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Introduction Motivation

Motivation A?R;m”s ACL

» DoD missions: execute persistent ISR
with heterogeneous UAVs and tasks
e Balance competing objectives
e Rapid response
e Handle uncertainty

e Human operator/automated planner
integration

» Overall Goal: Develop algorithms that control multiple UAVs to

coordinate/cooperate to meet requirements in an optimized and
robust way

e Significant work in this area, including our algorithms
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Challenges of Cooperative Planning gASMACL

» Most cooperative control algorithms are model based — enable
anticipation of likely events & prediction of resulting behavior

» But the models are often approximated
e Planning with stochastic models time consuming = model simplification
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e Modeling errors (e.g. incorrect rules, non-representative objective
functions, unmodeled uncertainties)
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» Most cooperative control algorithms are model based — enable
anticipation of likely events & prediction of resulting behavior

» But the models are often approximated
e Planning with stochastic models time consuming = model simplification

» Typical problems

e Modeling errors (e.g. incorrect rules, non-representative objective
functions, unmodeled uncertainties)

e Model parameter uncertainties (e.g. vehicle minimum turn radius, fuel
burn rate, probability of motor failure ...)

» Result is sub-optimal planner output = mismatch between actual
and expected performance

e Can lead to catastrophic performance degradation
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Challenges of Cooperative Planning
Inaccurate Model = Sub-optimal Solution gmg ACL

||

» Problem: Find path from top-left (o) to bottom-right (+), while
avoiding no-fly-zones (e). Movement noise = 30%.

Geramifard, Redding, Roy, How (MIT) ACC'11 5/19



Inaccurate Model = Sub-optimal Solution g;m”s ACL
°
»

» Middle planner assumes no noise = path approaches no-fly-zones.

» Right planner includes 30% noise = path maintains distance from
the no-fly-zones.
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Chigllizngss of Corpaiie PENTTRE
Addressing Sub-optimalities gmo ACA

» Modeling errors:
e Reinforcement learning

» Model parameter uncertainty:
e Adaptive control techniques
o Maximum-likelihood estimation

e Data-driven learning methods (e.g. regression)

» Need a framework to enable these in conjunction with planning
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Reinforcement Learning Framework gASMACL
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where 7 is policy that agent follows St, T

VT(s) =Ex [Z ¥y
=0

» Goal: Increase the number of UAVs in the persistent surveillance
mission is an important research goal = large state space

» Learning in large state spaces is challenging:

o Slow
e Memory intensive
e Computationally demanding
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Introduction Challenges of Cooperative Planning

A Framework for Planning & Learning QOACL

iCCA disturbances

Cooperative 5 .
Planner 3 Agent/Vehicle O

Learning
Algorithm

Performance
Analysis

- +—
observations
noise

» Developed template architecture for multi-agent planning and
learning — intelligent Cooperative Control Architecture (iCCA) [4]
e Cooperative planner (parent): Generates safe but sub-optimal
policies.
e Learner (child): May suggest unsafe actions, but will find optimal
policies.
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Introduction Challenges of Cooperative Planning

observations

AE%;«STRC A C L

» Learner (Natural Actor-Critic) has a parametric form for the policy.

» Planner (Consensus-Based Bundle Algorithm) initializes child's

policy.

» Given a deterministic risk model, each suggested actions of the

child is rolled out with the parent’s policy.

» Risky actions are replaced with the parent'’s policy.
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Introduction Challenges of Cooperative Planning

AE%;\STRC A C L

iCCA: Stochastic Risk Models

| iCCA
; l«Z2( Consensus
Based
Bundle
«—L4  Algorithm
(CBBA)

m(s)
Agent/Vehicle

World

observations (s, etc...)

» Current paper extended capabilities of that previous work:

O Relaxed requirement that learner have a parametric policy form.
Probability of child suggesting an action based on learned value function

for a state increases as it experiences that state more.

@ Risk model can be stochastic. Safety ensured by generating multiple
Monte-Carlo simulations and replacing risky actions suggested by learner
with planner's policy.
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At el
Algorithm Details gm@ACL

» The learner suggests actions with the following probability akin to
the Ryuqq algorithm [2]:

count(s,a)

P = min{1,
N

}

e Higher values of IV suggests slower exploration rate.

e counts(s,a) = number of times the planner picked action a at state s.

» Furthermore, the safety of the learner's suggested action is
estimated through M Monte-Carlo simulations.
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SefelExplortion
Safe Exploration gmo ACA

Algorithm 2: safe
Input: s,a
Output: isSafe
risk <0
for i < 1 to M do
t«1
sy ~TP(s,a)
while not constrained(s,;) and not
isTerminal(s;) and t < H do
L i1 ~ TP(s¢,7P(s1))
t—t+1
risk « risk + +(constrained(s;) — risk)

isSafe « (risk < v)

» The learner provides the first action, a, in each trajectory, while the
planner’s policy, 7P, generates the rest of actions.

» The planner’s model, T?, is used to role out each trajectory.

> If estimated risk exceeds threshold 1, learner’'s suggested action is
replaced with the planner’s policy.
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Introduction Safe Exploration

Empirical Results: GridWorld Domain g;mgACL
» Integrated CBBA [3] with both Sarsa [6] hd
and NAC [1]
» True Model: 30% noise for movement .
» Planner's Model: 0% noise for
movement
» Reward:

e reaching goal,= +1

e entering no-fly-zone= -1 .

e all other moves= -0.001
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Introduction Safe Exploration

Empirical Results: GridWorld Domain

g;\srr{o A c L

» Average performance of methods through 10* interactions using 60

trials. Bars highlight 95% confidence intervals.

» CNAC: iCCA + NAC, CSarsa: iCCA + Sarsa

1

Optimal T
CNAC A > 1
‘ L .
0.5 /L' ‘i/ \1//}/1
Planner s f I
e %7
2
&
-0.5-
-1
-1.5 T T T T T
0 2000 4000 6000 8000 10000

Steps

Geramifard, Redding, Roy, How (MIT) ACC'11

15 /19



Introduction 2 UAVs, 6 Targets

2 UAVs, 6 Targets gmoACL

» UAVs (triangles) and Targets
(circles)

» Time windows for target visit
times in brackets, e.g. [2,3]

» Target visit rewards

» Probability of receiving reward
shown in cloud

» Stochastic risk model: 5%
noise for traveling an edge

> ~ 10% state-action pairs

» iCCA and Actor-Critic test cases were run for 60 episodes
» CBBA was run on the deterministic version of the stochastic problem
for 10,000 episodes — plot averaged performance
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2 UAVs, 6 Targets: Simulation Results g;\m{o ACL
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» NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the
training session in the UAV mission planning scenario.
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» NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the
training session in the UAV mission planning scenario.

» Cooperative learners (CNAC, CSarsa) perform very well with respect
to overall reward and risk levels when compared with the baseline
CBBA planner and the non-cooperative learning algorithms.
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Contibutions 9  4ACA

» Extensions:

e Support for stochastic risk models
e Support for learning methods with no parametric form for the policy
(e.g., Sarsa).

» Empirical Results: Provided simulation results showing the benefit
of integrating learning and planning in a multi-agent mission
planning domain with more than 10® possibilities.
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