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Abstract—The MAV '08 competition in Agra, India focused on  vehicle, focusing on the navigation and sensing payload- Se
the problem of using air and ground vehicles to locate and resuie  gndly, we describe the vision and state estimation algmsth
hostages being held in a remote building. Executing this mé&on used to track ground features through a sequence of images

required addressing a number of technical challenges, inabing . . . .
the design and operation of micro air vehicles (MAVs), using from the MAV, including stationary obstacles and moving

the MAVs to geolocate and track ground targets, and planning adversaries. Specifically, we used an adaptive algorithah th
the motion of ground vehicles to reach the hostage locationith  learned to discriminate image features corresponding ¢o th

detection. . . . target from the background, coupled with standard Bayesian
In this paper we describe our solutions to these technical filtering to track the object in a global co-ordinate systeonf

challenges. Firstly, we summarize the design of our micro ai . to i Thirdl d ibe the pl . lqorith
vehicle, focusing on the navigation and sensing payload. S&mndly, Image to image. Thirdly, we describe the pianning algorithm

we describe the vision and state estimation algorithms usetb USe€d to generate motion plans to allow the ground vehicles
track ground features through a sequence of images from the to approach the hostage building undetected by adversaries
MAV, including stationary obstacles and moving adversaris. We tracked from the air. In order to plan with respect to the
examine different variants of an adaptive tracking algorithm changing position of the ground adversaries, we examine
and report the performance with respect to different target . . !

types. Thirdly, we describe the planning algorithm used to different varlar_1t§ of standard search algorithms thatwallo
generate motion plans to using target information from the US to plan efficiently and react to unexpected or modeled
MAV, to allow the ground vehicles to approach the hostage changes in the position of the ground adversary. Finally, we

building undetected by adversaries tracked from the air. We provide results of our system’s performance during the ioriss
examine different variants of standard search algorithms hat execution.

allow us to plan efficiently and describe their performance uder
different conditions. Finally, we provide results of our system'’s
performance during the mission execution. 2. THE MAV '08 M ISSION

The MAV '08 mission was a hostage-rescue scenario, in
1. INTRODUCTION which commandos must be guided across a field to a remote
The MAV 08 competition in Agra, India focused on thebuilding. The hostage building was guarded by a moving
problem of using air and ground vehicles to locate and resca@versary; to allow the commandos to reach the building
hostages being held in a remote building. Executing thigdetected, an estimate of the guard vehicle and its field of
mission required addressing a number of technical chaiengview was required. As the guard vehicle moved, the comman-
The first technical challenge was the design and operati@@s were able to take advantage of known covered positions
of micro air vehicles (MAVs) capable of flying the necesthroughout the field. When the guard vehicle’s view of the
sary distances and carrying sensor payload to localize fiRld was occluded by obstacles such as the hostage building,
hostages. The second technical challenge was the design #&dcommandos were able to advance from covered position to
implementation of vision and state estimation algorithms £overed position, otherwise, the commandos remained hidde
detect and track ground adversaries guarding the hostalges. Further complicating the problem, some of the routes betwee
third technical challenge was the design and implemenmtatigovered positions were blocked by unknown obstacles and
of robust planning algorithms for using the co-ordinatedWAterrain, and some of the routes were seeded with mines at
state estimates to generate tactical motion plans for grousnknown positions. Once detected and geolocated, the mines
vehicles to reach the hostage location without detection puld be disposed of using an explosive ordinance disposal
the ground adversaries. (EOD) vehicle. Finally, the commandos were required toleac
In this paper we describe our solutions to these technidhp hostage building in 40 minutes from the start of the

challenges. Firstly, we summarize the design of our micro dnission, including all surveillance, mine disposal and rgua
tracking.
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(b) Hostage building

(c) View from the ingress point

Fig. 1. (a) The map of the environment from the ingress pdmtloéwer right) to the hostage building (top middle). Thghli blue squares are cover points
for the commandos, the red dots are mine locations and tlo& blaxes are potential terrain obstacles. The cover poiet \provideda priori but the MAV
was required to detect the mines and obstacles. (b) The Vighedhostage building from the on-board MAV camera. (c) Tiewof the hostage building
from the ingress point, 1km away. The light blue cover posiican be seen faintly.

