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Background

Function Approximation
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Background
Why planning ?

Expensive data
Trade off between data and time

Tracking ...
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Building the Model

Transition Model : F'

Fa¢:¢/

Reward Model: b a

ba @ =1
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For each time step:
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Empirical Results
Settings

30 runs, same set of trajectories
Best decay parameters in the set

Results are shifted a bit



Boyan Chain (PE)

N = 98 states




Boyan Chain (No control)

40 60
Episode




Mountain Car

Tile coding (10000 tiles, 10 tillings)




Mountain Car (PE)




Mountain Car (Control)
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Discussion

The whole story is nice, but does it really
work? Theory?

(Geared towards sparse features

Tracking ...

Possibility: ¢/ «— 0 (F ¢) /




Future Work

# More planning on larger problems

¥ Using Sigmoid function

¥ Correlation with SPPI and LSPI

¥ Convergence Proof









