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Abstract

In this paper, we introduce a method for learning
and adapting cooperative control strategies in real-
time stochastic domains. Our framework is an in-
stance of the intelligent cooperative control archi-
tecture (iCCA). The agent starts by following the
“safe” plan calculated by the planning module and
incrementally adapting the policy to maximize re-
wards. Actor-critic and consensus-based bundle
algorithm (CBBA) were employed as the build-
ing blocks of the iCCA framework. We demon-
strate the performance of our approach by simulat-
ing limited fuel unmanned aerial vehicles aiming
for stochastic targets. The integrated framework
boosted the optimality of the solution by %10 com-
pared to running each of the modules individually.

Introduction
Planning for heterogeneous teams of mobile, au-
tonomous, health-aware agents in uncertain and dy-
namic environments is a challenging problem. In such a
setting, the agents are simultaneously engaged and con-
tinuously interact with each other, their surroundings
and with potential threats. They may encounter eva-
sive targets and need to reason through adversarial ac-
tions with insufficient data. Or, agents may receive de-
layed, lossy and contaminated communications or ex-
perience sensor and actuator failures. In addition, au-
tonomous agents must be robust to unmodeled dynam-
ics and parametric uncertainties while remaining capa-
ble of performing their advertised range of tasks.

Add to these challenges the requirement that all sens-
ing, computation and decision-making be done on-
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board the agent and the problem becomes simultane-
ously more realistic and difficult. The goal of embed-
ded reasoning is to advance onboard system capabili-
ties in solving complex tasks, such as adapting teams of
autonomous agents to dynamic and uncertain environ-
ments. Embedded reasoning seeks to enable “learning
from experience” for these agents and thereby improve
their ability to make and keep plans. While this research
does not present results obtained from truly embedded
algorithms, we are, however, currently in the active pro-
cess of developing many of the elements presented here
at the microprocessor level.

Although much work has been done in the area of
multi-agent planning in uncertain environments (Kael-
bling, Littman, and Cassandra 1998; Russell and Norvig
2003; H. Brendan McMahan 2003; Murphey and Parda-
los 2002), key gaps in the current literature include:

• How to improve planner performance over time
in the face of uncertainty and a dynamic world?
• How to use current knowledge and past obser-

vations to become both robust to likely failures
and intelligent with respect to unforeseen future
events?

In this research, we are interested specifically in im-
proving the performance of the system over time in an
uncertain world. To study this problem, we use the in-
telligent cooperative control architecture (iCCA)(Red-
ding et al. 2010) which is shown in Figure 1.

iCCA is comprised of a cooperative planner, a
learner, a metric for performance-to-date. For this re-
search, we use the consensus-based bundle algorithm
(CBBA) (Choi, Brunet, and How 2009) as the coop-
erative planner to solve the multi-agent task allocation
problem. For the learning algorithm, we implemented
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Figure 1: An intelligent Cooperative Control
Architecture, a framework for the integration of
cooperative control algorithms and machine learning
techniques.

an actor-critic reinforcement learner which uses infor-
mation regarding performance to explore and suggest
new behaviors that would likely lead to more favorable
outcomes than the current behavior would produce. The
performance analysis block is implemented as a “risk”
analysis tool where actions suggested by the learner
can be overridden by the baseline cooperative planner
if they are deemed too risky. This synergistic planner-
learner relationship yields a “safe” policy in the eyes
of the planner, upon which the learner can only im-
prove. Ultimately, this relationship will help to bridge
the gap to successful and intelligent execution in real-
world missions.

The remainder of this paper details the integration of
learning with cooperative control and shows how the
marriage of these two fields results in an intelligent,
adaptable planning scheme in the context of teams of
autonomous agents in uncertain environments. In the
following section, we motivate and formally states the
multi-agent planning problem. The specifics of the pro-
posed architecture are then detailed and followed by a
discussion of simulation results and conclusions.

Problem Statement
Having introduced the general problem, a few key re-
search gaps and outlined the proposed solution, we now
prepare to delve deeper into our approach by formally
presenting the problem we aim to solve and by giving
background information. We first outline a small yet
difficult multi-agent scenario where traditional cooper-
ative control tends to struggle. We then formulate the
planning problem associated with this complex scenario
and further discuss existing solutions. The following

section then discusses the technical details of the pro-
posed solution approach and explains how it fills the
research gap of interest.

