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Introduction Motivation

Motivation

▶DoD missions: execute persistent ISR
with heterogeneous UAVs and tasks
• Balance competing objectives
• Rapid response
• Handle uncertainty
• Human operator/automated planner

integration

▶Overall Goal: Develop algorithms that control multiple UAVs to
coordinate/cooperate to meet requirements in an optimized and
robust way
• Significant work in this area, including our algorithms
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Introduction Challenges of Cooperative Planning

Challenges of Cooperative Planning

▶Most cooperative control algorithms are model based – enable
anticipation of likely events & prediction of resulting behavior

▶But the models are often approximated
• Planning with stochastic models time consuming ⇒ model simplification

▶Typical problems
• Modeling errors (e.g. incorrect rules, non-representative objective

functions, unmodeled uncertainties)
• Model parameter uncertainties (e.g. vehicle minimum turn radius, fuel

burn rate, probability of motor failure . . .)

▶ Result is sub-optimal planner output ⇒ mismatch between actual
and expected performance
• Can lead to catastrophic performance degradation
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Introduction Challenges of Cooperative Planning

Inaccurate Model ⇒ Sub-optimal Solution
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Fig. 2. GridWorld domain (left), the corresponding policy calculated with a
planner assuming deterministic movement model and its true value function
(middle) and the optimal policy with the perfect model and its value function
(right). The task is to navigate from the top left corner highlighted as • to the
right bottom corner identified as �. Red regions are off-limit areas where the
UAV should avoid. The movement dynamics has 30% noise of moving the
UAV to a random free neighboring grid cell. Gray cells are not traversable.

path is longer, it mitigates the risk better. In fact, the new
policy raises the mission success rate from 29% to 80%,
while boosting the value of the initial state by a factor
of ≈3. Model-free learning techniques such as Sarsa can
find the optimal policy through mere interaction, although
they require many training examples. More importantly, they
might deliberately move the UAV towards off-limit regions
just to gain information about those areas. However, when
integrated with the planner, the learner can rule out inten-
tionally poor decisions. Furthermore, the planner’s policy can
be used as a starting point for the learner to bootstrap on,
reducing the amount of data the learner requires to master
the task.

Though simple, the preceding problem is similar to more
meaningful and practical UAV planning scenarios. The fol-
lowing sections present the technical approach and examines
the resulting methods in this toy domain and a more complex
multi-UAV planning task where the size of the state space
exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
pose and function of each element. Fig. 3 shows that the
consensus-based bundle algorithm (CBBA) [13] is used as
the cooperative planner to solve the multi-agent task alloca-
tion problem. The learning algorithms used are the natural
actor-critic [12] and Sarsa [11] methods. These algorithms
use past experience to explore and suggest promising behav-
iors leading to more favorable outcomes. The performance
analysis block is implemented as a risk analysis tool where
actions suggested by the learner can be overridden by the
baseline cooperative planner if they are deemed too risky.
The following sections describe each of these blocks in
detail.

A. Cooperative Planner

At its fundamental level, the cooperative planner yields a
solution to the multi-agent path planning, task assignment or
resource allocation problem, depending on the domain. This
means it seeks to optimize an underlying, user-defined objec-
tive function. Many existing cooperative control algorithms
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Fig. 3. iCCA framework as implemented. CBBA planner coupled with risk
analysis and reinforcement learning modules, where the latter two elements
are formulated within an MDP.

use observed performance to calculate temporal-difference
errors which drive the objective function in the desired direc-
tion [14,15]. Regardless of how it is formulated (e.g., MILP,
MDP, CBBA), the cooperative planner, or cooperative control
algorithm, is the source for baseline plan generation within
iCCA. The formulation of CBBA as the cooperative planner
for this work is nearly identical to that shown previously
[3], with the exception that this research adds additional
constraints on fuel supply to ensure agents cannot bid on task
sequences that require more fuel than they have remaining or
that would not allow them to return to base upon completion
of the sequence. For further details, the reader is referred to
previous work [3,13,16].

