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Abstract— This paper presents an extension of existing co-
operative control algorithms that have been developed for
multi-UAV applications to utilize real-time observations and/or
performance metric(s) in conjunction with learning methods
to generate a more intelligent planner response. We approach
this issue from a cooperative control perspective and embed
elements of feedback control and active learning, resulting in
an new intelligent Cooperative Control Architecture (iCCA). We
describe this architecture, discuss some of the issues that must
be addressed, and present illustrative examples of cooperative
control problems where iCCA can be applied effectively.

I. INTRODUCTION

Most applications of heterogeneous teams of UAVs require
participating agents to remain capable of performing their
advertised range of tasks in the face of noise, unmodeled
dynamics and uncertainties. Many cooperative control algo-
rithms have been designed to address these and other, re-
lated issues such as humans-in-the-loop, imperfect situational
awareness, sparse communication networks, and complex
environments. While many of these approaches have been
successfully demonstrated in a variety of simulations and
some focused experiments, there remains room to improve
overall performance in real-world applications. For example,
cooperative control algorithms are often based on simple,
abstract models of the underlying system. This may aid com-
putational tractability and enable quick analysis, but at the
cost of ignoring real-world complexities such as intelligently
evasive targets, adversarial actions, possibly incomplete data
and delayed or lossy communications.

Additionally, although the negative impacts with modeling
errors are relatively well understood, simple and robust
extensions of cooperative control algorithms to account for
such errors are frequently overly conservative and generally
do not utilize observations or past experiences to refine
poorly known models [1], [2]. Despite these issues however,
cooperative control algorithms provide a baseline capability
for achieving challenging multi-agent mission objectives. In
this context, the following research question arises: How can
current cooperative control algorithms be extended to result
in more adaptable planning approaches?

To address this question while improving long-term perfor-
mance in real-world applications, we propose a tighter inte-
gration of cooperative control algorithms with recent learning
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techniques. Many learning algorithms are well suited for on-
line adaptation in that they explicitly use available data to
refine existing models, leading to policies that fully exploit
new knowledge as it is acquired [3], [4]. Such learning
algorithms, combined with a cooperative planner, would be
better able to generate plans that are not overly conservative.
However, learning algorithms are also prone to limitations,
including the following:

• They may require significant amounts of data to con-
verge to a useful solution.

• Insufficient coverage of the training data can lead to
“overfitting” and/or poor generalization.

• There are no guarantees on the robustness of the closed
learner-in-the-loop system (robustness in learning algo-
rithms typically refers to the learning process itself).

• Exploration is often explicit (e.g., by assigning opti-
mistic values to unknown areas) which, in the context
of cooperative control, can lead to catastrophic mistakes.

• Scenarios where agents do not share complete knowl-
edge of the world may cause the learning algorithm to
converge to local minima or to fail to converge at all.

In this work, we propose that by combining learning with
an underlying cooperative control algorithm in a general,
synergistic, solution paradigm, some of these limitations can
be addressed. Firstly, the cooperative planner can generate
information-rich feedback by exploiting the large number of
agents available for learning, addressing problems raised by
insufficient data. Second, learning algorithms are more effec-
tive when given some prior knowledge to guide the search
and steer exploration away from catastrophic decisions. A
cooperative planner can offer this capability, ensuring that
mission objectives are achieved even as learning proceeds.
In return, the learning algorithm enhances the performance
of the planner by offering adaptability to time-varying pa-
rameters. It is proposed that this combination of cooperative
control and learning will result in more successful executions
of real-world missions.

Figure 1 shows a solution framework called an intelligent
Cooperative Control Architecture, (iCCA), that was designed
to provide customizable modules for implementing strategies
against modeling errors and uncertainties by integrating
cooperative control algorithms with learning techniques and
a feedback measure of system performance. The remainder
of this paper describes each of the iCCA modules and
provides a sampling of example iCCA applications. Specifi-
cally, Section II discusses the cooperative control algorithm
requirements, Section III describes the observations and per-
formance metric(s) and Section IV outlines the requirements
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Fig. 1. An intelligent Cooperative Control Architecture designed to
mitigate the effects of modeling errors and uncertainties by integrating
cooperative control algorithms with learning techniques and a feedback
measure of system performance.

and assumptions associated with the learning element of
iCCA. Following these descriptions, Section V provides a
few examples of the application of iCCA.