estimate of the guard vehicle. Figure 1(a) shows a map ofThe navigation system consists of a 60MHz Philips ARM
the field, containing the known covered positions (Al, ..microprocessor, u-blox GPS receiver, compass, IMU and pres
F2). The red dots are mine positions and the black bars awee sensor. The ARM microprocessor integrates the IMU and
route blockages (these positions were not provided duhieg tGPS measurements to provide a consistent state estimate at
competition). The ingress point for MAV launch, command@000 Hz. The on-board software accepts waypoints in the GPS
and EOD vehicle entry is shown at the bottom right and tHvorld) co-ordinate frame and uses PID control to achieee th
hostage building is at the top middle (shown in figure 1(ljesired position. The height estimate is relative to thetjpos
from the on-board MAV camera). The view from the ingressf the vehicle on take-off. The waypoint controller attemju
point to the hostage building across the 1km field is shown &thieve the desired position initially with 15m accuraayd a
figure 1(c). then takes an additional 30 seconds to achieve the positthn w
2.5 m accuracy. If the waypoint is not achieved to within 2.5 m
3. THE MICRO AIR VEHICLE in the 30 seconds, the control software assumes that ekterna
Our vehicle design consists of a custom-designed carbdaetors (i.e., wind) are interfering and ends the attempthis
fiber airframe, with 6 brushless motors as the propulsiomay, we are guaranteed some baseline level of performance
system. The vehicle is 29 cm rotor-tip to rotor-tip and waigh(15m), and the vehicle will attempt to achieve a higher level
142 grams without the navigation electronics, camera of accuracy without excessive time delays.
communication hardware. The vehicle is shown in figure 2. The vehicle additionally carries a Digi 900MHz Xtend RF
The total flight time of the vehicle is 10-12 minutes, withmodule operating at 100 mW. We communicate with the MAV
maximum speed of 10 m/sec, depending on wind conditiongith a USB-serial converter to the Xtend base station; the
temperature, etc. bandwidth is such that we typically can get telemetry at 40
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Fig. 3. Target geolocation estimates for an obstacle witln@k location.
The true location is mapped 1@, 0).

Fig. 2. Our six-rotor helicopter with bird’s-eye video cameThe helicopter
is 29cm in diameter and weighs 142g without the navigaticectabnics,

camera or communication hardware. . . . AT .
location, we see in Figure 3 that the individual estimates

deviated from the ground-truth by up &m. On the other

Hz. The vehicle is configured to use the digital data link @s thand, the mean of the measurements deviated by 8iy.
primary communication mechanism. If the digital data lisk i This residual error was likely due to errors in the calilwati
lost, then the vehicle throttles back to 30% and attempts @ the transformation between the body coordinates and the
land safely. This can be over-ridden with an auxiliary RGlincamera coordinates.
operating at 72 MHz. If a safety pilot observes the vehicle We were given minimal prior information of the appearance
behaving incorrectly, then an RC transmitter can be used@b the guards, obstacles and mines and therefore did not
assume control over the vehicle and return it to base or laR@ve enough information regarding a specific color, shape,
it safely. or motion to allow general object detection of any of the
The camera sensor is a Panasonic KX141 480 line Cd@yget objects. As a result, focused on object trackingingl
camera with a 90 field-of-view lens. Additionally, we use a ©n @ human operator to detect the initial appearance of each
LawMate TM-240500 2.4 GHz 500 mW transmitter, and @bject in the scene, and then tracking the object in suaeessi
Iftron Technologies YellowJacket 2.4 GHz diversity reegiv frames. To accomplish this, we used a modified version of the
at the ground station. This camera and transmitter provi@i@ssifier-based adaptive ensemble tracker, developed]in [
excellent video capability at long ranges, and the 2.4 GH¥hile this approach did not allow completely autonomous
frequency does not interfere with our 900 MHz data link. Th@Peration, it significantly reduced the amount of attention
camera is mounted on a small servo that providesradtion required from the operator.
along one degree of freedom, allowing the camera to tilt from
directly forward to straight down. The servo is controlleoni 4 1 Learning Object Appearance Models

the ARM navigation computer, which in turn receives servo L i o .
instructions from the base station. The camera lens extend$"Ce an initial estimate of the target object is identified by

below the frame of the vehicle when pointing straight dowi? human operator in an image, we pose the tracking problem

so that the camera is automatically returned to the forwafd 2 classification problem, where a classifier is trainechin a
view when the vehicle is belowm, online fashion to separate pixels which belong to the object

from background pixels. To train the classifier, we assurae th
the object is localized within a knowmn x n sub-block of the
4. OBJECTDETECTION AND TRACKING image; pixels within that sub-block are given positive labe

The first phase of the MAV '08 mission involved surveyingind pixels outside that sub-block are given negative labels
the field, identifying obstacles and mines, and then begmniEach pixel is described by local features, e.g., local color
to track the guard vehicle, leading to the second challenfg@tures and a histogram of local oriented gradient feature
of identifying the positions of targets on the ground. Ouf]. Each pixeli is therefore a separate training instance
approach was to locate objects in the image, then use g®sisting of al-dimensional feature vector; and a label;.
known position of the MAV from GPS and a calibrated camerAdaBoost requires a weak classifier, which in this algorithm
model to geolocate the objects, assuming the objects werei®implemented as a separating hyperplanesuch that
the known ground plane. However, due to noisy estimates of N o T
the vehicle pose and fast vehicle dynamics, it was necessary §xi) = sign(h” i) @)
combine projections from many successive images to achiavherej(x) is the classifier output label for instanse The
a more accurate geolocation estimate. For example, when separating hyperplane for a set of examples is computed usin
analyzed the geolocation estimates for an object with knowveighted least squares given a training data set consisfing



pixel features and labeldx;,y;}. We then boost to learn 4.2. Object Tracking

an ensemble of Cla.S.S'f'efﬁ"”’}.L” with associated weights In [1], a mean-shift tracker is applied to the probability
a1,...,a,. In addition, we train a separate ensemble of

. . ; image to update the estimate of the object location, in which
classifiers for each ofv image scales in order to capture

the distinctive appearance characteristics at differeates. a region of the image is classified and the maximum likelihood

. ) : : . ixel in the image is assumed to be the new center of object.
Finally, we can classify the pixels of a new image using t ; : . . .