B. Risk/Performance Analysis

As discussed earlier, learning algorithms may encourage
the agent to explore dangerous situations (e.g., flying with
low fuel level) in hope of improving the long-term per-
formance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as losing a UAV. Hence in this research, akin to our
previous work [3], we implemented the performance analysis
module as a risk analysis element where candidate actions are
evaluated for their risk level. Actions deemed too “risky” are
replaced with another action of lower risk. The next section
details the process of overriding risky actions. It is important
to note that the risk analysis and learning algorithms are
coupled within an MDP formulation, as shown in Fig. 3,
which implies a fully observable environment.

C. Learning Algorithm

A focus of this research is to integrate a learner into iCCA
that suggests candidate actions to the cooperative planner
that it sees as beneficial. Suggested actions are generated
by the learning module through the learned policy. In our
previous work [3], we integrated natural actor-critic through
iCCA framework. We refer to this algorithm as Cooperative
Natural Actor-Critic (CNAC).

Algorithm 1 illustrates this algorithm in more detail. In
order to encourage the policy to initially explore solutions
similar to the planner solution, preferences for all state-
action pairs, P (s, a), on the nominal trajectory calculated
by the planner are initialized to a fixed number ξ ∈ R+. All
other preferences are initialized to zero. As actions are pulled

▶Problem: Find path from top-left (●) to bottom-right (⋆), while
avoiding no-fly-zones (●). Movement noise = 30%.
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Inaccurate Model ⇒ Sub-optimal Solution
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Fig. 2. GridWorld domain (left), the corresponding policy calculated with a
planner assuming deterministic movement model and its true value function
(middle) and the optimal policy with the perfect model and its value function
(right). The task is to navigate from the top left corner highlighted as • to the
right bottom corner identified as �. Red regions are off-limit areas where the
UAV should avoid. The movement dynamics has 30% noise of moving the
UAV to a random free neighboring grid cell. Gray cells are not traversable.

path is longer, it mitigates the risk better. In fact, the new
policy raises the mission success rate from 29% to 80%,
while boosting the value of the initial state by a factor
of ≈3. Model-free learning techniques such as Sarsa can
find the optimal policy through mere interaction, although
they require many training examples. More importantly, they
might deliberately move the UAV towards off-limit regions
just to gain information about those areas. However, when
integrated with the planner, the learner can rule out inten-
tionally poor decisions. Furthermore, the planner’s policy can
be used as a starting point for the learner to bootstrap on,
reducing the amount of data the learner requires to master
the task.

Though simple, the preceding problem is similar to more
meaningful and practical UAV planning scenarios. The fol-
lowing sections present the technical approach and examines
the resulting methods in this toy domain and a more complex
multi-UAV planning task where the size of the state space
exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
pose and function of each element. Fig. 3 shows that the
consensus-based bundle algorithm (CBBA) [13] is used as
the cooperative planner to solve the multi-agent task alloca-
tion problem. The learning algorithms used are the natural
actor-critic [12] and Sarsa [11] methods. These algorithms
use past experience to explore and suggest promising behav-
iors leading to more favorable outcomes. The performance
analysis block is implemented as a risk analysis tool where
actions suggested by the learner can be overridden by the
baseline cooperative planner if they are deemed too risky.
The following sections describe each of these blocks in
detail.

A. Cooperative Planner

At its fundamental level, the cooperative planner yields a
solution to the multi-agent path planning, task assignment or
resource allocation problem, depending on the domain. This
means it seeks to optimize an underlying, user-defined objec-
tive function. Many existing cooperative control algorithms
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Fig. 3. iCCA framework as implemented. CBBA planner coupled with risk
analysis and reinforcement learning modules, where the latter two elements
are formulated within an MDP.

use observed performance to calculate temporal-difference
errors which drive the objective function in the desired direc-
tion [14,15]. Regardless of how it is formulated (e.g., MILP,
MDP, CBBA), the cooperative planner, or cooperative control
algorithm, is the source for baseline plan generation within
iCCA. The formulation of CBBA as the cooperative planner
for this work is nearly identical to that shown previously
[3], with the exception that this research adds additional
constraints on fuel supply to ensure agents cannot bid on task
sequences that require more fuel than they have remaining or
that would not allow them to return to base upon completion
of the sequence. For further details, the reader is referred to
previous work [3,13,16].