II. COOPERATIVE CONTROL

In this section, we outline the cooperative control algo-
rithm element of iCCA. For the purposes of this research,
cooperative control refers to a large class of planning and
control problems aimed at solving the multi-agent path
planning or task allocation problem. Solving these prob-
lems is typically done in a manner which optimizes some
performance criterion or objective function. In order to do
so, the cooperative planner must maintain an internal model
of which demands require which resources, and what the
reward is for assigning a particular resource to a demand.
These models may be probabilistic (as in the case of an
MDP) or deterministic (as might be the case in a MILP-based
allocation technique). As the cooperative control algorithm
is the primary source of plan generation within iCCA, the
performance and robustness properties of the integrated
system rely on the accuracy of its models as well as the
uncertainty representations used in the cooperative control
optimization. Therefore, the planner in iCCA provides access
to these internal models so that the the learning element can
assist in their refinement.

Output from the performance analysis element is also
available to the planner for use in its internal optimization.
In general, the cooperative control algorithm can act directly
upon the performance observed. For example, measured
versus expected performance can produce what is often
referred to as temporal-difference errors [5], which can drive
a multitude of objective functions, including those found in
many cooperative control algorithms. In effect, we connect
the cooperative planner with both a learning method and
a performance analysis method in an attempt to generate
cooperative control solutions that are both robust and adapt-
able to errors and uncertainties without being unnecessarily
conservative.

In Section V, we implement several very different ap-
proaches to the cooperative control problem and wrap iCCA
around each. First, we use a decentralized auction-based
algorithms called consensus-based bundle algorithm (CBBA)

[6] as the cooperative planner. Second, we revisit previous
work with multi-agent Markov decision processes (MDPs)
and uncertain model parameters [4] and generalize it to fit
within iCCA. Finally, we again use a CBBA planner, but
with an actor-critic reinforcement learner.

III. OBSERVATIONS AND PERFORMANCE

The use of feedback within a planner is of course not
new. In fact, there are very few cooperative control planners
which do not employ some form of measured feedback. The
focus of the performance analysis block within iCCA is to
extract relevant information from the observation stream and
formulate a meaningful metric that can be used in the planner
itself, and/or as input to the learner.

One of the main reasons for cooperation in a cooperative
control mission is to minimize the objective function, or some
cost/reward metric. Very often this involves time, risk, fuel,
or some other similar physically-meaningful quantity. The
purpose of the performance analysis element in iCCA is to
glean useful information buried in the noisy observations,
then fuse, filter or otherwise transform it and present it to the
learner and cooperative planner as a meaningful quantity for
use in improving subsequent plans. Essentially, the purpose
of the performance analysis element of iCCA is to assist
in improving agent behavior by diligently studying its own
experiences [7].

In Section V, we implement several methods of perfor-
mance analysis based on observed data. In the first example,
we construct temporal-difference errors based on expected
and observed cost and use these errors to drive the learning
of uncertain parameters. Second, we record state-dependent
observations to construct the parameters used by the learner.
Finally, we implement a method for analyzing risk as a form
of performance and couple this with the learner.

IV. LEARNING

Learning has many forms. We aim to be minimally
restrictive in defining the learning component of iCCA.
However, contributions of the learner include helping the
planner handle uncertainty in its internal models, and perhaps
suggesting potential exploratory actions to the planner that
will expedite the learning process itself. This “exploration”
is a key concept in learning and brings significant challenges
[8]. One of these challenges is how to bound or bias
exploration such that the learner will explore the parts of
the world that are likely to lead to a better model and better
performance, while ensuring that it remain safely within its
operational envelope and clear of undesirable states [9]–[11].
To facilitate this, the baseline cooperative control solution
within iCCA can be used to guide the learning, acting as
a constraint to prevent the learner from catastrophic errors
during exploration, or perhaps as a prior distribution over the
policy space.

Learning can leverage the multi-agent setting by collecting
observations from the team and using the information from
sensor data and observed or inferred mission successes (and



failures) as feedback signals to identify possible improve-
ments, such as tuning the weights of an objective function.
However, a trademark of any learning algorithm is that
negative information is extremely useful, albeit extremely
costly in the cooperative control setting. Active learning
algorithms can explicitly balance the cost of information
gathering against the expected value of information gath-
ered. In section V, we give examples of active and passive
maximum likelihood learners in the context of a multi-agent
Markov Decision Processes and a decentralized market-
based planner. Finally, we give an example of an actor-
critic reinforcement learner [12] biased and guided in its
exploration by a decentralized market-based planner.