: o While this approach works quite well for relatively statiop
multi-scale boosted ensemble classifier, such that ead pix .
receives a (normalized) weighted vote for each label froane cameras, we found that the mean-shift approach was not able

9 %0 handle the fast motion of the MAV platform.

classifier. The output of the classifier is a new image whereFOr example., the tracker was regularly able to follow the
each pixel represents the probability that a given pixedbgs EOD vehicle (figures 4(a) and 5(a)) for the entire duration of

to tracked object, Hs time in the field of view, usually 10-20 seconds. This good

Figure 4(a) illustrates an example training image, wheee t ,
pixels in the inner block are positive training instancesl arperformance was due to the fact that the EOD vehicle had a

the pixels in the outer block are negative training instancedlstmgpve_appe?ran?e, Izz(:;c_itl_ng t(:hcoTputedJ_eattur_esmhdm
Figure 4(b) shows the response of the classifiers to the saffy discriminative. in addition, he farge object sizesdma

image after training. Notice that the classifiers have thestm(;he l:fala'uvr:e mo.t|on_off_the MSA\E) Iesst|?]n|f|calrll<t.. In contras.t,
response along the sharply distinct color boundaries. trac ing the mine in figure 5( ). and the walking person In
figure 5(c), was more challenging. Tracking the mine was

particularly difficult due to its extremely small size andnro
distinct circular shape. Although the person had a veryruist
appearance in the image, its small size relative to the motio
of the MAV in the image caused the tracker to lose the tracked
person almost immediately without an ego-motion estinmatio

As a result, we modified the tracking algorithm to use a
motion model coupled with Bayesian filtering to update the
object position estimate. The tracker can more robustly est

: of: mate the object position in the image by using the ego-motion
(a) Original Image estimate to bias the motion update. This ego-motion estimat
is essential for compensating for unpredictable motionthef
camera, which would otherwise cause the tracker to get lost.
The motion estimate is computed using the Pyramidal-Lucas-
Kanade optical flow implementation available in OpenCV [5].
The optical flow algorithm computes a set of displacements fo
features in the image, which are clustered using expeaotatio
maximization to identify the single largest flow directidrhe
flow direction is then used to compute the affine transform
that best explains the apparent motion.

The affine transformation is used as a motion model and
the ensemble tracker as the sensor model, in order to more
_ accurately estimate the object trajectory. We use a pafiltsr

(b) Ensemble Filter Response to implement the probabilistic estimapéz, |zo.;), wherez, is
Fig. 4. (a) An example training sub-block. The pixels in the smallefh€ location of the object in the image at timep(x|zo:¢)
inner block are assumed to be positive training instanced, the iS the probability of the object at the location after having

pixels in the outer block are negative training instancés. The received measurements.;, such that
response of the weighted classifiers across the sub-imagaeof

detected car. patlzne) = aplailer) [ plarleia)p(en ot
Xi—
During tracking, the object appearance will vary over time; ' (2)

for instance, the orientation of edge features will change wherep(x:_1|z0.:—1) is the object distribution on the previous
objects rotate in the image. We therefore continually lesw time-step, angh(z:|x;) is our sensor model (the likelihood of
classifiers on the incoming images. After tracking is cortgale detecting the object at position given the object is at;).

on each image, the image is used as a new training instange:|z;—1) is the model of how the object moved in the image,
The k best classifiers are retained, amd— k additional which we assume to be Gaussian motion with mean given by
classifiers are trained, again using boosting. In order smen the optical flow algorithm and some fixed variance. In contras
that this retraining of the classifier does not cause theraig to more conventional filtering techniques such as the Kalman
concept to become lost over time, we also investigated a mofiker [13], the particle filter is useful for modeling the non

in which m of the originaln classifiers are kept, regardless ofinear sensor and motion models and the non-Gaussian noise
their weight. This ensures that at least some of the classifiglistributions. In contrast to ground vehicles and fixedgvin
where trained with labels that were known to be correct. aircraft that have generally stable attitudes, the attitafithe




(a) EOD Vehicle (b) Mine (c) Person

Fig. 5. Examples of the variety of objects tracked. (a) The EOD veHiar mine disposal. (b) A mine embedded in a route betweerrea
positions. (¢) A walking person. (a) was relatively easyrexk, but (b) and (c) required a better motion prediction ehod

No optical flow, no retraining | O errors No optical flow, no retraining | O errors