B. Risk/Performance Analysis

As discussed earlier, learning algorithms may encourage
the agent to explore dangerous situations (e.g., flying with
low fuel level) in hope of improving the long-term per-
formance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as losing a UAV. Hence in this research, akin to our
previous work [3], we implemented the performance analysis
module as a risk analysis element where candidate actions are
evaluated for their risk level. Actions deemed too “risky” are
replaced with another action of lower risk. The next section
details the process of overriding risky actions. It is important
to note that the risk analysis and learning algorithms are
coupled within an MDP formulation, as shown in Fig. 3,
which implies a fully observable environment.

C. Learning Algorithm

A focus of this research is to integrate a learner into iCCA
that suggests candidate actions to the cooperative planner
that it sees as beneficial. Suggested actions are generated
by the learning module through the learned policy. In our
previous work [3], we integrated natural actor-critic through
iCCA framework. We refer to this algorithm as Cooperative
Natural Actor-Critic (CNAC).

Algorithm 1 illustrates this algorithm in more detail. In
order to encourage the policy to initially explore solutions
similar to the planner solution, preferences for all state-
action pairs, P (s, a), on the nominal trajectory calculated
by the planner are initialized to a fixed number ξ ∈ R+. All
other preferences are initialized to zero. As actions are pulled

▶Middle planner assumes no noise ⇒ path approaches no-fly-zones.

▶Right planner includes 30% noise ⇒ path maintains distance from
the no-fly-zones.

Geramifard, Redding, Roy, How (MIT) ACC’11 6 / 19



Introduction Challenges of Cooperative Planning

Addressing Sub-optimalities

▶Modeling errors:
• Reinforcement learning

▶Model parameter uncertainty:
• Adaptive control techniques

• Maximum-likelihood estimation

• Data-driven learning methods (e.g. regression)

▶Need a framework to enable these in conjunction with planning
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Introduction Challenges of Cooperative Planning

Reinforcement Learning Framework

V π(s) = Eπ [
∞

∑
t=0

γt−1rt∣s0 = s] ,

where π is policy that agent follows

π(s) : S → A at

st, rt

▶Goal: Increase the number of UAVs in the persistent surveillance
mission is an important research goal ⇒ large state space

▶ Learning in large state spaces is challenging:
• Slow
• Memory intensive
• Computationally demanding
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Introduction Challenges of Cooperative Planning

A Framework for Planning & Learning
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▶Developed template architecture for multi-agent planning and
learning – intelligent Cooperative Control Architecture (iCCA) [4]
• Cooperative planner (parent): Generates safe but sub-optimal

policies.
• Learner (child): May suggest unsafe actions, but will find optimal

policies.

Geramifard, Redding, Roy, How (MIT) ACC’11 9 / 19



Introduction Challenges of Cooperative Planning

iCCA: Policy Initialization [5] (Previous Work)
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▶ Learner (Natural Actor-Critic) has a parametric form for the policy.

▶ Planner (Consensus-Based Bundle Algorithm) initializes child’s
policy.

▶Given a deterministic risk model, each suggested actions of the
child is rolled out with the parent’s policy.

▶ Risky actions are replaced with the parent’s policy.
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Introduction Challenges of Cooperative Planning

iCCA: Stochastic Risk Models
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▶ Current paper extended capabilities of that previous work:
1 Relaxed requirement that learner have a parametric policy form.

Probability of child suggesting an action based on learned value function
for a state increases as it experiences that state more.