V. EXAMPLE APPLICATIONS

A. Consensus-Based Cooperative Task Allocation

In this example, we consider a multi-agent task-allocation
scenario and implement an approximate, decentralized,
market-based planning algorithm called consensus-based
bundle algorithm (CBBA) [6]. CBBA is a decentralized
auction protocol that alternates between two phases: In the
first phase, each vehicle generates a single ordered bundle
of tasks by sequentially selecting the task giving the largest
marginal score. The second phase resolves inconsistent or
conflicting assignments through local communication be-
tween neighboring agents.

CBBA allows for various design objectives, agent models,
and constraints by defining appropriate scoring functions.
If the resulting scoring scheme satisfies a certain property
called diminishing marginal gain (DMG), a provably good
feasible solution is guaranteed. While the score functions pri-
marily used in Ref [6] was time-discounted reward, Ponda (et
al) [13] has extended the algorithm to appropriately handle
that have finite time windows of validity, heterogeneity in the
agent capabilities, and vehicle fuel costs while preserving the
robust convergence properties. Here, we take this extended
CBBA algorithm as the cooperative planner.

1) Problem Statement: Given a list of Nt tasks and Na
agents, the goal of the task allocation is to find a conflict-
free matching of tasks to agents that maximizes some global
reward. An assignment is said to be free of conflicts if each
task is assigned to no more than one agent. Each agent can be
assigned a maximum of Lt tasks, and the maximum overall
number of assignments is given by Nmax , min{Nt, NaLt}.
The global objective function is assumed to be a sum of
agents’ reward values, each of which is the sum of all time-
discounted values of task accomplished, less associated fuel
costs. Details of the CBBA problem formulation for multi-
agent task assignment can be found in Ref [13].

2) Implementation under iCCA: Figure 2 shows how this
example was wrapped within the framework of iCCA. As
seen, the CBBA algorithm serves as the cooperative planner
which uses internal models of vehicle dynamics to rank bids
placed by participating agents. These models, like many used
in cooperative control algorithms, are good approximations
and serve their purpose well. However, refining these model
parameters online can increase overall performance without
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Fig. 2. iCCA formulation with a CBBA planner and a simple learner driven
by temporal-difference errors
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Fig. 3. Cumulative residual score (expected - actual) over the duration
of the mission. When coupled with a learner, the planner more accurately
anticipates performance.

sacrificing robustness. As an example, we selected the mobile
agents’ expected cruise velocity as an adaptive parameter
since it is highly sensitive to variations in external conditions,
such as congestion and collision avoidance routines. Also,
this parameter is used in the CBBA scoring function and is
available to the learning algorithm for online refinement. We
implemented a simple adaptive controller as the learning al-
gorithm which receives input from the performance analysis
element in the form of temporal difference errors.

The performance analysis element, labeled “TD Error
Calculation”, observes and collects the scores achieved while
servicing the tasks won during the bidding process. It then
compares these actual with expected scores received from
queries directly to the CBBA planner. A temporal-difference
(TD) error of the form δ = E[x]−x captures the discrepancy
between the two scores and is used to drive a direct adaptive
controller which learns the true cost of fuel. In the simulated
mission scenario, a time-discounted reward is received as a
result of accomplishing a 5s task within the allowable time
window of 15s, while costs are accrued as a result of travel.

Figure 3 shows the residual mission score as a function of
time. As expected, the performance of the planning scheme
increases when coupled with a learning algorithm to reduce
the uncertainty around nominal cruise velocity. This enables
agents to place more accurate bids and collect actual scores
that are closer to the expected.



B. Multi-agent Persistent Surveillance

In this example, we formulate a multi-agent Markov De-
cision Process (MDP) while considering a persistent surveil-
lance mission scenario [14]. MDPs are a natural framework
for solving multi-agent planning problems as their versatility
allows modeling of stochastic system dynamics as well as
interdependencies between agents [15], [16].

1) Problem Statement: We formulate the persistent
surveillance problem as in Ref [14], where a group of Na
UAVs are each equipped with some type(s) of sensors and are
initially located at a base location. The base is separated by
some (possibly large) distance from the surveillance location
and the objective of the problem is to maintain a specified
number Nr of requested UAVs over the surveillance location
at all times while minimizing fuel costs. This represents a
practical scenario that can show well the benefits of agent
cooperation.