No retraining 0 errors No retraining 0 errors

Keep first 3 classifiers 0 errors Keep first 3 classifiers 0 errors

Full retraining 0 errors Full retraining 0 errors
TABLE | TABLE I

EODVEHICLE (FIGURE5A), 250FRAMES OVER17 SECONDS VEHICLE (FIGURE4A), 88 FRAMES OVER9 SECONDS

MAV rotorcraft is particularly dynamic and non-linear; the4.3. Tracking Analysis
frequent attitude changes of the MAV generally cause very yman intervention is still required for continuous trawki
large displacements of the object in the image. of the objects to initialize the tracker for new objects, and
Returning to figure 5(b) and 5(c), when tracking the persotg, potentially restart the tracker when it fails. We evahaht
we were able to maintain the track for over 2 minuteghe tracker in a number of configurations and test cases, with
requiring human intervention only once when the person leftid without optical flow, retaining different numbers of the
the frame for a few seconds. This good performance wagginal classifiers, and measured the number of times kfeat t
made possible by the motion model provided by optical flowracker object estimate diverged from a hand-labeled gioun
Similarly, when tracking the mine in figure 5(c), given thdruth image track after the initialization step. We testhd t
motion model from optical flow, the tracker was able to trackbject tracking across a wide variety of scenes with very
for over 30 seconds, only needing human intervention ondéferent targets, and were able to see performance tlated
due to an abrupt perturbation of the MAV attitude. unattended tracking for extended periods of time.
The easiest object tracking problem was the EOD vehicle,
own in figure 5(a). This data set consisted of a 17 seconds of
eo, for a total of 250 framésand led to good performance

Given the tracked position of an object in the image, we can
recover the position of the object in the world co-ordinate‘ih

from knowledge of the intrinsic camera properties, such . : . -
or all tracker configurations due to the large vehicle sixisp

camera focal length, center of projection, etc., the riggohs-
formation from the camera image plane to the center of bogyatures, and stable hover of the MAV. As table | shows, even

of the vehicle, and the knowledge of the MAV GPS positio ithout the motion model from the optical flow, or the online
and attitude We recover the camera parameters and ca sifier retraining, the tracker never lost the vehicterahe
transformation in a standard least-squares calibrationgss. |n|t|aI|zat|9p. We also exgmmed the effgc't of not retragm'
However, the GPS localization and attitude of the MAV arl{:e classmt.ar after each image, or 'retralnlng all but thd firs
not known perfectly and in particular, small errors in atfie three classifiers (to ensure the original concepts does etot g

can lead to substantial errors in projecting from image cipst). Again, table | shows that retraining the classified ha

ordinates to world co-ordinates. As a result, we apply amtcoeﬁeCt on the tracker performance with this target. Sirhilar

level of Bayesian filtering to maintain a cleaner estimate 6?e tr_acker perfor.med equally_ We." in all conﬂgyraﬂons whg
the target location in the global coordinates. In contraghe tracking the vehicle shown in figure 4(a), with results in
image-space filter, where we generally assume that the motigPle ”'_ . L

variance is large and emphasize the measurement mod ily'rackl_ng the walking person_shown in figure 5(c) was
when tracking in global coordinates, we place more Weigﬁﬁallengmg due to the smaIIIS|ze of th(_a person fro_m t.he
on the motion model and model the projections from imad\QAV height. However the algorithm was still able tq maintain
coordinates to world coordinates as very noisy measuremeft<cellent performance. The MAV experienced relativelykia

In this way, we avgrage over many measgrements to attain Be typically received data from the vehicle at approximateh Hz., but
more accurate estimate of the target location. this number could vary depending on the characteristich®tdcal RF field.



No opt. flow, no retrain. | 0.140 Hz (21)

No retraining 0.040 Hz (6)

Keep first 3 classifiers 0.027 Hz (4)

Full retraining 0.007 Hz (1)
TABLE Il

PERSON 2683FRAMES, 150SECS FREQUENCY OF REQUIRED TRACK
REINITIALIZATIONS (TOTAL NUMBER OF ERRORS SHOWN IN
PARENTHESES.

TABLE IV
flight, which made the task easier than in other datasets, = THE GUARD VEHICLE CIRCLING THE HOSTAGE BUILDING
however due to the small object size, the ego-motion estimat

was critical. As table Il shows, the optical flow played a No opt. flow, no retrain. | 0.39 Hz (21)

critical role in keeping the tracking estimate on target. In No retraining 0.26 Hz (14)
addition, it is clear that the adaptation to the object appeze Retain first 3 classifiers | 0.28 Hz (15)

led to improved tracking. As the person moved around the Full retraining 0.30 Hz (16)

field, its appearance remained relatively constant, howeve

the background changed drastically when the person moved TABLE V

£ the areen arass to the arav dirt patches. As a result %UARD VEHICLE, 1000FRAMES, 54 SECONDS FREQUENCY OF REQUIRED
rom g g g y p - ! yTRACK REINITIALIZATIONS (TOTAL NUMBER OF ERRORS SHOWN IN

retraining, and adapting the classifier it was able to mainta PARENTHESES.
enough discrimination between the person and the backdroun
to maintain the track.