2 Risk model can be stochastic. Safety ensured by generating multiple
Monte-Carlo simulations and replacing risky actions suggested by learner
with planner’s policy.
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Introduction Algorithm Details

Algorithm Details

▶The learner suggests actions with the following probability akin to
the Rmax algorithm [2]:

P =min{1, count(s, a)
N

}

• Higher values of N suggests slower exploration rate.

• counts(s, a) = number of times the planner picked action a at state s.

▶ Furthermore, the safety of the learner’s suggested action is
estimated through M Monte-Carlo simulations.
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Introduction Safe Exploration

Safe Exploration

Algorithm 1: Cooperative Natural Actor-Critic (CNAC)
Input: πp, ξ
Output: a
a ∼ πAC(s, a)
if not safe(s, a) then

P (s, a) ← P (s, a) − ξ
a ← πp

Q(s, a) ← Q(s, a) + αδt(Q)
P (s, a) ← P (s, a) + αQ(s, a)

Algorithm 2: safe
Input: s, a
Output: isSafe
risk ← 0
for i ← 1 to M do

t ← 1
st ∼ T p(s, a)
while not constrained(st) and not
isTerminal(st) and t < H do

st+1 ∼ T p(st,π
p(st))

t ← t + 1

risk ← risk + 1
i (constrained(st) − risk)

isSafe ← (risk < ψ)

from the policy for implementation, they are evaluated for
their safety by the risk analysis element. If they are deemed
unsafe (e.g., may result in a UAV running out of fuel), they
are replaced with the action suggested by the planner (πp).
Furthermore, the preference of taking the risky action in
that state is reduced by parameter ξ, therefore dissuading
the learner from suggesting that action again, reducing the
number of “emergency overrides” in the future. Finally, both
the critic and actor parameters are updated.

Previously, we employed a risk analysis component which
had access to the exact world model dynamics. Moreover,
we assumed that the transition model related to the risk
calculation was deterministic (e.g., movement and fuel burn
did not involve uncertainty). In this paper, we introduce a
new risk analysis scheme which uses the planner’s inner
model, which can be stochastic, to mitigate risk. Algorithm
2, explains this new risk analysis process. We assume the
existence of the constrained function: S → {0, 1}, which
indicates if being in a particular state is allowed or not. Risk
is defined as the probability of visiting any of the constrained
states. The core idea is to use Monte-Carlo sampling to
estimate the risk level associated with the given state-action
pair if planner’s policy is applied thereafter. This is done by
simulating M trajectories from the current state s. The first
action is the suggested action a, and the rest of actions come
from the planner policy, πp. The planner’s inner transition
model, T p, is utilized to sample successive states. Each
trajectory is bounded to a fixed horizon H and the risk of
taking action a from state s is estimated by the probability of
a simulated trajectory reaching a risky state within horizon
H . If this risk is below a given threshold, ψ, the action is
deemed to be safe.

The initial policy of actor-critic type learners is biased
quite simply as they parameterize the policy explicitly.

Algorithm 3: Cooperative Learning
Input: N,πp, s, learner
Output: a
a ← πp(s)
πl ← learner.π
knownness ← min{1, count(s,a)

N }
if rand() < knownness then

a� ∼ πl(s, a)
if safe(s, a�) then

a ← a�

else
count(s, a) ← count(s, a) + 1

learner.update()

For learning schemes that do not represent the policy as
a separate entity, such as Sarsa, integration within iCCA
framework is not immediately obvious. In this paper, we
present a new approach for integrating learning approaches
without an explicit actor component. Our idea was motivated
by the concept of the Rmax algorithm [17]. We illustrate our
approach through the parent-child analogy, where the planner
takes the role of the parent and the learner takes the role of
the child. In the beginning, the child does not know much
about the world, hence, for the most part s/he takes actions
advised by the parent. While learning from such actions,
after a while, the child feels comfortable about taking a self-
motivated actions as s/he has been through the same situation
many times. Seeking permission from the parent, the child
could take the action if the parent thinks the action is safe.
Otherwise the child should follow the action suggested by
the parent.