Problem Scenario
Here we outline the scenario in which we developed and
tested each of the modules in the iCCA framework. Re-
ferring to Figure 2, we see a depiction of the mission
scenario of interest where a team of two fuel-limited
UAVs cooperate to maximize their total reward by vis-
iting valuable target nodes in the network. The base is
highlighted as node 1 (green circle), targets are shown
as blue circles and agents as triangles. The total amount
of fuel for each agent is highlighted by the number in-
side each triangle. For those targets with an associ-
ated reward it is given a positive number nearby. The
constraints on when the target can be visited are given
in square brackets and the probability of receiving the
known reward when the target is visited is given in the
white cloud nearest the node.1 Each reward can be ob-
tained only once and all edges take one fuel cell and one
time step. We also allow UAVs to loiter on any nodes
for the next time step. The fuel burn for loitering action
is also one except for the UAVs sStaying in the base,
where they assumed to be stationary and sustain no fuel
cost. The mission horizon was set to 8 time steps.

Markov Decision Processes
As the scenario above is modeled as a multi-agent
Markov Decision Process (MDP) (Howard 1960; Put-
erman 1994; Littman, Dean, and Kaelbling 1995), we
first provide some relevant background. The MDP
framework provides a general formulation for sequen-
tial planning under uncertainty. An MDP is defined by
tuple (S,A,Pass′ ,Rass′ , γ), where S is the set of states,
A is the set of possible actions. Taking action a from
state s has Pass′ probability of ending up in state s′ and
receiving rewardRass′ . Finally γ ∈ [0, 1] is the discount
factor used to prioritize early rewards against future re-
wards.2 A trajectory of experience is defined by se-
quence s0, a0, r0, s1, a1, r1, · · · , where the agent starts
at state s0, takes action a0, receives reward r0, transit
to state s1, and so on. A policy π is defined as a func-
tion from S × A to the probability space [0, 1], where

1If two agents visit a node at the same time, the probability
of visiting the node would increase accordingly.

2γ can be set to 1 only for episodic tasks, where the length
of trajectories are fixed.
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Figure 2: The mission scenario of interest: A team of
two UAVs plan to maximize their total reward by coop-
erating to visit targets. Target nodes are shown as cir-
cles with rewards noted as positive values and the prob-
ability of receiving the reward shown in the associated
cloud. Note that some target nodes have no value. Con-
straints on the allowable visit time of a target are shown
in brackets.

π(s, a) corresponds to the probability of taking action a
from state s. The value of each state-action pair under
policy π, Qπ(s, a), is defined as the expected sum of
discounted rewards when the agent takes action a from
state s and follow policy π thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expecta-
tion for all state-action pairs:

π∗ = argmaxaQ
π∗(s, a)

MDP Formulation

Here, we formulate the scenario of interest into an MDP,
as described above.

State Space S : We formulated the state space as
[N1, F1, . . . , Nn, Fn, V1, . . . , Vm, t]T , whereNi and Fi
are integer values highlighting the location and the re-
maining fuel for UAV i, Vj is a single bit signaling if
node j has been ever visited before, and t is the current
time step. There are n UAVs and m nodes participating
in the scenario.

Action Space A : Action space is [N+
1 , . . . , N

+
n ]

where N+
i is the node to which UAV i is traveling or,

where it will be at the next time interval.

Transition Function Pass′ : Transition function is de-
terministic for the UAV position, fuel consumption, and
time variables of the state space, while it is stochastic
for the visited list of targets. The detailed derivation
of the complete transition function should be trivial fol-
lowing Figure 2.

Reward Function Rass′ : The reward on each time
step is stochastic and calculated as the sum of rewards
from visiting new desired targets minus the total burnt
fuel cells on the last move (Figure 2). Notice that a UAV
receives the target reward only if it lands on an unvisited
rewarding node and lucky enough to obtain the reward.
In that case, the corresponding visibility bit will turn
on, and the agent receive the reward. We set the crash
penalty to −800, which occurs if any UAVs runs out
of fuel or is not at the base by the end of the mission
horizon.

iCCA

In this section, we detail our instance of the intelli-
gent cooperative control architecture (iCCA), describ-
ing the purpose and function of each element and how
the framework as a whole fits together with the MDP
formulated in the previous section.

iCCA Elements
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Figure 3: iCCA framework as implemented. CBBA
planner and risk analysis and the actor-critic learner for-
mulated within an MDP.



Cooperative Planner

At its fundamental level, the cooperative planner yields
a solution to the multi-agent path planning, task as-
signment or resource allocation problem, depending on
the domain. This means it seeks to fulfill the spe-
cific goals of the application in a manner that opti-
mizes an underlying, user-defined objective function.
Many existing cooperative control algorithms use ob-
served performance to calculate temporal-difference er-
rors which drive the objective function in the desired
direction (Murphey and Pardalos 2002; Bertsekas and
Tsitsiklis 1996). Regardless of how it is formulated (
e.g. MILP, MDP, CBBA, etc...), the cooperative plan-
ner, or cooperative control algorithm, is the source for
baseline plan generation within iCCA.

