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Why planning ?

Expensive data

Trade off between data and time

Tracking ...
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Transition Model :

Building the Model

Reward Model :

Fa

ba

Faφ = φ�

bT
a φ = r



Algorithm 2 : Linear Dyna with PWMA prioritized

sweeping (policy evaluation)

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ�

δ ← r + γθ�φ� − θ�φ
θ ← θ + αδφ
F ← F + α(φ� − Fφ)φ�
b← b + α(r − b�φ)φ
For all i such that φ(i) �= 0:

For all j such that F ij �= 0:

Put j on the PQueue with priority |F ijδφ(i)|
Repeat p times while PQueue is not empty:

i← pop the PQueue

δ ← b(i) + γθ�Fei − θ(i)
θ(i)← θ(i) + αδ
For all j such that F ij �= 0:

Put j on the queue with priority |F ijδ|
φ← φ�

behind prioritized sweeping—is to work backwards from

states that have changed in value to the states that lead into

them. The lead-in states are given priority for being up-

dated because an update there is likely to change the state’s

value (because they lead to a state that has changed in

value). If a lead-in state is updated and its value is changed,

then its lead-in states are in turn given priority for updat-

ing, and so on. In the table-lookup context in which this

idea was developed (Moore & Atkeson 1993; Peng 1993),

there could be many states preceding each changed state,

but only one could be updated at a time. The states wait-

ing to be updated were kept in a queue, prioritized by the

size of their likely effect on the value function. As high-

priority states were popped off the queue and updated, it

would sometimes give rise to highly efficient sweeps of up-

dates across the state space; this is what led to the name

“prioritized sweeping”.

With function approximation it is not possible to identify

and work backwards from individual states, but one could

work backwards feature by feature. If there has just been a

large change in θ(i), the component of the parameter vector

corresponding to the ith feature, then one can look back-

wards through the model to find the features j whose com-

ponents θ(j) are likely to have changed as a result. These

are the features j for which the elements F ij
of F are large.

One can then preferentially construct starting feature vec-

tors φ that have non-zero entries at these j components. In

our algorithms we choose the starting vectors to be the unit

basis vectors ej , all of whose components are zero except

the jth, which is 1. Using unit basis vectors is very efficient

computationally, as the vector matrix multiplication Fφ is

reduced to pulling out a single column of F .

There are two tabular prioritized sweeping algorithms in

Algorithm 3 : Linear Dyna with MG prioritized sweeping

(policy evaluation)

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ�

δ ← r + γθ�φ� − θ�φ
θ ← θ + αδφ
F ← F + α(φ� − Fφ)φ�
b← b + α(r − b�φ)φ
For all i such that φ(i) �= 0:

Put i on the PQueue with priority |δφ(i)|
Repeat p times while PQueue is not empty:

i← pop the PQueue

For all j such that F ij �= 0:

δ ← b(j) + γθ�Fej − θ(j)
θ(j)← θ(j) + αδ
Put j on the PQueue with priority |δ|

φ← φ�

the literature. The first, due simultaneously to Peng and

Williams (1993) and to Moore and Atkeson (1993), which

we call PWMA prioritized sweeping, adds the predecessors

of every state encountered in real experience to the prior-

ity queue whether or not the value of the encountered state

was significantly changed. The second form of prioritized

sweeping, due to McMahan and Gordon (2005), and which

we call MG prioritized sweeping, puts each encountered

state on the queue, but not its predecessors. For McMa-

han and Gordon this resulted in a more efficient planner.

A complete specification of our feature-by-feature versions

of these two forms of prioritized sweeping are given above,

with TD(0) updates and gradient-descent model learning,

as Algorithms 2 and 3. In section 6 we present illustrative

empirical results with these algorithms.

5 Theory for Control

We now turn to the full case of control, in which separate

models Fa, ba are learned and are then available for each

action a. These are constructed such that Faφ and b�a φ can

be used as estimates of the feature vector and reward that

follow φ if action a is taken. A linear Dyna algorithm for

the control case goes through a sequence of planning steps

on each of which a starting feature vector φ and an action

a are chosen, and then a next feature vector φ� = Faφ and

next reward r = baφ are generated from the model. Given

this imaginary experience, a conventional model-free up-

date is performed. The simplest case is to again apply

(1). A complete algorithm including prioritized sweeping

is given in Algorithm 4; we use this algorithm in empirical

results in the next section.