Finally, we evaluated the tracker performance in trackireg t

guard vehicle in the MAV "08 competition. Due to the missiofrajectory for the commandos to the hostage building withou
profile, the MAV observed the bank building from a distancgheir being detected by the guard vehicle. Additionallyewh
with the camera pointed forward rather than hovering dyectthe MAV found mines, we wanted to be able to plan a
above the bank building. With the camera pointed forwardgajectory for the EOD vehicle to the mines, also withoutigei
the motion of the scene in the image due to the MAV motiofletected. We treated these problems symmetrically as @moti
became more pronounced from frame to frame. In additioplanning problem for a generic ground vehicle (GV).

as can be seen in table IV, the hedges surrounding the bankiangard motion planning algorithms are generally based on
building were exactly the same color and similar shape to thg,ch strategies through a discretized state space.utytho
guard vehicle. As a result, the tracker lost the track of th&rd e specific planning problem in the MAV '08 problem was

vehicle far more often than in the other scenes we tested Quntered around routes between the cover points (marked
In this dataset, the major factor that resulted in the trackg; 9 in figure 1a), we developed a general purpose

losing track was the motion of the camera, rather than a @angotion planner that would be more flexible to unexpected

in appearance of the guard vehicle. As a re_sult, ret_ran‘meg tguard motion and allow us to express a wide range of

classifiers actually reduced performance slightly, sineear trajectories that may not exactly follow straight-line tes:

classifiers in the ensemble were trained on bad data as f&yeen cover points.

tracker began to get lost, thereby creating a positive faekib Based on the initial problem description, our motion planne

cycle resulting in the tracker not being able to recover. R/ makes a number of assumptions. Not all of these assumptions
is clear that the optical flow plays an important role in keepi ere required for the MAV '08 competition, but in some cases
the tracking_on target, it may pe unable.to capture the .f. lowed us to address more general prc;blems. The planner
camera motion in some domains, resulting in the Class'f'ggsumes a discretization of the planning area, specifieally
becoming lost . . r?gular grid, and assumes the GV can move from a grid cell
Fundamentally, to solve the tracking problem in the face 9o any of the 4-connected neighbors. We assume that such

potentially large inter-frame camera motion, one needsiio la motion incurs a cost, and the goal is to find the lowest cost

clude more sophisticated object detection. Once the e”eeml%equence of states from the start to the goal without being

based tracker loses the target, there is no way to recoveg Uetected by the guard vehicle. The guard 3&(® field of view

an appearance-baseq tracker Iearneq online, since aPEOTLyith finite range, and we have a prior map of the environment
tion of the current_ .Ob]eCt estimate will propf_;lgate, conngpt iving the location of obstacles that would obstruct therdua
sgbsequent classifiers. As a re_.\sult,_ an (_)bJeCt detector ield of view, occluding the GV from the guard. Additionally,
hlgher-l_evel appearan_ce-ba_sed invariants is needed eveec the planner assumes that the current position of the guard
from object tracker failures in the general case. vehicle is known, and there is a model of the guard dynamics
that allows the guard position to predicted into the futiitee
5. GROUND VEHICLE PLANNING planner must therefore incorporate this model of the tewmlpor
Given the ability of the MAV to estimate the guard positiobehavior of the guard in generating paths that avoid detecti

and trajectory, the third challenge was to be able to planTae temporal constraint typically requires planning intbot



Algorithm 1 : STATE-A* II. TIME-STATE A*

Require: Xstart, Xgoal, Xguard The TiME-STATE-A* algorithm, developed by Fraichard
Lome A (Xstarts Xgoal) [7], represents the state of the GV as both a position and time
2: i — COLLIDE(T, Xguard) In order to account for the guard vehicle, the 2-D space is ex-
3: while > 0 do . trapolated into the time domain, creating a three-dimevaio
4 MARK—BLOCK_ED(W[ZD cost map (or “cube”), where each cell represents a separate
5 Teail A* (n[i ~ 1], Xgoar) (z,y,t). All actions are assumed to have the same, constant
6:  if (meq == null) then duration At. In addition to the four motion commands, we
r return  null add a RUSE action that only changes the time variable by
& endif . the same constant amouft as motion commands. Longer
o e m0:i— 1]+ Teai pauses can be achieved by executing$t repeatedly. We

10:  { «— COLLIDE(T, Xguard)
11: end while
12: return w

then search through the cube using standard A* as before, but
limiting the actions from every cell to be the 5-connecteid gr
cell in the next time step. (The cube is 5-connected bechese t
legal transitions are the four motions and theuBE action).

The Manhattan distance between the robot’s current pasitio
space and time, which can lead to substantial computatiogal the final goal in the 2-D space is used as the heuristis. Thi
complexity. Given the large size of the map, planning igigorithm again assumes that A* has access to a cost map that

space and time may not be feasible, and so we examinggludes the obstacles. Algorithm 2 shows then&-STATE-
three different strategies for planning with respect toghard A= in detail.

vehicle dynamics, to identify a strategy that scales wethwi
minimal loss in planner performance. Algorithm 2 : TIME-STATE A*
ReqUil’ei Xstarts Xgoali Xguardn tmaz

1 — A* ((Xstarta Xguard, O)a (Xgoala ) tmam))
2: return

|. STATE-A*

To determine if the additional complexity of planning in
time and space can be avoided, we first examined the per- . : N .
formance of planning only in the state space of the GV. The*NOt'Ce.th?t(;he 'ntpl:t to A_thcalled fr?mtv;/.lthln 'TA'?'EITATEd
STATE-A* discretizes the state space and searches for a pfgn now m(t:' u ets states V(\;' tan exp 'Ct'. |fmet varia ﬁ gm tr?
w from the start position,.,¢ t0 the goalxg.q;, both given maximum Ime ., q., In order to prevent infinité search dep

in GPS co-ordinates. The planconsists of an ordered list of resultmg.from .multlple RUSE actlpng.
e e There is a slight abuse of notation in that the goal stateeof th