The uncertainty in this case is a simple fuel consumption
model based on the probability of a vehicle burning fuel at
the nominal rate, pf . That is, with probability pf , vehicle i
will burn fuel at the known nominal rate and with probability
1− pf , vehicle i will burn fuel at twice the known nominal
rate during time step j,∀(i, j). When pf is known exactly, a
policy can be constructed to optimally hedge against running
out of fuel while maximizing surveillance time and min-
imizing fuel consumption. Otherwise, policies constructed
under overly conservative (pf too high) or naive (pf too
low) estimates of pf will respectively result in vehicles
more frequently running out of fuel, or a higher frequency
of vehicle phasing (which translates to unnecessarily high
fuel consumption). Given the qualitative statement of the
persistent surveillance problem, an MDP is formulated as
detailed in Ref [4].

2) Implementation under iCCA: Wrapping the above
problem statement within iCCA, the multi-agent MDP fits
as the cooperative planner, while the performance analysis
block consists of a state-dependent observation counter that
tracks discretely observed fuel burn events. Two learning
algorithms were implemented in this example scenario: an
active and a passive learner. Both of which are based
on a maximum likelihood algorithm whose parameters are
updated using the number of observed fuel burn events, αi,
as counted by the performance analysis element, as depicted
in Figure 4

First, the passive learner simply uses these αi inputs to
calculate p̂f and the corresponding variance. Second, the ac-
tive learner which, after calculating p̂f and the corresponding
variance, searches the possible actions and “suggests” to the
planner that it take the action leading to the largest reduction
in variance around pf .

For the case of the active learner, we embed a ML learner
into the MDP formulation such that the resulting policy will
bias exploration toward those state transitions that will result
in the largest reduction in the expected variance of the ML
estimate p̂f . The resulting cost function is then formed as

g′(x,u) = g(x,u) + Cσ2(p̂f )(x)
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Fig. 4. iCCA formulation with a multi-agent MDP planner and a ML
learner driven by β-distribution observation counts.
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Fig. 5. Comparison of the fuel burn model parameter learned over time
under the MDP formulation

where C represents a scalar gain that acts as a knob we
can turn to weight exploration, and σ2(p̂f )(x) denotes the
variance of the model estimate in state x. The variance of
the Beta distribution is expressed as

σ2(p̂f )(x) =
α1(x)α2(x)

(α1(x) + α2(x))2(α1(x) + α2(x) + 1)

where α1(x) and α2(x) denote the counts of nominal and
off-nominal fuel flow transitions observed in state x re-
spectively, by the performance module labeled “Observation
Counter” in Figure 4.

Figure 5 compares the rate at which the model param-
eter pf is learned using a ML estimator that uses online
observations of vehicle fuel consumption. In the passive
learning case, the planner chooses actions based on an
internal objective function, without being “nudged” by the
learner. These actions lead to observations, which in turn
reduced the variance around pf , albeit not as quickly as the
active learner, as seen in Figure 5. For the case without iCCA,
no learning is achieved and the planner assumes pf is known
and therefore acts sub-optimally: running a higher risk of
crashing, or wasting fuel.

C. Actor-Critic Policy Learning

In this example, we integrate a variant of the CBBA
planner presented in Section V-A with an actor-critic rein-
forcement learner in the context of a stochastic multi-agent
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Fig. 7. iCCA framework as implemented. CBBA planner with the risk
analysis and actor-critic learner formulated under an MDP.

task allocation scenario. We discuss a method for learning
and adapting cooperative control strategies in stochastic
domains.

1) Problem Statement: We consider a small team of
agents that start by following the “safe” plan calculated
by the baseline planner and incrementally adapting it to
maximize rewards by cooperating to visit target nodes in
the network.

Figure 6 depicts the problem scenario where the base is
highlighted as node 1 (green circle), targets are shown as
blue circles and agents as triangles. The total amount of
fuel for each agent is highlighted by the number inside each
triangle. For those targets with an associated reward it is
given a positive number nearby. The constraints on when
the target can be visited are given in square brackets and the
probability of receiving the known reward when the target is
visited is given in the white cloud nearest the node.1 Each
reward can be obtained only once and all edges take one
fuel cell and one time step. We also allow UAVs to loiter on
any nodes for the next time step. The fuel burn for loitering
action is also one except for the UAVs staying in the base,
where they assumed to be stationary and sustain no fuel cost.
The mission horizon was set to 8 time steps.