The theory for the control case is less clear than for the

policy evaluation. The main issue is the stability of the
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Repeat p times while PQueue is not empty:

i← pop the PQueue

δ ← b(i) + γθ�Fei − θ(i)
θ(i)← θ(i) + αδ
For all j such that F ij �= 0:

Put j on the queue with priority |F ijδ|
φ← φ�

behind prioritized sweeping—is to work backwards from

states that have changed in value to the states that lead into

them. The lead-in states are given priority for being up-

dated because an update there is likely to change the state’s

value (because they lead to a state that has changed in

value). If a lead-in state is updated and its value is changed,

then its lead-in states are in turn given priority for updat-

ing, and so on. In the table-lookup context in which this

idea was developed (Moore & Atkeson 1993; Peng 1993),

there could be many states preceding each changed state,

but only one could be updated at a time. The states wait-

ing to be updated were kept in a queue, prioritized by the

size of their likely effect on the value function. As high-

priority states were popped off the queue and updated, it

would sometimes give rise to highly efficient sweeps of up-

dates across the state space; this is what led to the name

“prioritized sweeping”.

With function approximation it is not possible to identify

and work backwards from individual states, but one could

work backwards feature by feature. If there has just been a

large change in θ(i), the component of the parameter vector

corresponding to the ith feature, then one can look back-

wards through the model to find the features j whose com-

ponents θ(j) are likely to have changed as a result. These

are the features j for which the elements F ij
of F are large.

One can then preferentially construct starting feature vec-

tors φ that have non-zero entries at these j components. In

our algorithms we choose the starting vectors to be the unit

basis vectors ej , all of whose components are zero except

the jth, which is 1. Using unit basis vectors is very efficient

computationally, as the vector matrix multiplication Fφ is

reduced to pulling out a single column of F .

There are two tabular prioritized sweeping algorithms in

Algorithm 3 : Linear Dyna with MG prioritized sweeping

(policy evaluation)

Obtain initial φ, θ, F, b
For each time step:

Take action a according to the policy. Receive r, φ�

δ ← r + γθ�φ� − θ�φ
θ ← θ + αδφ
F ← F + α(φ� − Fφ)φ�
b← b + α(r − b�φ)φ
For all i such that φ(i) �= 0:

Put i on the PQueue with priority |δφ(i)|
Repeat p times while PQueue is not empty:

i← pop the PQueue

For all j such that F ij �= 0:

δ ← b(j) + γθ�Fej − θ(j)
θ(j)← θ(j) + αδ
Put j on the PQueue with priority |δ|

φ← φ�

the literature. The first, due simultaneously to Peng and

Williams (1993) and to Moore and Atkeson (1993), which

we call PWMA prioritized sweeping, adds the predecessors

of every state encountered in real experience to the prior-

ity queue whether or not the value of the encountered state

was significantly changed. The second form of prioritized

sweeping, due to McMahan and Gordon (2005), and which

we call MG prioritized sweeping, puts each encountered

state on the queue, but not its predecessors. For McMa-

han and Gordon this resulted in a more efficient planner.

A complete specification of our feature-by-feature versions

of these two forms of prioritized sweeping are given above,

with TD(0) updates and gradient-descent model learning,

as Algorithms 2 and 3. In section 6 we present illustrative

empirical results with these algorithms.

5 Theory for Control

We now turn to the full case of control, in which separate

models Fa, ba are learned and are then available for each

action a. These are constructed such that Faφ and b�a φ can

be used as estimates of the feature vector and reward that

follow φ if action a is taken. A linear Dyna algorithm for

the control case goes through a sequence of planning steps

on each of which a starting feature vector φ and an action

a are chosen, and then a next feature vector φ� = Faφ and

next reward r = baφ are generated from the model. Given

this imaginary experience, a conventional model-free up-

date is performed. The simplest case is to again apply

(1). A complete algorithm including prioritized sweeping

is given in Algorithm 4; we use this algorithm in empirical

results in the next section.

The theory for the control case is less clear than for the

policy evaluation. The main issue is the stability of the
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han and Gordon this resulted in a more efficient planner.

