Dyna Style Planning with Linear Function Approximation

Alborz Geramifard April, 2010

Acknowledgments

Richard Sutton

Csaba Szepesvari

Michael Bowling

Cosmin Paduraru

Outline

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Reinforcement Learning

[Sutton, Barto 1998]

Planning

[Sutton, Barto 1998]

Function Approximation

[Sutton, Barto 1998]

Why planning ?

Expensive data

Trade off between data and time

Tracking ...

[Moore, Atkeson 1993]

[Moore, Atkeson 1993]

[Moore, Atkeson 1993]

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Similar to Prioritized Sweeping

Policy Independent Model

Similar to Prioritized Sweeping

Policy Independent Model

PQueue ¢i ∼∆

~

Transition Model: F_a

 $F_a\phi = \phi'$

Reward Model: b_a

 $b_a^T \phi = r$

Obtain initial ϕ, θ, F, b

For each time step:

Take action a according to the policy. Receive r,ϕ'

Obtain initial ϕ, θ, F, b

For each time step:

Take action a according to the policy. Receive r,ϕ'

$$\begin{split} \delta &\leftarrow r + \gamma \theta^{\top} \phi' - \theta^{\top} \phi \\ \theta &\leftarrow \theta + \alpha \delta \phi \end{split}$$

Obtain initial ϕ, θ, F, b

For each time step:

Take action a according to the policy. Receive r, ϕ'

$$\begin{split} \delta &\leftarrow r + \gamma \theta^{\top} \phi' - \theta^{\top} \phi \\ \theta &\leftarrow \theta + \alpha \delta \phi \end{split}$$

Obtain initial ϕ, θ, F, b

For each time step:

Take action a according to the policy. Receive r,ϕ'

$$\delta \leftarrow r + \gamma \theta^{\top} \phi' - \theta^{\top} \phi$$
$$\theta \leftarrow \theta + \alpha \delta \phi$$
$$F \leftarrow F + \alpha (\phi' - F \phi) \phi^{\top}$$
$$b \leftarrow b + \alpha (r - b^{\top} \phi) \phi$$

Obtain initial ϕ, θ, F, b

For each time step:

Take action a according to the policy. Receive r,ϕ'

$$\delta \leftarrow r + \gamma \theta^{\top} \phi' - \theta^{\top} \phi$$
$$\theta \leftarrow \theta + \alpha \delta \phi$$
$$F \leftarrow F + \alpha (\phi' - F \phi) \phi^{\top}$$
$$b \leftarrow b + \alpha (r - b^{\top} \phi) \phi$$

Algorithm 2 : Linear Dyna with PWMA prioritized sweeping (policy evaluation) Obtain initial ϕ, θ, F, b For each time step: Take action a according to the policy. Receive r, ϕ' value/policy $\delta \leftarrow r + \gamma \theta^\top \phi' - \theta^\top \phi$ $\theta \leftarrow \theta + \alpha \delta \phi$ acting planning direct $F \leftarrow F + \alpha(\phi' - F\phi)\phi^{\top}$ $b \leftarrow b + \alpha (r - b^{\top} \phi) \phi$ model experience For all *i* such that $\phi(i) \neq 0$: For all j such that $F^{ij} \neq 0$: mode learning Put j on the PQueue with priority $|F^{ij}\delta\phi(i)|$ Repeat p times while PQueue is not empty: $i \leftarrow \text{pop the PQueue}$ $\delta \leftarrow b(i) + \gamma \theta^{+} F e_i - \theta(i)$ $\theta(i) \leftarrow \theta(i) + \alpha \delta$ For all j such that $F^{ij} \neq 0$: Put j on the queue with priority $|F^{ij}\delta|$ $\phi \leftarrow \phi'$

Algorithm 2 : Linear Dyna with PWMA prioritized sweeping (policy evaluation) Obtain initial ϕ, θ, F, b For each time step: Take action a according to the policy. Receive r, ϕ' value/policy $\delta \leftarrow r + \gamma \theta^\top \phi' - \theta^\top \phi$ $\theta \leftarrow \theta + \alpha \delta \phi$ acting planning direct $F \leftarrow F + \alpha(\phi' - F\phi)\phi^{\top}$ $b \leftarrow b + \alpha (r - b^{\top} \phi) \phi$ experience model For all *i* such that $\phi(i) \neq 0$: For all j such that $F^{ij} \neq 0$: mode learning Put j on the PQueue with priority $|F^{ij}\delta\phi(i)|$ Repeat p times while PQueue is not empty: $i \leftarrow \text{pop the PQueue}$ $\delta \leftarrow b(i) + \gamma \theta^{+} F e_i - \theta(i)$ $\theta(i) \leftarrow \theta(i) + \alpha \delta$ For all j such that $F^{ij} \neq 0$: Put j on the queue with priority $|F^{ij}\delta|$ $\phi \leftarrow \phi'$

PQueue φ*i* Δi

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Settings

30 runs, same set of trajectories Best decay parameters in the set Results are shifted a bit

N = 98 states

Boyan Chain (No control)

Tile coding (10000 tiles, 10 tillings)

Mountain Car (PE)

Mountain Car (Control)

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

Background

Linear Prioritized Sweeping

Empirical Results

Discussion

The whole story is nice, but does it really work? Theory?

Geared towards sparse features

More planning on larger problems

Using Sigmoid function

Correlation with SPPI and LSPI

Convergence Proof

Questions?