1If two agents visit a node at the same time, the probability of visiting
the node would increase accordingly.

2) Implementation under iCCA: We implemented the
consensus-based bundle algorithm under the same formu-
lation as outlined in Section V-A with additional fuel con-
straints. Specifically, each agent was given a limited amount
of fuel and the combined path length of its task bundle was
constrained to be feasible with respect to fuel consumption
while allowing the agent enough reserve to return to base
upon completion.

For the learning algorithm, we implemented an actor-
critic reinforcement learner [12] which uses information
regarding performance to explore and suggest new behaviors
that would likely lead to more favorable outcomes than the
current behavior would produce. In actor-critic learning, the
actor handles the policy, where in our experiments actions
are selected based on Gibbs softmax method:

π(s, a) =
eP (s,a)/τ∑
b e
P (s,b)/τ

,

in which P (s, a) is the preference of taking action a in state
s, and τ ∈ (0,∞] is the temperature parameter acting as knob
shifting from greedy towards random action selection. Since
we use a tabular representation the actor update amounts to
P (s, a)← P (s, a) +αQ(s, a), where α is the learning rate.

As for the critic, we employ the temporal-difference learn-
ing algorithm [17] to update the associated value function
estimate. We initialized the actor’s policy by bootstrapping
the initial preference of the actions generated by CBBA.

The performance analysis block is implemented as a “Risk
Analysis” tool where actions suggested by the learner can
be overridden by the baseline cooperative planner if they
are deemed too “risky”. This synergistic relationship yields
a “safe” policy in the eyes of the planner, upon which the
learner can only improve. A trademark of learning algorithms
in general, is that negative information is extremely useful
in terms of the value of information it provides. This is
unacceptable in a multi-agent environment. We therefore
introduce the notion of a “virtual reward” - a large negative
value delivered to the learner for suggesting risky actions.
When delivered, the learner associates this negative reward
with the previously suggested action, dissuading the learner
from suggesting it again.

The formulation shown in Figure 7 allows for the key
concept of biased & guided exploration such that the learner
can explore the parts of the world that are likely to lead
to better system performance while ensuring that the agent
remain safely within its operational envelope and away from
states that are known to be undesirable, such as running
out of fuel. The bias is introduced as the initial policy
is seeded using the initial plan generated by the baseline
CBBA planner. In order to facilitate the bound, the risk
analysis module inspects all actions suggested by the actor
and replaces the “risky” ones with the action specified by
CBBA, thus guiding the learning away from catastrophic
errors. In essence, the baseline cooperative control solution
provides a form of “prior” over the learner’s policy space
while also acting as a backup policy in the case of an
emergency.
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Fig. 8. A comparison of the collective rewards received when strictly
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We first solved the problem using backward dynamic
programing in order to use this solution as a benchmark
for comparison (this took about a day and cannot be easily
scaled for larger sizes of the problem). We then ran CBBA
on the expected deterministic problem (as converted from
the stochastic problem), and ran it for 10,000 episodes. For
all experiments, we set the preference of the advised CBBA
state-action pairs to 100. τ was set to 1 for the actor. Figure 8
depicts the performance of iCCA and Actor-Critic averaged
over 60 runs. The Y-axis shows the cumulative reward, while
the X-axis represents the number of interactions. Each point
on the graph is the result of running the greedy policy with
respect to the existing preferences of the actor. For iCCA,
risky moves again were replaced by the CBBA baseline
solution. Error bars represent the standard error with %90
confidence interval. In order to show the relative performance
of these methods with offline techniques, the optimal and
CBBA solutions are highlighted as lines. It is clear that
the actor-critic performs much better when wrapped into the
iCCA framework and performs better than CBBA alone. The
reason is that CBBA provides a good starting point for the
actor-critic to explore the state space, while the risk analyzer
filters risky actions of the actor which leads into catastrophic
scenarios.

VI. CONCLUSIONS

In conclusion, we have shown how existing cooperative
control algorithms can be extended to utilize real-time ob-
servations and performance metric(s) in conjunction with
learning methods to generate a more intelligent planner re-

sponse. We approached the issue from a cooperative control
perspective and have embedded elements of feedback control
and active learning, resulting in an intelligent Cooperative
Control Architecture (iCCA). We described this architecture
and presented illustrative examples of cooperative control
problems where iCCA was applied.
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