the other scenes we tested on.

In this dataset, the major factor that resulted in the tracker
losing track was the motion of the camera, rather than a change
in appearance of the guard vehicle. As a result, retraining the
classifiers actually reduced performance slightly, since newer
classifiers in the ensemble were trained on bad data as the
tracker began to get lost, thereby creating a positive feedback
cycle resulting in the tracker not being able to recover. While it
is clear that the optical flow plays an important role in keeping
the tracking on target, it may be unable to capture the full
camera motion in some domains, resulting in the classifier
becoming lost.

Fundamentally, to solve the tracking problem in the face of
potentially large inter-frame camera motion, one needs to in-
clude more sophisticated object detection. Once the ensemble-
based tracker loses the target, there is no way to recover using
an appearance-based tracker learned online, since any corrup-
tion of the current object estimate will propagate, corrupting
subsequent classifiers. As a result, an object detector with
higher-level appearance-based invariants is needed to recover
from object tracker failures in the general case.

5. GROUND VEHICLE PLANNING

Given the ability of the MAV to estimate the guard position
and trajectory, the third challenge was to be able to plan a

TABLE IV
THE GUARD VEHICLE CIRCLING THE HOSTAGE BUILDING.

No opt. flow, no retrain. 0.39 Hz (21)
No retraining 0.26 Hz (14)
Retain first 3 classifiers 0.28 Hz (15)
Full retraining 0.30 Hz (16)

TABLE V
GUARD VEHICLE, 1000FRAMES, 54 SECONDS. FREQUENCY OF REQUIRED

TRACK REINITIALIZATIONS (TOTAL NUMBER OF ERRORS SHOWN IN

PARENTHESES).

trajectory for the commandos to the hostage building without
their being detected by the guard vehicle. Additionally, when
the MAV found mines, we wanted to be able to plan a
trajectory for the EOD vehicle to the mines, also without being
detected. We treated these problems symmetrically as a motion
planning problem for a generic ground vehicle (GV).

Standard motion planning algorithms are generally based on
search strategies through a discretized state space. Although
the specific planning problem in the MAV ’08 problem was
centered around routes between the cover points (marked
A1, . . . , F2 in figure 1a), we developed a general purpose
motion planner that would be more flexible to unexpected
guard motion and allow us to express a wide range of
trajectories that may not exactly follow straight-line routes
between cover points.

Based on the initial problem description, our motion planner
makes a number of assumptions. Not all of these assumptions
were required for the MAV ’08 competition, but in some cases
allowed us to address more general problems. The planner
assumes a discretization of the planning area, specificallya
regular grid, and assumes the GV can move from a grid cell
x to any of the 4-connected neighbors. We assume that such
a motion incurs a cost, and the goal is to find the lowest cost
sequence of states from the start to the goal without being
detected by the guard vehicle. The guard has360◦ field of view
with finite range, and we have a prior map of the environment
giving the location of obstacles that would obstruct the guard
field of view, occluding the GV from the guard. Additionally,
the planner assumes that the current position of the guard
vehicle is known, and there is a model of the guard dynamics
that allows the guard position to predicted into the future.The
planner must therefore incorporate this model of the temporal
behavior of the guard in generating paths that avoid detection.
The temporal constraint typically requires planning in both

7

Algorithm 1 : STATE-A*
Require: xstart, xgoal, xguard

1: π ← A* (xstart,xgoal)
2: i← COLLIDE(π,xguard)
3: while i > 0 do
4: MARK BLOCKED(π[i])
5: πtail ← A* (π[i− 1],xgoal)
6: if (πtail == null) then
7: return null

8: end if
9: π ← π[0 : i− 1] + πtail

10: i← COLLIDE(π,xguard)
11: end while
12: return π

space and time, which can lead to substantial computational
complexity. Given the large size of the map, planning in
space and time may not be feasible, and so we examined
three different strategies for planning with respect to theguard
vehicle dynamics, to identify a strategy that scales well with
minimal loss in planner performance.