Algorithm 3 details the process. On every step, the learner
inspects the suggested action by the planner and estimates the
knownness of the state-action pair by considering the number
of times that state-action pair has been experienced following
the planner’s suggestion. The N parameter controls the shift
speed from following the planner’s policy to the learner’s
policy. Given the knownness of the state-action pair, the
learner probabilistically decides to select an action from its
own policy. If the action is deemed to be safe, it is executed.
Otherwise, the planner’s policy overrides the learner’s choice.
If the planner’s action is selected, the knownness count of the
corresponding state-action pair is incremented. Finally the
learner updates its parameter depending on the choice of the
learning algorithm. What this means, however, is that state-
action pairs explicitly forbidden by the baseline planner will
not be intentionally visited. Hence, if the planner’s model
designed poorly, it can hinder the learning process in parts
of the state space for which the risk is overestimated. Also,
notice that any control RL algorithm, even the actor-critic
family of methods, can be used as the input to Algorithm 3.

V. EXPERIMENTAL RESULTS

This section compares the empirical performance of
cooperative-NAC and cooperative-Sarsa with pure learning
and pure planning methods in the GridWorld example men-
tioned in Section III, and a multi-UAV mission planning sce-

▶The learner provides the first action, a, in each trajectory, while the
planner’s policy, πp, generates the rest of actions.

▶The planner’s model, T p, is used to role out each trajectory.

▶ If estimated risk exceeds threshold ψ, learner’s suggested action is
replaced with the planner’s policy.
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Introduction Safe Exploration

Empirical Results: GridWorld Domain

▶ Integrated CBBA [3] with both Sarsa [6]
and NAC [1]

▶True Model: 30% noise for movement

▶ Planner’s Model: 0% noise for
movement

▶ Reward:
• reaching goal,= +1
• entering no-fly-zone= −1
• all other moves= −0.001
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Fig. 2. GridWorld domain (left), the corresponding policy calculated with a
planner assuming deterministic movement model and its true value function
(middle) and the optimal policy with the perfect model and its value function
(right). The task is to navigate from the top left corner highlighted as • to the
right bottom corner identified as �. Red regions are off-limit areas where the
UAV should avoid. The movement dynamics has 30% noise of moving the
UAV to a random free neighboring grid cell. Gray cells are not traversable.

path is longer, it mitigates the risk better. In fact, the new
policy raises the mission success rate from 29% to 80%,
while boosting the value of the initial state by a factor
of ≈3. Model-free learning techniques such as Sarsa can
find the optimal policy through mere interaction, although
they require many training examples. More importantly, they
might deliberately move the UAV towards off-limit regions
just to gain information about those areas. However, when
integrated with the planner, the learner can rule out inten-
tionally poor decisions. Furthermore, the planner’s policy can
be used as a starting point for the learner to bootstrap on,
reducing the amount of data the learner requires to master
the task.

Though simple, the preceding problem is similar to more
meaningful and practical UAV planning scenarios. The fol-
lowing sections present the technical approach and examines
the resulting methods in this toy domain and a more complex
multi-UAV planning task where the size of the state space
exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
pose and function of each element. Fig. 3 shows that the
consensus-based bundle algorithm (CBBA) [13] is used as
the cooperative planner to solve the multi-agent task alloca-
tion problem. The learning algorithms used are the natural
actor-critic [12] and Sarsa [11] methods. These algorithms
use past experience to explore and suggest promising behav-
iors leading to more favorable outcomes. The performance
analysis block is implemented as a risk analysis tool where
actions suggested by the learner can be overridden by the
baseline cooperative planner if they are deemed too risky.
The following sections describe each of these blocks in
detail.