N . . .
In order to avoid detection by the guard vehiclerASe- A" Process is(Xgoal, *, tmaz), Which we use tq denote a goal
sEate of the search where the guard can be in any position. By

A* forward-simulates the plan given that the guard starts a L L .
o L odeling time explicitly during the search process, thed-
position x,,q;. As the GV is simulated to move to the nex . . . .
L i : L , TATE A* algorithm can express a wider variety of plans to
state in the planx’, the guard vehicle position is predicte X . :
8orp0rate plans that deliberately wait for the guard ekehi

: . . |
using the current estimate of the guard motion, and the st i o .

i 9 . ne g : 0 move. Additionally, the search incorporates knowledfie o
x" is tested to see if a detection (and failure) would resu

Any state that is predicted to result in detection as a rexult e guard _v_eh|cle more accurately by including th_e changln_g
uard position as part of the search in the state-time damain

executing the plan is inserted into the map as a static db tae| . : ;
g P P > owever, the computational cost of increasing the number of

anq a new_plan IS geperated. Th|s.pr0cess Is repeated qntllarc]:%ons (and therefore the branching factor of the search),
collision with dynamic obstacles is found or the algorithm

fails to find a plan. Algorithm 1 shows theT&re-A* in f"‘”d fljlrthe.rmore substantially.inc.:r_easing the state sp3ce b

detail. This algorithm assumes that the internal A* aldorit including time, may have. a significant effect on the ability

has access to a cost map including obstacles. dieLIDE of the search process to find good plans.

subroutine simulates the GV motion along the ptarand the

MARK_BLOCKED subroutine modifies the cost map for futur&VINDOWED TIME-STATE A* (WST-A¥)

re-planning. Since the search grows exponentially with the search depth,
The SrATE-A* approach is expected to be computationby reducingt,,.., the search space can itself be reduced,

ally efficient compared to time-state search processedias anly including plans of length at most,... However, this

branching factor in the search is limited to changes in thmay significantly reduce the ability to find good plans when

position of the GV, rather than changes in both time armlans need to be longer thap,..., which is likely across a 1

position. However, this computational savings also retstthe km distances. We also examine an intermediate approach by

plan space, in that the search process cannot take advantagating TIME-STATE-A* search in limited time window.

of actions such asA®RsSe (without a time variable, a &RSE The complete algorithm is shown in Algorithm 3. First,

action would appear to have no effect). As a result of then approximated plan is computed usintage-A*, ignoring

restricted plan space, the planner may not be able to fititk guard position. This plan is then divided into sub-plans

efficient or robust plans. according to a window size, and for each start and end state
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Fig. 6. Average runtime, optimality, memory and failureeraf State-A*, Time-State A*, WST-A*(Small), and WTS-A*(kge) across planning problems
of different sizes.

Algorithm 3 : WINDOWED TIME-STATE A* (WTS-A¥) memory usage and the failure rate of each algorithm. A failur
Require: Xsiart, Xgoals Xguards tmaz, twindow occurred if the algorithm failed to find the existing path he t

1 Tapprox < A* (Xstart, Xgoal) goal.

2: {7*} <= DIVIDE (Tapprox, twindow)

3 t—0 Static obstacles

4: for 7 € {#'} do [ Map Size 20 % [ 30 %

5. x «— 7'[1] 30 x 30 {20,40,60,80} | {20, 30, 40,50}

6 x — #'[end) 70 x 70 | {40, 70,100,130} | {20,40,60,80}

70 Tuait — A (% Xguards £), (X' - tmas) 100 x 100 | {50,80, 110,140} | {10, 30,50,70}

8: if myey == null then TABLE VI

o return null RANGE OF DYNAMIC OBSTACLES FOR EACH MAP SETTING

10. endif

o M= T Mail Figure 6 depicts the averaged runtime (a), quality (b),
12: t e t+length(mai) memory usage (c), and failure rate (d) of the resulting plan
13: end for for STATE-A*, T IME-STATE-A*, and WTS-A* with different