I. STATE-A*

To determine if the additional complexity of planning in
time and space can be avoided, we first examined the per-
formance of planning only in the state space of the GV. The
STATE-A* discretizes the state space and searches for a plan
π from the start positionxstart to the goalxgoal, both given
in GPS co-ordinates. The planπ consists of an ordered list of
statesπ = {xstart, . . . ,x

i, . . . ,xgoal}.
In order to avoid detection by the guard vehicle, STATE-

A* forward-simulates the plan given that the guard starts at
position xgoal. As the GV is simulated to move to the next
state in the planxi, the guard vehicle position is predicted
using the current estimate of the guard motion, and the state
x

i is tested to see if a detection (and failure) would result.
Any state that is predicted to result in detection as a resultof
executing the plan is inserted into the map as a static obstacle,
and a new plan is generated. This process is repeated until no
collision with dynamic obstacles is found or the algorithm
fails to find a plan. Algorithm 1 shows the STATE-A* in
detail. This algorithm assumes that the internal A* algorithm
has access to a cost map including obstacles. TheCOLLIDE

subroutine simulates the GV motion along the planπ, and the
MARK BLOCKED subroutine modifies the cost map for future
re-planning.

The STATE-A* approach is expected to be computation-
ally efficient compared to time-state search processes, as the
branching factor in the search is limited to changes in the
position of the GV, rather than changes in both time and
position. However, this computational savings also restricts the
plan space, in that the search process cannot take advantage
of actions such as PAUSE (without a time variable, a PAUSE

action would appear to have no effect). As a result of the
restricted plan space, the planner may not be able to find
efficient or robust plans.

II. TIME-STATE A*

The TIME-STATE-A* algorithm, developed by Fraichard
[7], represents the state of the GV as both a position and time.
In order to account for the guard vehicle, the 2-D space is ex-
trapolated into the time domain, creating a three-dimensional
cost map (or “cube”), where each cell represents a separate
(x, y, t). All actions are assumed to have the same, constant
duration∆t. In addition to the four motion commands, we
add a PAUSE action that only changes the time variable by
the same constant amount∆t as motion commands. Longer
pauses can be achieved by executing PAUSE repeatedly. We
then search through the cube using standard A* as before, but
limiting the actions from every cell to be the 5-connected grid
cell in the next time step. (The cube is 5-connected because the
legal transitions are the four motions and the PAUSE action).
The Manhattan distance between the robot’s current position
and the final goal in the 2-D space is used as the heuristic. This
algorithm again assumes that A* has access to a cost map that
includes the obstacles. Algorithm 2 shows the TIME-STATE-
A* in detail.

Algorithm 2 : TIME-STATE A*
Require: xstart, xgoal, xguard, tmax

1: π ← A* ((xstart,xguard, 0), (xgoal, ·, tmax))
2: return π

Notice that the input to A* called from within TIME-STATE

A* now includes states with an explicit time variable and a
maximum time,tmax, in order to prevent infinite search depth
resulting from multiple PAUSE actions.

There is a slight abuse of notation in that the goal state of the
A* process is(xgoal, ·, tmax), which we use to denote a goal
state of the search where the guard can be in any position. By
modeling time explicitly during the search process, the TIME-
STATE A* algorithm can express a wider variety of plans to
incorporate plans that deliberately wait for the guard vehicle
to move. Additionally, the search incorporates knowledge of
the guard vehicle more accurately by including the changing
guard position as part of the search in the state-time domain.
However, the computational cost of increasing the number of
actions (and therefore the branching factor of the search),
and furthermore substantially increasing the state space by
including time, may have a significant effect on the ability
of the search process to find good plans.

WINDOWED TIME-STATE A* (WST-A*)

Since the search grows exponentially with the search depth,
by reducingtmax, the search space can itself be reduced,
only including plans of length at mosttmax. However, this
may significantly reduce the ability to find good plans when
plans need to be longer thantmax, which is likely across a 1
km distances. We also examine an intermediate approach by
iterating TIME-STATE-A* search in limited time window.