In this research, we implemented a decentralized auc-
tion protocol called the consensus-based bundle algo-
rithm (CBBA) as the cooperative planner. The follow-
ing section details this approach.

Consensus-Based Bundle Algorithm CBBA is a de-
centralized auction protocol that produces conflict-free
assignments that are relatively robust to disparate situa-
tional awareness over the network.

CBBA consists of iterations between two phases: In
the first phase, each vehicle generates a single ordered
bundle of tasks by sequentially selecting the task giv-
ing the largest marginal score. The second phase re-
solves inconsistent or conflicting assignments through
local communication between neighboring agents. In
the local communication round, some agent i sends out
to its neighboring agents two vectors of length Nt: the
winning agents vector zi ∈ INt and the winning bids
vector yi ∈ RNt

+ . The j-th entries of the zi and yi indi-
cate who agent i thinks is the best agent to take task j,
and what is the score that agent gets from task j, respec-
tively. The essence of CBBA is to enforce every agent
to agree upon these two vectors, leading to agreement
on some conflict-free assignment regardless of incon-
sistencies in situational awareness over the team.

There are several core features of CBBA identified
in (Choi, Brunet, and How 2009). First, CBBA is a
decentralized decision architecture. For a large team
of autonomous agents, it would be too restrictive to as-
sume the presence of a central planner (or server) with
which every agent communicates. Instead, it is more
natural for each agent to share information via local

communication with its neighbors. Second, CBBA is a
polynomial-time algorithm. The worst-case complexity
of the bundle construction is O(NtLt) and CBBA con-
verges within max{Nt, LtNa}D iterations, where Nt
denotes the number of tasks, Lt the maximum number
of tasks an agent can win, Na the number of agents and
D is the network diameter, which is always less than
Na. Thus, the CBBA methodology scales well with
the size of the network and/or the number of tasks (or
equivalently, the length of the planning horizon). Third,
various design objectives, agent models, and constraints
can be incorporated by defining appropriate scoring
functions. If the resulting scoring scheme satisfies a cer-
tain property called diminishing marginal gain (DMG),
a provably good feasible solution is guaranteed.

While the scoring function primarily used in (Choi,
Brunet, and How 2009) was a time-discounted reward,
a more recent version of the algorithm is due to Ponda
(Ponda et al. 2010) and handles the following exten-
sions while preserving convergence properties:

• Tasks that have finite time windows of validity
• Heterogeneity in the agent capabilities
• Vehicle fuel cost

This research uses this extended version of CBBA as
the cooperative planner.

Risk/Performance Analysis
One of the main reasons for cooperation in a coopera-
tive control mission is to minimize some cost, or objec-
tive function. Very often this objective involves time,
risk, fuel, or other similar physically-meaningful quan-
tities. The purpose of the performance analysis mod-
ule is to accumulate observations, glean useful infor-
mation buried in the noise, categorize it and use it to
improve subsequent plans. In other words, the perfor-
mance analysis element of iCCA attempts to improve
agent behavior by diligently studying its own experi-
ences (Russell and Norvig 2003) and compiling relevant
signals to drive the learner and/or the planner.

The use of such feedback within a planner is of
course not new. In fact, there are very few cooperative
planners which do not employ some form of measured
feedback. In this research, we implemented this mod-
ule as a risk analysis element where candidate actions
are evaluated for risk level. Actions deemed too risky
are replaced with another of lower risk. The details of
this feature are given later on.



Learning Algorithm
Although learning has many forms, iCCA provides a
minimally restrictive framework where the contribu-
tions of the learner to fall into either of two categories:

1. Assist the cooperative planner by adapting to
parametric uncertainty of internal models

2. Suggesting candidate actions to the cooperative
planner that the learner sees as beneficial

As our focus for this research is on the latter category,
we chose to formulate the learner as an actor-critic type
and set it under a Markov Decision Process framework,
as described previously. In actor-critic learning, the ac-
tor handles the policy, where in our experiments actions
are selected based on Gibbs softmax method:

π(s, a) =
eP (s,a)/τ∑
b e
P (s,b)/τ

,

in which P (s, a) is the preference of taking action a in
state s, and τ ∈ (0,∞] is the temperature parameter
acting as nob shifting from greedy towards random ac-
tion selection. Since we use a tabular representation the
actor update amounts to:

P (s, a)← P (s, a) + αQ(s, a)

following the incremental natural actor-critic frame-
work (Bhatnagar et al. 2007). As for the critic, we
employed the Sarsa algorithm [See (Sutton and Barto
1998)] to update the associated value function estimate.
We initialized the actor’s policy by boosting the ini-
tial preference of the actions generated by CBBA. As
actions are pulled from the policy for implementation,
they are evaluated for risk level and can be overridden
by the baseline CBBA if the action leads UAVs into a
configuration where crashing scenario is inevitable. As
the agents implement the policy, the critic receives re-
wards for the actor’s actions.