14: return window sizes. As expected, on averageyif-STATE-A* was

the most time consuming algorithm (figure 6-a). It is quite
i interesting that on average, WTS-A* outperformetate-
of .the sub-plan, the*plan petween these s_tateslls regeder:ﬂe in terms of runtime. On the other hand, the quality of the
using FME'SPACEA ' N_ot|ce that thet variable is used to paths found by the WTS-A* were on par with those found by
maintain the time reqmr_ed to execute each s_ubp’rénto TIME-STATE-A*, shown in figure 6-b. The plan performance
ensure a proper connection between each section of the pf’énnd by the WTS-A* was within 97% of the optimal plan
_ ) (found by TIME-STATE-A*), while STATE-A* suffered a drop
5.1. Simulation Results around 12% from the optimal. Figure 6-c depicts the maximum
In order to determine the performance of these algorithnmagmory used by each algorithm in terms of the number of
we evaluated the three algorithms in a series of random midentical visited nodes. While this graph resembles thainm
environments by varying a number of parameters. In pagicultime of the corresponding algorithms, withME-STATE-A*
we varied the size of the map, the percentage of the map ttating the lead, $ATE-A* memory usage is now on par
was blocked by static obstacles, as well as the numberwith WTS-A* with small window size and even less than
single-occupancy dynamic obstacles that maneuvered in IMT S-A* with large window size. This highlights the fact that
environment. Table VI illustrates the 24 map settings used fSTATE-A* searched through more compact space, although
simulations. All algorithms were tested on each settindhwiit had to replan more often. Figure 6-d shows the average
30 randomly generated maps. Additionally, we measured tfadlure rate of methods. As expectedASE-A* suffered the
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Fig. 7. Runtime and optimality results of 30 runs for State-Aime-State A*, WTS-A*(Small), and WTS-A*(Large) averad across different numbers of
dynamic obstacles in a map sizes@f x 70 (a,b) and30 x 30 (c,d) with 20% blockade.

most because of its substantial search space restrictibite W for WTS-A* with large window size. Figure 7-(c,d) illustieg
WTS-A* had a much lower failure rate, it still failed to findthe runtime and performance results of all methods in map of
the existing path in less than 7% of maps. This is due to teee 30. For any number of dynamic obstaclesat®-A*

fact that WTS-A* assumes that each windowed path in tlend WTS-A* with large window size exceeded the runtime
state space has a valid translation into the time-stateespat TIME-STATE A*. Since the size of this map was small, the
which is not always true. IME-STATE-A* on the other hand number of possible paths to the goal was limitedud-STATE

is complete which translates into 0% failure rate. A* found the optimal path by a complete search through

Most domain specific results followed the averaged graptig€ séarch space while bottr&e-A* and WTS-A* had to
Although we encountered a few stark observations. Figure B&rform a number of re-planning. This observation suggests
(a,b) depict the runtime and performance results of State AR€ use of TME-STATE A* for small search spaces with
Time-State A*, and WTS-A* with window sizes of 20, angdynamic obstacles.

40 in a map of size 70. It can be seen that as the number of

dynamic obstacles increases, the extra cost of re-plarfoing 6. MissION PERFORMANCE INMAV '08

STATE-A* dominated the cost of planning in the time-state ag described in section 2, the goal of these systems was
space (figure 7-a), indicating that as the number of obstaclg 4 ide commandos across a field to a remote building. Our
increased, re-planning needed to occur more frequentiyléVh ghicle has a top speed of 10 m/sec, and the battery provides
TIME-STATE-A* had to search in a larger space, most plang ot flight time of 10-12 minutes. We therefore divided the
found by STATE-A* were infeasible, leading to more re-mission into multiple phases of mine detection, mine digpos
planning. Eventually after 100 obstacles, this re-plagmiost anq guard surveillance. Between each phase of the mission,
dominated the planning in the larger space. The side-effecty e planned to return the MAV to the launch point to replace
such excessive re-planning can be observed in figure 7-b. The battery.

quality of the solutions found by ®TE-A* drops rapidly.  The goal of phase 1 was to identify potential mine locations
TIME-STATE-A* is guaranteed to find the optimal solution.ang pegin guard vehicle estimation before returning to be
In contrast, both versions of the WTS-A* achieve the best fcnarged. Unfortunately, once the guard position anédraj
both worlds: their running time is less than of bothASE- 4y \vere identified, the amount of energy required to return
A* and TIME-STATE A%, while the cost of the plans found is 4 the ingress point was underestimated, and the vehicle was
nearly optimal (about 98% of the optimalME-STATE A%).  |ogt after 710 seconds, after traveling 1.75 km. (Not inetiid

In very small maps, the cost of re-planning was fatal evén the flight time is the time required to launch the vehicle
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a) Phase 1 ()

(

Maximum height:  35.7 m Maximum height:  13.0 m
Distance traveled: 1759.2 m Distance traveled: 1247.2 m
Total flight time:  710.0 secs Total flight time:  621.1 m

- Byom
(c) Phase 3

Maximum height; 28.8m
Distance traveled: 1290.5m

Total flight time:  644.7 m (d) Expected GV Path

Fig. 8. (a-c) The paths executed by the MAV. (d) The expeciad pxecuted by the commandos and EOD vehicle.

and begin the mission execution.) We were prepared to |dagish disposing of remaining mines and re-acquire the guard
the vehicle in the field and therefore had multiple vehiclies &ajectory before finishing the commando mission. A deliiber
the ingress point. decision was taken by the human operators to abandon the

The goal of phase 2 was to identify additional mine |ovehicle in the field and avoid the time of the return trip to

cations, co-ordinate with the EOD vehicle to perform minﬁ'Ie ingress point for recharging, in (_)rd_er t(.) provide ad_d'm‘l
disposal and to begin execution of the commando plan. Duri 5‘6 to complete the commando mission in the 40 minutes.
i5p0sed o, 0lowed by he AV Successlul reuring t,, St S0 ShOUS 1 actul paths fou by e MY
the ingress point for recharging. Additionally, the commias