The complete algorithm is shown in Algorithm 3. First,
an approximated plan is computed using STATE-A*, ignoring
the guard position. This plan is then divided into sub-plans
according to a window size, and for each start and end state

8

(a) (b)

(c) (d)

Fig. 6. Average runtime, optimality, memory and failure rate of State-A*, Time-State A*, WST-A*(Small), and WTS-A*(Large) across planning problems
of different sizes.

Algorithm 3 : WINDOWED TIME-STATE A* (WTS-A*)
Require: xstart, xgoal, xguard, tmax, twindow

1: πapprox ← A* (xstart,xgoal)
2: {π̂i} ← DIVIDE (πapprox, twindow)
3: t← 0
4: for π̂i ∈ {π̂i} do
5: x← π̂i[1]
6: x

′ ← π̂i[end]
7: πtail ← A* ((x,xguard, t), (x′, ·, tmax))
8: if πtail == null then
9: return null

10: end if
11: π ← π + πtail

12: t← t + length(πtail)
13: end for
14: return π

of the sub-plan, the plan between these states is regenerated
using TIME-SPACE-A*. Notice that thet variable is used to
maintain the time required to execute each subplanπ̂i, to
ensure a proper connection between each section of the path.

5.1. Simulation Results

In order to determine the performance of these algorithms,
we evaluated the three algorithms in a series of random map
environments by varying a number of parameters. In particular,
we varied the size of the map, the percentage of the map that
was blocked by static obstacles, as well as the number of
single-occupancy dynamic obstacles that maneuvered in the
environment. Table VI illustrates the 24 map settings used for
simulations. All algorithms were tested on each setting with
30 randomly generated maps. Additionally, we measured the

memory usage and the failure rate of each algorithm. A failure
occurred if the algorithm failed to find the existing path to the
goal.

Static obstacles
Map Size 20 % 30 %

30 × 30 {20, 40, 60, 80} {20, 30, 40, 50}
70 × 70 {40, 70, 100, 130} {20, 40, 60, 80}

100 × 100 {50, 80, 110, 140} {10, 30, 50, 70}

TABLE VI
RANGE OF DYNAMIC OBSTACLES FOR EACH MAP SETTING.

Figure 6 depicts the averaged runtime (a), quality (b),
memory usage (c), and failure rate (d) of the resulting plan
for STATE-A*, T IME-STATE-A*, and WTS-A* with different
window sizes. As expected, on average, TIME-STATE-A* was
the most time consuming algorithm (figure 6-a). It is quite
interesting that on average, WTS-A* outperformed STATE-
A* in terms of runtime. On the other hand, the quality of the
paths found by the WTS-A* were on par with those found by
TIME-STATE-A*, shown in figure 6-b. The plan performance
found by the WTS-A* was within 97% of the optimal plan
(found by TIME-STATE-A*), while STATE-A* suffered a drop
around 12% from the optimal. Figure 6-c depicts the maximum
memory used by each algorithm in terms of the number of
identical visited nodes. While this graph resembles the running
time of the corresponding algorithms, with TIME-STATE-A*
taking the lead, STATE-A* memory usage is now on par
with WTS-A* with small window size and even less than
WTS-A* with large window size. This highlights the fact that
STATE-A* searched through more compact space, although
it had to replan more often. Figure 6-d shows the average
failure rate of methods. As expected STATE-A* suffered the

9

(a) (b)

(c) (d)

Fig. 7. Runtime and optimality results of 30 runs for State-A*, Time-State A*, WTS-A*(Small), and WTS-A*(Large) averaged across different numbers of
dynamic obstacles in a map sizes of70× 70 (a,b) and30 × 30 (c,d) with 20% blockade.

most because of its substantial search space restriction. While
WTS-A* had a much lower failure rate, it still failed to find
the existing path in less than 7% of maps. This is due to the
fact that WTS-A* assumes that each windowed path in the
state space has a valid translation into the time-state space
which is not always true. TIME-STATE-A* on the other hand
is complete which translates into 0% failure rate.