A. Cooperative Planner

At its fundamental level, the cooperative planner yields a
solution to the multi-agent path planning, task assignment or
resource allocation problem, depending on the domain. This
means it seeks to optimize an underlying, user-defined objec-
tive function. Many existing cooperative control algorithms
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Fig. 3. iCCA framework as implemented. CBBA planner coupled with risk
analysis and reinforcement learning modules, where the latter two elements
are formulated within an MDP.

use observed performance to calculate temporal-difference
errors which drive the objective function in the desired direc-
tion [14,15]. Regardless of how it is formulated (e.g., MILP,
MDP, CBBA), the cooperative planner, or cooperative control
algorithm, is the source for baseline plan generation within
iCCA. The formulation of CBBA as the cooperative planner
for this work is nearly identical to that shown previously
[3], with the exception that this research adds additional
constraints on fuel supply to ensure agents cannot bid on task
sequences that require more fuel than they have remaining or
that would not allow them to return to base upon completion
of the sequence. For further details, the reader is referred to
previous work [3,13,16].

B. Risk/Performance Analysis

As discussed earlier, learning algorithms may encourage
the agent to explore dangerous situations (e.g., flying with
low fuel level) in hope of improving the long-term per-
formance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as losing a UAV. Hence in this research, akin to our
previous work [3], we implemented the performance analysis
module as a risk analysis element where candidate actions are
evaluated for their risk level. Actions deemed too “risky” are
replaced with another action of lower risk. The next section
details the process of overriding risky actions. It is important
to note that the risk analysis and learning algorithms are
coupled within an MDP formulation, as shown in Fig. 3,
which implies a fully observable environment.

C. Learning Algorithm

A focus of this research is to integrate a learner into iCCA
that suggests candidate actions to the cooperative planner
that it sees as beneficial. Suggested actions are generated
by the learning module through the learned policy. In our
previous work [3], we integrated natural actor-critic through
iCCA framework. We refer to this algorithm as Cooperative
Natural Actor-Critic (CNAC).

Algorithm 1 illustrates this algorithm in more detail. In
order to encourage the policy to initially explore solutions
similar to the planner solution, preferences for all state-
action pairs, P (s, a), on the nominal trajectory calculated
by the planner are initialized to a fixed number ξ ∈ R+. All
other preferences are initialized to zero. As actions are pulled
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Introduction Safe Exploration

Empirical Results: GridWorld Domain

▶Average performance of methods through 104 interactions using 60
trials. Bars highlight 95% confidence intervals.

▶ CNAC: iCCA + NAC, CSarsa: iCCA + Sarsa

nario where both dynamics and reward models are stochastic.
The optimal solution for both domains were calculated using
dynamic programming (took approximately two days for the
UAV scenario). As for the planning, the CBBA algorithm
was executed online given the expected deterministic version
of both domains. Pure planning results are averaged over
10, 000 Monte Carlo simulations. For all learning methods,
the best learning rates were calculated by

αt = α0
N0 + 1

N0 + Episode#1.1 .

The best α0 and N0 were selected through experimental
search of the sets of α0 ∈ {0.01, 0.1, 1} and N0 ∈
{100, 1000, 106} for each algorithm and scenario. The best
preference parameter, ξ, for NAC and CNAC were em-
pirically found from the set {1, 10, 100}. τ was set to 1.
Similarly, the knownness parameter, N , for CSarsa was
selected out of {10, 20, 50}. The exploration rate (�) for Sarsa
and CSarsa was set to 0.1. All learning method results were
averaged over 60 runs. Error bars represent 95% confidence
intervals.

A. GridWorld Domain

Fig. 4 compares the performance of CSarsa, CNAC,
Sarsa, NAC, the baseline planner (Fig 2-middle), and the
expected optimal solution (Fig 2-right) in the pedagogical
GridWorld domain. The X-axis shows the number of steps
the agent executed an action, while the Y-axis highlights
the cumulative rewards of each method after each 1, 000
steps. Notice how cooperative methods outperformed pure
learning approaches. In particular CNAC outperformed the
planner (red) after 6, 000 steps by navigating farther from the
danger zones. NAC, on the other hand, could not outperform
the planner by the end of 10, 000 steps. While Sarsa was
also inferior to CSarsa, it outperformed NAC. We conjecture
that Sarsa learned faster than NAC because Sarsa’s policy is
embedded in the Q−value function, whereas NAC’s policy
requires another level of learning for the policy on the top
of learning the Q−value function.