A complete specification of our feature-by-feature versions

of these two forms of prioritized sweeping are given above,

with TD(0) updates and gradient-descent model learning,
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be used as estimates of the feature vector and reward that

follow φ if action a is taken. A linear Dyna algorithm for

the control case goes through a sequence of planning steps

on each of which a starting feature vector φ and an action

a are chosen, and then a next feature vector φ� = Faφ and

next reward r = baφ are generated from the model. Given

this imaginary experience, a conventional model-free up-

date is performed. The simplest case is to again apply

(1). A complete algorithm including prioritized sweeping
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Boyan Chain (PE)

N = 98 states

Algorithm 4: Linear Dyna with MG prioritized sweeping

(control)

Obtain initial φ, θ, F, b
For each time step:

a ← arg maxa

�
b�a φ + γθ�Faφ

�
(or �-greedy)

Take action a, receive r, φ�

δ ← r + γθ�φ� − θ�φ
θ ← θ + αδφ
Fa ← Fa + α(φ� − Faφ)φ�
ba ← ba + α(r − b�a φ)φ
For all i such that φ(i) �= 0:

Put i on the PQueue with priority |δφ(i)|
Repeat p times while PQueue is not empty:

i ← pop the PQueue

For all j s.t. there exists an a s.t. F ij
a �= 0:

δ ← maxa

�
ba(j) + γθ�Faej

�
− θ(j)

θ(j) ← θ(j) + αδ
Put j on the PQueue with priority |δ|

φ ← φ�

“mixture” of the forward model matrices. The corollary is

stated for an i.i.d. sequence of features, but by the remark

after Theorem 3.1 it can be readily extended to the case

where the policy to be evaluated is used to generate the

trajectories.

Corollary 5.1 (Convergence of linear TD(0) Dyna with

action models). Consider the Dyna recursion (4) with
the modification that in each step, instead of Fφk,
we use Fπ(φk)φk, where π is a policy mapping fea-
ture vectors to actions and {Fa} is a collection of
forward-model matrices. Similarly, b�φk is replaced by
b�π(φk)φk. As before, assume that φk is an unspecified
i.i.d. process. Let (F, b) be the least squares model of
π: F = arg minG E

�
�Gφk − Fπ(φk)φk�22

�
and b =

arg minu E
�
(u�φk − b�π(φk)φk)2

�
If the numerical radius

of F is bounded by one, then the conclusions of Theo-
rem 3.1 hold: the parameter vector θ converges with prob-
ability one to the fixed point of (3).

Proof. The proof follows immediately from the nor-

mal equation for F that states that E
�
Fφkφ�k

�
=

E
�
Fπ(φk)φkφ�k

�
and once we observe that in the proof of

Theorem 3.1 F appears only in expressions of the form

E
�
Fφkφ�k

�
.

As in the case of policy evaluation, there is a corresponding

corrollary for the residual gradient iteration, with an imme-

diate proof. These corollaries say that, for any policy with a

corresponding model that is stable, the Dyna recursion can

be used to compute its value function. Thus we can per-

form a form of policy iteration—continually computing an

approximation to the value function for the greedy policy.
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Figure 1: The general Boyan chain domain (N = 4).

A complete Dyna algorithm for control, with TD(0) up-

dates and MG prioritized sweeping is given in Algorithm

4.

6 Empirical results

In this section we illustrate the empirical behavior of the

four Dyna algorithms and make comparisons to model-free

methods using variations of two standard test problems:

Boyan Chain and Mountain Car. Our Boyan chain environ-

ment is an extension of the Boyan chain (Boyan 1999) from

from 13 to 98 states and from 4 to 25 features (Geramifard,

Bowling & Sutton 2006). Figure 1 depicts this environment

in the general form. Each episode starts at state 98 and ter-

minates in state 0. For all states s > 2, there is an equal

probability of transitioning to states s − 1 or s − 2 with a

reward of −3. From states 2 and 1, there are determinis-

tic transitions to states 1 and 0 with respective rewards of

−2 and 0. Our Mountain Car environment is modeled after

that by Sutton (1996). An underpowered must be driven

to the top of a hill by rocking back and forth. The state

variables are a pair (position,velocity) initialized to (-1.0,

0.0) at the beginning of each episode. The reward is −1
per time step. The value function representation used tile

coding (as in Sutton 1996) as the linear approximator in

which 10 tilings where used over the combined (position,

velocity) pair with the tiles hashed down to 10,000 features.

In the policy evaluation experiments with this domain, the

policy was to accelerate in the direction of the current ve-

locity, and we added noise to the domain that switched the

selected action to a random action with 10% probability.