Most domain specific results followed the averaged graphs.
Although we encountered a few stark observations. Figure 7-
(a,b) depict the runtime and performance results of State A*,
Time-State A*, and WTS-A* with window sizes of 20, and
40 in a map of size 70. It can be seen that as the number of
dynamic obstacles increases, the extra cost of re-planningfor
STATE-A* dominated the cost of planning in the time-state
space (figure 7-a), indicating that as the number of obstacles
increased, re-planning needed to occur more frequently. While
TIME-STATE-A* had to search in a larger space, most plans
found by STATE-A* were infeasible, leading to more re-
planning. Eventually after 100 obstacles, this re-planning cost
dominated the planning in the larger space. The side-effectof
such excessive re-planning can be observed in figure 7-b. The
quality of the solutions found by STATE-A* drops rapidly.
TIME-STATE-A* is guaranteed to find the optimal solution.
In contrast, both versions of the WTS-A* achieve the best of
both worlds: their running time is less than of both STATE-
A* and TIME-STATE A*, while the cost of the plans found is
nearly optimal (about 98% of the optimal TIME-STATE A*).

In very small maps, the cost of re-planning was fatal even

for WTS-A* with large window size. Figure 7-(c,d) illustrates
the runtime and performance results of all methods in map of
size 30. For any number of dynamic obstacles, STATE-A*
and WTS-A* with large window size exceeded the runtime
of TIME-STATE A*. Since the size of this map was small, the
number of possible paths to the goal was limited. TIME-STATE

A* found the optimal path by a complete search through
the search space while both STATE-A* and WTS-A* had to
perform a number of re-planning. This observation suggests
the use of TIME-STATE A* for small search spaces with
dynamic obstacles.

6. MISSION PERFORMANCE INMAV ’08

As described in section 2, the goal of these systems was
to guide commandos across a field to a remote building. Our
vehicle has a top speed of 10 m/sec, and the battery provides
a total flight time of 10-12 minutes. We therefore divided the
mission into multiple phases of mine detection, mine disposal
and guard surveillance. Between each phase of the mission,
we planned to return the MAV to the launch point to replace
the battery.

The goal of phase 1 was to identify potential mine locations
and begin guard vehicle estimation before returning to be
recharged. Unfortunately, once the guard position and trajec-
tory were identified, the amount of energy required to return
to the ingress point was underestimated, and the vehicle was
lost after 710 seconds, after traveling 1.75 km. (Not included
in the flight time is the time required to launch the vehicle

10

(a) Phase 1
Maximum height: 35.7 m
Distance traveled: 1759.2 m
Total flight time: 710.0 secs

(b) Phase 2
Maximum height: 13.0 m
Distance traveled: 1247.2 m
Total flight time: 621.1 m

(c) Phase 3
Maximum height: 28.8m
Distance traveled: 1290.5m
Total flight time: 644.7 m (d) Expected GV Path

Fig. 8. (a-c) The paths executed by the MAV. (d) The expected plan executed by the commandos and EOD vehicle.

and begin the mission execution.) We were prepared to lose
the vehicle in the field and therefore had multiple vehicles at
the ingress point.

The goal of phase 2 was to identify additional mine lo-
cations, co-ordinate with the EOD vehicle to perform mine
disposal and to begin execution of the commando plan. During
this phase, once mines were geolocated and successfully
disposed of, followed by the MAV successfully returning to
the ingress point for recharging. Additionally, the commandos
continued executing their planned motion towards the hostage
building.

The goal of phase 3 was to finish identifying mine locations,

finish disposing of remaining mines and re-acquire the guard
trajectory before finishing the commando mission. A deliberate
decision was taken by the human operators to abandon the
vehicle in the field and avoid the time of the return trip to
the ingress point for recharging, in order to provide additional
time to complete the commando mission in the 40 minutes.