B. Multi-UAV Planning Scenario

Fig. 5-(a) depicts the mission scenario introduced in our
previous work [3], where a team of two fuel-limited UAVs
cooperate to maximize their total reward by visiting valuable
target nodes in the network and return back to the base
(green circle), targets are shown as blue circles and agents
as triangles. The total amount of fuel for each agent is
highlighted by the number inside each triangle. For those
targets with an associated reward it is given as a positive
number nearby. The constraints on the allowable times when
the target can be visited are given in square brackets and the
probability of receiving the known reward when the target is
visited is given in the white cloud nearest the node.4 Each
reward can be obtained only once and traversing each edge
takes one fuel cell and one time step. UAVs are allowed to

4If two agents visit a node at the same time, the probability of visiting
the node would increase accordingly.
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Fig. 4. In the pedagogical GridWorld domain, the performance of
the optimal solution is given in black. The solution generated by the
deterministic planner is shown in red. In addition, the performance of NAC,
CNAC (left) and Sarsa and CSarsa (right) are shown. It is clear that the
cooperative learning algorithms (CNAC and CSarsa) outperform their non-
cooperative counterparts and eventually outperform the baseline planner
when given a sufficient number of interactions. This result motivates the
application of the cooperative learning algorithms to more complex domains,
such as the Multi-UAV planning scenario.

loiter at any node. The fuel burn for loitering action is also
one unit, except for any UAV at the base, where they are
assumed to be stationary and thus there is no fuel depletion.
The mission horizon was set to 10 time steps. If UAVs are
not at base at the end of the mission horizon, or crash due
to fuel depletion, a penalty of −800 is added for that trial.
In order to test our new risk mitigation approach, we added
uncertainty to the movement of each UAV by adding 5%
chance of edge traverse failure. Notice that our previous risk
analyzer [3,4] could not handle such scenarios, as it assumed
the existence of an oracle knowing catastrophic actions in
each state.

Figs 5(b)-(d) show the results of the same battery of
algorithms used in the GridWorld domain applied to the UAV
mission planning scenario. In this domain, we substituted
the hand-coded policy with the CBBA algorithm. Fig. 5-
(b) represents the solution quality of each method after 105

steps of interactions. Fig. 5-(c) depicts the optimality of each
solution, while Fig. 5-(d) exhibits the risk of executing the
corresponding policy. At the end of training, both NAC and
Sarsa failed to avoid the crashing scenarios, thus yielding
low performance and more than a 90% probability of failure.
Both these methods are below 50% optimal. This observation
coincides with our previous experiments with this domain
where the movement model was noise free [4], highlighting
the importance of biasing the policy of learners in large
domains. On average, CNAC and CSarsa improved the
performance of CBBA by about 15% and 30% respectively
(translated into 3% and 7% optimality improvement). At the
same time they reduced the probability of failure by 6% and
8%.

VI. CONCLUSIONS

This paper extended the capability of the previous work
on merging learning and cooperative planning techniques
through two innovations: (1) the risk mitigation approach
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▶ UAVs (triangles) and Targets
(circles)

▶ Time windows for target visit
times in brackets, e.g. [2,3]

▶ Target visit rewards

▶ Probability of receiving reward
shown in cloud

▶ Stochastic risk model: 5%
noise for traveling an edge

▶ ≈ 108 state-action pairs

▶ iCCA and Actor-Critic test cases were run for 60 episodes
▶ CBBA was run on the deterministic version of the stochastic problem

for 10,000 episodes – plot averaged performance
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▶NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the
training session in the UAV mission planning scenario.

▶ Cooperative learners (CNAC, CSarsa) perform very well with respect
to overall reward and risk levels when compared with the baseline
CBBA planner and the non-cooperative learning algorithms.