As a reinforcement learning algorithm, iCCA intro-
duces the key concept of bounded exploration such that
the learner can explore the parts of the world that may
lead to better system performance while ensuring that
the agent remain safely within its operational envelope
and away from states that are known to be undesirable,
such as running out of fuel. In order to facilitate this
bound, the risk analysis module inspect all suggestive
actions of the actor, and replaces the risky ones with the

baseline CBBA policy. This process guides the learning
away from catastrophic errors. In essence, the baseline
cooperative control solution provides a form of “prior”
over the learner’s policy space while acting as a backup
policy in the case of an emergency.

However, a canonical failure of learning algorithms
in general, is that negative information is extremely use-
ful in terms of the value of information it provides. We
therefore introduce the notion of a “virtual reward”. In
this research, the virtual reward is a large negative value
delivered by the risk analysis module to the learner
for risky actions suggested by the latter and pruned by
the former. When this virtual reward is delivered, the
learner associates it with the previously suggested ac-
tion, therefore dissuading the learner from suggesting
that action again, reducing the number of “emergency
calls” in the future.

Flight Results
In this section, we present and discuss simulation re-
sults for the given scenario and problem formulation.
First we solved the problem using backward dynamic
programing in order to use this solution as the baseline
for the optimality.3 We ran the CBBA on the converted
stochastic problem into the expected deterministic prob-
lem, and ran it for 10,000 episodes. Finally we empiri-
cally searched for the best learning rates for the Actor-
Critic and iCCA where the earning rate calculated by:

αt = α0
N0 + 1

N0 + Episode#1.1 .

The best α0 and N0 have been selected through exper-
imental search of the sets of α0 ∈ {0.01, 0.1, 1} and
N0 ∈ {100, 100, 106} for each method. For all ex-
periments, we set the preference of the advised CBBA
state-action pairs to 100. τ was set to 1 for the actor.
Figure 4 depicts the performance of iCCA and Actor-
Critic averaged over 60 runs. The Y-axis shows the cu-
mulative reward, while the X-axis represents the num-
ber of interactions. Each point on the graph is the result
of running the greedy policy with respect to the exist-
ing preferences of the actor. For iCCA, risky moves
again were replaced by the CBBA baseline solution.
Error bars represent the standard error with %90 con-
fidence interval. In order to show the relative perfor-

3This computation took about a day and can not be easily
scaled for larger sizes of the problem.



mance of these methods with offline techniques, the op-
timal and CBBA solutions are highlighted as lines. It
is clear that the actor-critic performs much better when
wrapped into the iCCA framework and performs bet-
ter than CBBA alone. The reason is that CBBA pro-
vides a good starting point for the actor-critic to explore
the state space, while the risk analyzer filters risky ac-
tions of the actor which leads into catastrophic scenar-
ios. Figure 5 shows the optimality of iCCA and Actor-
Critic after 105 steps of interaction with the domain and
the averaged optimality of CBBA through 10, 000 tri-
als. Notice how the integrated algorithm could on aver-
age boost the best individual optimality performance of
both individual components by %10.
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Figure 4: A comparison of the collective rewards
received when strictly following plans generated by
CBBA alone, actor-critic reinforcement learning out-
side of the iCCA environment, i.e. without initialization
and guidance from CBBA, and the result when these
are coupled via the iCCA framework are all compared
against the optimal performance as calculated via dy-
namic programming

Conclusions
In conclusion, we introduced a method for learning
and adapting cooperative control strategies in real-time
stochastic domains. Our framework of choice was an
instance of the intelligent cooperative control archi-
tecture (iCCA) presented in (Redding et al. 2010).
A “safe” plan was generated by the Consensus-Based
Bundle Algorithm (Choi, Brunet, and How 2009),
which initialized a policy which was then incrementally
adapted by a natural actor-critic learning algorithm to
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Figure 5: A comparison of optimality for CBBA alone,
actor-critic reinforcement learning outside of the iCCA
environment, i.e. without initialization and guidance
from CBBA, and the result when these are coupled via
the iCCA framework. The optimal result was found via
dynamic programming.

increase planner performance over time. We success-
fully demonstrated the performance of our approach by
simulating limited-fuel UAVs aiming for stochastic tar-
gets in an uncertain world.
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