Figure 8(a-c) shows the actual paths flown by the MAV
on each mission. Figure 8(d) shows the expected trajectory
of the GV computed using the WTS-A* algorithm. In the
final mission scenario, the guard vehicle motion was extremely
deterministic and did not require much variation in the timing
constraints so the timing information is not shown in the

11

image. The path from cover point to cover point took 3
minutes and reliably avoided detection. The actual path taken
by the vehicles changed from this expected path to the futtock
(midline) path based on detected mines, obstacles and the
resultant re-planning.

We were in general very pleased with the performance of
the MAV and the co-ordination between the tracked ground
targets and the planned trajectories for the EOD vehicle and
commandos. In particular, during phase 2 of the mission we
were able to compensate for temporary lost GPS on the EOD
vehicle; we repurposed the MAV temporarily to geolocate the
EOD as it disposed of a mine. We flew a total of 4296.9m
in 40 minutes, detected two mines and two ground obstacles
and successfully disposed of the only mine along the planned
trajectory.

7. RELATED WORK

We brought together work from the fields of robotics,
computer vision, and planning to compete in the MAV ’08
competition. As a result, there is much in the literature that
would be considered related work. There have been many
rotorcraft UAV platforms developed, including quadrotorssuch
as the one developed in [9] and [10] which operate on the
same principles as the hexrotor developed here; as well as
other morphologies such as coaxial [2] and conventional heli-
copter platforms [14]. However, to the best of our knowledge,
our hexrotor platform is the first to acheive fully autonomous
outdoor flight at such a small scale, all the while carrying a
useful sensor payload.

In the computer vision literature there has been a lot of
work on object tracking, [20] and [15] give a good overview
of the current state of the art. While there have been many
successful algorithms such as background subtraction [12],
mean shift tracking [4], and of course ensemble tracking [1]
which our algorithm is based on, all of these algorithms make
assume relatively stationary cameras, which does not hold for
the camera on our vehicle. On the other side of things, there
is also a lot of work on tracking in the UAV literature [8],
[18], [16] and [3]; however, much of this work focuses on
the abstract problem of tracking the target over time. They do
not actually integrate powerful enough vision algorithms to
effectively use a camera to track the objects, without making
major assumptions regarding their appearance. In this work,
we have integrated powerful computer vision algorithms with
bayesian filtering to effectivly track the targets over time.

Path planning with moving obstacles has been a challenging
problem for researchers in many fields, including robotics
and navigation. Van den Berg and Overmars [19] explored
the idea of using a Probabilistic Road Map (PRM) to first
generate discrete points in a continuous map which takes into
account only static obstacles. Given the model of the moving
obstacles, the resulting points are then extended into the time
dimension to calculate the optimum path. Jaillet and Simeon
[11] follow a similar approach to generate the initial map based
on static obstacles and then use a lazy-evaluation technique to
reach a complete map in state-time space. Similarly, Fraichard
considered the path planning in the state-time space [7].

Using this idea, all dynamic obstacles in the 2-D space are
represented as static obstacles in the 3-dimensional space.
Finally a general path planning algorithm can be used to find
the path in that space. One interesting fact is that path planning
with dynamic obstacles can be viewed as a special case of
cooperative path planning with multiple agents, where all
dynamic obstacles are simply moving agents with predefined
paths. Silver [17] explored the similar approach explainedby
Fraichard to resolve collisions in multi-agent path planning
using a reservation table.

8. CONCLUSION

This paper described critical hardware and software com-
ponents of a combined micro air vehicle and ground vehicle
system for performing a remote rescue task, as part of the
MAV ’08 competition organized by the US and Indian govern-
ments. While our system performed to our satisfaction and was
awarded Best Mission Execution, there are a number of key
technical questions that remain unsolved before co-ordinated
air and ground systems can become commodities.