. : . . of the GV computed using the WTS-A* algorithm. In the
gﬁir;gir:%ed executing their planned motion towards the k“"‘ﬂstaﬁnal mission scenario, the guard vehicle motion was extigme

deterministic and did not require much variation in the tigni
The goal of phase 3 was to finish identifying mine locationspnstraints so the timing information is not shown in the
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image. The path from cover point to cover point took 8sing this idea, all dynamic obstacles in the 2-D space are
minutes and reliably avoided detection. The actual pathrtakrepresented as static obstacles in the 3-dimensional .space
by the vehicles changed from this expected path to the fttoEinally a general path planning algorithm can be used to find
(midline) path based on detected mines, obstacles and the path in that space. One interesting fact is that patmpign
resultant re-planning. with dynamic obstacles can be viewed as a special case of
We were in general very pleased with the performance oboperative path planning with multiple agents, where all
the MAV and the co-ordination between the tracked grourttynamic obstacles are simply moving agents with predefined
targets and the planned trajectories for the EOD vehicle apdths. Silver [17] explored the similar approach explaibgd
commandos. In particular, during phase 2 of the mission v@aichard to resolve collisions in multi-agent path plaugni
were able to compensate for temporary lost GPS on the E@Bing a reservation table.
vehicle; we repurposed the MAV temporarily to geolocate the
EOD as it disposed of a mine. We flew a total of 4296.9m
in 40 minutes, detected two mines and two ground obstacles
and successfully disposed of the only mine along the plannedrhis paper described critical hardware and software com-
trajectory. ponents of a combined micro air vehicle and ground vehicle
system for performing a remote rescue task, as part of the
MAV '08 competition organized by the US and Indian govern-
ments. While our system performed to our satisfaction argl wa
We brought together work from the fields of roboticsawarded Best Mission Execution, there are a number of key
computer vision, and planning to compete in the MAV '08echnical questions that remain unsolved before co-oteliha
competition. As a result, there is much in the literaturet thair and ground systems can become commodities.
would be considered related work. There have been manyFirstly, while the object detection and tracking system
rotorcraft UAV platforms developed, including quadrotsegh  helped the human operators considerably in geolocating ob-
as the one developed in [9] and [10] which operate on thects, more work remains to be done in learning appearance-
same principles as the hexrotor developed here; as well&ed methods and compensating for large camera motions
other morphologies such as coaxial [2] and conventional hefo generate robust autonomous object detection and tigckin
copter platforms [14]. However, to the best of our knowlgdggecondly, there has been considerable amount of work in
our hexrotor platform is the first to acheive fully autonoraouplanning under uncertainty for multi-agent systems but we
outdoor flight at such a small scale, all the while carrying lsave not yet taken advantage of these methods to keep the
useful sensor payload. system complexity at a manageable level. However, in the
In the computer vision literature there has been a lot @fiture, we plan to extend the planner to incorporate dediteer
work on object tracking, [20] and [15] give a good overvievsensing actions at appropriate points in time, to allow more
of the current state of the art. While there have been mafigxible response to environmental dynamics. Finally, thero
successful algorithms such as background subtraction [1&]l mission specification provided by the organizers alldwe
mean shift tracking [4], and of course ensemble tracking [{ry simple task planning and rigid task execution. Howgver
which our algorithm is based on, all of these algorithms make allow more flexibility in planning surveillance, trackjrand
assume relatively stationary cameras, which does not loold frajectory execution between the air and ground vehicles, w
the camera on our vehicle. On the other side of things, thafgpect that more intelligent task planning will be requiied
is also a lot of work on tracking in the UAV literature [8],the future.
[18], [16] and [3]; however, much of this work focuses on
the abstract problem of tracking the target over time. They d
not actually integrate powerful enough vision algorithros t
effectively use a camera to track the objects, without mgkin[1] Shai Avidan. Ensemble tracking. Proceedings of IEEE
major assumptions regarding their appearance. In this work  Conference on Computer Vision and Pattern Recognition
we have integrated powerful computer vision algorithmswit 2005.
bayesian filtering to effectivly track the targets over time [2] Samir Bouabdallah, Roland Siegwart, and Gilles Caprari
Path planning with moving obstacles has been a challenging Design and control of an indoor coaxial helicoptertel-
problem for researchers in many fields, including robotics ligent Robots and Systems, 2006 IEEE/RSJ International
and navigation. Van den Berg and Overmars [19] explored Conference onpages 2930-2935, Oct. 2006.
the idea of using a Probabilistic Road Map (PRM) to first[3] David W. Casbeer, Sai ming Li, Randal W. Beard, and
generate discrete points in a continuous map which takes int Raman K. Mehra. Forest fire monitoring with multiple
account only static obstacles. Given the model of the moving small uavs.
obstacles, the resulting points are then extended intoirtiee t [4] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer.
dimension to calculate the optimum path. Jaillet and Simeon leee cvpr 2000 real-time tracking of non-rigid objects

8. CONCLUSION
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