Complete code for our test problems as standard RL-Glue

environments will be made available from the RL-Library

hosted at the University of Alberta.

In all experiments, the step size parameter α took the form

αt = α0
N0+1

N0+t1.1 , in which t is the episode number and

the pair (N0, α0) was selected based on empirically find-

ing the best combination out of α0 ∈ {.01, .1, 1} and

N0 ∈ {100, 1000, 106} for each algorithm separately. All

methods observed the same set of trajectories in the policy

evaluation case and all graphs are based on 30 runs. The
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Figure 2: Performance of policy evaluation methods on the Boyan chain and Mountain Car environments

Dyna methods used one planning step per interaction (i.e.,

p = 1).

6.1 Policy evaluation experiments

We performed policy evaluation experiments with four al-

gorithms: Dyna-Random, Dyna-PWMA, and Dyna-MG as

in Algorithms 1–3, and model-free TD(0). In the case of

the Dyna-Random algorithm, the starting feature vectors in

planning were chosen to be unit basis vectors with the 1 in

a random component. Figures 2(a) and (b) show the policy

evaluation performance of the four methods in the Boyan

chain and mountain car environments, respectively. The x-

axis indicates the number of episodes while the y-axis in-

dicates the loss function. Each point displays the mean and

standard error of the loss after the specific episode. For the

Boyan chain domain, the loss is the root-mean-squared er-

ror of the learned value function compared to the exact an-

alytical value averaged over all states. In the mountain car

domain, the loss was computed as ||A∗θ− b∗||, the magni-

tude of the sum of TD updates over a batch of experience,

where A∗
and b∗ were computed from 200,000 episodes

of interactions of LSTD(0) (Bradtke & Barto 1996) with

the domain. Because all of the techniques minimize this

quantity in the limit, this is a useful metric for the speed of

convergence.

In the Boyan chain environment, Dyna-Random and Dyna-

PWMA reduced the loss considerably faster than TD(0)

and Dyna-MG did at the beginning. Although the dynam-

ics of the Boyan chain are simple, the learned model in the

early stages was very noisy. The poor early performance of

Dyna-MG early on appears to be because it did more effec-

tive planning with the poor model, whereas Dyna-Random

and Dyna-PWMA did effectively less planning. We tested

this hypothesis by running all of the Dyna methods with a

perfect model and observed that Dyna-MG was the dom-

inant after 10 episodes. Overall, the model-based meth-

ods learned significantly faster than TD(0), and Dyna-MG

maintained an advantage over all the other methods by the

end of the experiment.

6.2 Control experiment

In our control experiment we used two algorithms: Dyna-

MG (which performed best in policy evaluation) and

model-free Sarsa (equivalent here to Algorithm 4 with

p = 0. In this experiment, both techniques followed an

�-greedy policy with epsilon fixed at 0.1. Optimal perfor-

mance in this domain results in a total return of −126 per

episode. The results are shown in Figure 3. The x-axis is

the episode number whereas the y-axis is now total return

per episode. Dyna-style planning continues to show strong

short-term performance, making use of its model to gener-

ate additional experience for learning.

6.3 Discussion

These empirical results are not extensive and should be

considered preliminary, but they illustrate some of the po-

tential of linear Dyna methods. The results on the Boyan

chain domain show that Dyna-style planning can result in

a significant improvement in learning speed over model-

free methods. In addition, we can see trends that have been

observed in the tabular case re-occurring here with linear

function approximation. In particular, prioritized sweep-

ing can result in more efficient learning than simply updat-

ing features at random, and the MG version of prioritized

sweeping seems to be better than the PWMA version.
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7 Conclusion

In this paper we have taken important steps toward es-
tablishing the theoretical and algorithmic foundations of
Dyna-style planning with linear function approximation.
We have established that Dyna-style planning with familiar
reinforcement learning update rules converges under weak
conditions corresponding roughly, in some cases, to the ex-
istence of a finite solution to the planning problem, and
that convergence is to a unique least-squares solution in-
dependent of the distribution used to generate hypothetical
experience. These results make possible our second main
contribution: the introduction of algorithms that extend pri-
oritized sweeping to linear function approximation, with
correctness guarantees. Our empirical results illustrate the
use of these algorithms and their potential for accelerat-
ing reinforcement learning. Overall, our results support the
conclusion that Dyna-style planning may be a practical and
competitive approach to achieving rapid, online planning
in large state spaces.
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