Firstly, while the object detection and tracking system
helped the human operators considerably in geolocating ob-
jects, more work remains to be done in learning appearance-
based methods and compensating for large camera motions
to generate robust autonomous object detection and tracking.
Secondly, there has been considerable amount of work in
planning under uncertainty for multi-agent systems but we
have not yet taken advantage of these methods to keep the
system complexity at a manageable level. However, in the
future, we plan to extend the planner to incorporate deliberate
sensing actions at appropriate points in time, to allow more
flexible response to environmental dynamics. Finally, the over-
all mission specification provided by the organizers allowed
very simple task planning and rigid task execution. However,
to allow more flexibility in planning surveillance, tracking and
trajectory execution between the air and ground vehicles, we
expect that more intelligent task planning will be requiredin
the future.

REFERENCES

[1] Shai Avidan. Ensemble tracking. InProceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
2005.

[2] Samir Bouabdallah, Roland Siegwart, and Gilles Caprari.
Design and control of an indoor coaxial helicopter.Intel-
ligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 2930–2935, Oct. 2006.

[3] David W. Casbeer, Sai ming Li, Randal W. Beard, and
Raman K. Mehra. Forest fire monitoring with multiple
small uavs.

[4] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer.
Ieee cvpr 2000 real-time tracking of non-rigid objects
using mean shift.

[5] Intel Corporation. Open source
computer vision library (opencv).
http://www.intel.com/technology/computing/opencv/index.htm.

12

[6] Navneet Dalal and Bill Triggs. Histograms of oriented
gradients for human detection. InProceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
2005.

[7] T. Fraichard. Trajectory planning in a dynamic
workspace: a ‘state-time’ approach, 1999.

[8] T. Furukawa, F. Bourgault, B. Lavis, and H.F. Durrant-
Whyte. Recursive bayesian search-and-tracking using co-
ordinated uavs for lost targets.Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 2521–2526, 15-19, 2006.

[9] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth,
G. Hirzinger, and D. Rus. Energy-efficient autonomous
four-rotor flying robot controlled at 1 khz.Robotics
and Automation, 2007 IEEE International Conference
on, pages 361–366, April 2007.

[10] Gabriel M. Hoffmann, Haomiao Huang, Steven L.
Waslander, and Claire J. Tomlin. Quadrotor helicopter
flight dynamics and control: Theory and experiment.
In Proceedings of the AIAA Guidance, Navigation, and
Control Conference, August 2007. AIAA Paper Number
2007-6461.

[11] L. Jaillet and T. Simeon. A prm-based motion plan-
ner for dynamically changing environments.Intelligent
Robots and Systems, 2004. (IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, 2:1606–
1611 vol.2, 2004.

[12] Omar Javed, Khurram Shafique, and Mubarak Shah. A
hierarchical approach to robust background subtraction
using color and gradient information. Inin IEEE Work-
shop on Motion and Video Computing, pages 22–27,
2002.

[13] Emil Kalman, Rudolph. A new approach to linear
filtering and prediction problems.Transactions of the
ASME–Journal of Basic Engineering, 82(Series D):35–
45, 1960.

[14] Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and
Shankar Sastry. Inverted autonomous helicopter flight via
reinforcement learning. InIn International Symposium
on Experimental Robotics. MIT Press, 2004.

[15] Fatih Porikli. Achieving real-time object detection and
tracking under extreme conditions.

[16] Morgan Quigley, Michael A. Goodrich, Stephen Griffiths,
and Andrew Eldredge. Target acquisition, localization,
and surveillance using a fixed-wing mini-uav. Inin
International Conference on Robotics and Automatio,
pages 2600–2605, 2005.

[17] David Silver. Cooperative pathfinding. InProceedings
of the 1st Conference on Artificial Intelligence and In-
teractive Digital Entertainment, 2005.

[18] John Tisdale, Allison Ryan, Zu Kim, David Trnqvist, and
J. Karl Hedrick. A multiple uav system for vision-based
search and localization.

[19] Jur P. van den Berg and Mark Overmars. Roadmap-based
motion planning in dynamic environments. Technical
Report UU-CS-2004-020, Department of Information
and Computing Sciences, Utrecht University, 2004.

[20] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object

tracking: A survey.ACM Comput. Surv., 38(4), 2006.