Geramifard, Redding, Roy, How (MIT) ACC’11 17 / 19



Introduction 2 UAVs, 6 Targets: Simulation Results

2 UAVs, 6 Targets: Simulation Results

Maze +- UAV-5-S +- Optimality - UAV Optimality% +-

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

MinValue

-0.0501 0.1366 -138.5667 34.9960 -129 0.4330 0.0224

0.5928 0.0994 -145.0167 38.3822 -131 0.4288 0.0245

0.2764 0.0000 473.5200 34.4634 0.8242 0.0220

0.6027 0.1005 517.6333 43.8171 9 561.4504 0.8523 0.0280

0.7900 0.0725 584.6000 43.9108 23 540.6892 0.8951 0.0281

0.7716 0.0000 748.6582

-816.0000 Planner Over 

10000

450.7656 3.5486

-200

-100

0

100

200

300

400

500

600

700

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

Planner(10000)

0.9333 0.0325 289

0.9167 0.0360 282

0.2400 0.0429

0.2 0.0521 -4

0.1833 0.0504 -6

0.2627 0.0044

0%

20%

40%

60%

80%

100%

P(Crash)

40%

50%

60%

70%

80%

90%

100%

Optimality

Maze +- UAV-5-S +- Optimality - UAV Optimality% +-

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

MinValue

-0.0501 0.1366 -138.5667 34.9960 -129 0.4330 0.0224

0.5928 0.0994 -145.0167 38.3822 -131 0.4288 0.0245

0.2764 0.0000 473.5200 34.4634 0.8242 0.0220

0.6027 0.1005 517.6333 43.8171 9 561.4504 0.8523 0.0280

0.7900 0.0725 584.6000 43.9108 23 540.6892 0.8951 0.0281

0.7716 0.0000 748.6582

-816.0000 Planner Over 

10000

450.7656 3.5486

-200

-100

0

100

200

300

400

500

600

700

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

Planner(10000)

0.9333 0.0325 289

0.9167 0.0360 282

0.2400 0.0429

0.2 0.0521 -4

0.1833 0.0504 -6

0.2627 0.0044

0%

20%

40%

60%

80%

100%

P(Crash)

40%

50%

60%

70%

80%

90%

100%

Optimality

Performance Failure Probability

Maze +- UAV-5-S +- Optimality - UAV Optimality% +-

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

MinValue

-0.0501 0.1366 -138.5667 34.9960 -129 0.4330 0.0224

0.5928 0.0994 -145.0167 38.3822 -131 0.4288 0.0245

0.2764 0.0000 473.5200 34.4634 0.8242 0.0220

0.6027 0.1005 517.6333 43.8171 9 561.4504 0.8523 0.0280

0.7900 0.0725 584.6000 43.9108 23 540.6892 0.8951 0.0281

0.7716 0.0000 748.6582

-816.0000 Planner Over 

10000

450.7656 3.5486

-200

-100

0

100

200

300

400

500

600

700

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

Planner(10000)

0.9333 0.0325 289

0.9167 0.0360 282

0.2400 0.0429

0.2 0.0521 -4

0.1833 0.0504 -6

0.2627 0.0044

0%

20%

40%

60%

80%

100%

P(Crash)

40%

50%

60%

70%

80%

90%

100%

Optimality

▶NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the
training session in the UAV mission planning scenario.

▶ Cooperative learners (CNAC, CSarsa) perform very well with respect
to overall reward and risk levels when compared with the baseline
CBBA planner and the non-cooperative learning algorithms.
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▶NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the
training session in the UAV mission planning scenario.

▶ Cooperative learners (CNAC, CSarsa) perform very well with respect
to overall reward and risk levels when compared with the baseline
CBBA planner and the non-cooperative learning algorithms.
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Contibutions

▶ Extensions:
• Support for stochastic risk models
• Support for learning methods with no parametric form for the policy

(e.g., Sarsa).

▶ Empirical Results: Provided simulation results showing the benefit
of integrating learning and planning in a multi-agent mission
planning domain with more than 108 possibilities.
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