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Abstract— Risk and reward are fundamental concepts in the
cooperative control of unmanned systems. This paper focuses
on a constructive relationship between a cooperative planner
and a learner in order to mitigate the learning risk while
boosting the asymptotic performance and safety of the behavior.
Our framework is an instance of the intelligent cooperative
control architecture (iCCA) with a learner initially following
a “safe” policy generated by the cooperative planner. The
learner incrementally improves this baseline policy through
interaction, while avoiding behaviors believed to be “risky”.
Natural actor-critic and Sarsa algorithms are used as the
learning methods in the iCCA framework, while the consensus-
based bundle algorithm (CBBA) is implemented as the baseline
cooperative planning algorithm. This paper extends previous
work toward the coupling of learning and cooperative control
strategies in real-time stochastic domains in two ways: (1) the
risk analysis module supports stochastic risk models, and (2)
learning schemes that do not store the policy as a separate
entity are integrated with the cooperative planner extending
the applicability of iCCA framework. The performance of the
resulting approaches are demonstrated through simulation of
limited fuel UAVs in a stochastic task assignment problem.
Results show an 8% reduction in risk, while improving the
performance up to 30% and maintaining a computational load
well within the requirements of real-time implementation.

I. INTRODUCTION

Accompanying the impressive advances in the flight capa-
bilities of UAV platforms have been equally dramatic leaps
in intelligent control of UAV systems. Intelligent cooperative
control of teams of UAVs has been the topic of much
recent research, and risk-mitigation is of particular interest
[1,2]. The concept of risk is common among humans, robots
and software agents alike. Amongst the latter, risk models
combined with relevant observations are routinely used in
analyzing potential actions for unintended or risky outcomes.
In previous work, the basic concepts of risk and risk-analysis
were integrated into a planning and learning framework
called iCCA [4,8]. The focus of this research however, is
to generalize the embedded risk model and then learn to
mitigate risk more effectively in stochastic environments.

In a multi-agent setting, participating agents typically
advertise their capabilities to each other and/or the planner
a priori or in real-time. Task assignment and planning
algorithms implicitly rely on the accuracy of such capabilities
for any guarantees on the resulting performance. In many
situations however, an agent remaining capable of its adver-
tised range of tasks is a strong function of how much risk the

A. Geramifard, Ph.D. Candidate, Aerospace Controls Lab, MIT
J. Redding, Ph.D. Candidate, Aerospace Controls Lab, MIT
N. Roy, Associate Professor of Aeronautics and Astronautics, MIT
J. How, Richard C. Maclaurin Professor of Aeronautics and Astronautics,

MIT
{agf,jredding,nickroy,jhow}@mit.edu

iCCA

Cooperative
Planner

World

Learning
Algorithm

Performance
Analysis

Agent/Vehicle

disturbances

noise

observations

Fig. 1. intelligent Cooperative Control Architecture, a framework for
the integration of cooperative control algorithms and machine learning
techniques [4].

agent takes while carrying out its assigned tasks. Taking high
or unnecessary risks jeopardizes an agent’s capabilities and
thereby also the performance/effectiveness of the cooperative
plan.

The notion of risk is broad enough to also include noise,
unmodeled dynamics and uncertainties in addition to the
more obvious inclusions of off-limit areas. Cooperative con-
trol algorithms have been designed to address many related
issues that may also represent risk, including humans-in-the-
loop, imperfect situational awareness, sparse communication
networks, and complex environments. While many of these
approaches have been successfully demonstrated in a variety
of simulations and some focused experiments, there remains
a need to improve the performance of cooperative plans
in real-world applications. For example, cooperative control
algorithms are often based on simple, abstract models of
the underlying system. Using simplified models may aid
computational tractability and enable quick analysis, but at
the cost of ignoring real-world complexities, thus implicitly
introducing the possibility of significant risk elements into
cooperative plans. The research question addressed here can
then be stated as:

How to take advantage of the cooperative planner
and the current domain knowledge to mitigate
the risk involved in learning, while improving the
performance and safety of the cooperative plans
over time in the presence of noise and uncertainty?

To further investigate this question, we adopt the in-
telligent cooperative control architecture (iCCA [4]) as a
framework for more tightly coupling cooperative planning
and learning algorithms. Fig. 1 shows the iCCA framework
which is comprised of a cooperative planner, a learner, and
a performance analyzer. Each of these modules is intercon-
nected and plays a key role in the overall architecture. In this



research, the performance analysis module is implemented
as risk analysis where actions suggested by the learner
can be overridden by the baseline cooperative planner if
they are deemed too risky. This synergistic planner-learner
relationship yields a “safe” policy in the eyes of the planner,
upon which the learner improve. Ultimately, this relationship
will help to bridge the gap to successful and intelligent
execution in real-world missions.

Previously, we integrated the consensus-based bundle al-
gorithm (CBBA) [5] as the planner, natural actor-critic [6,7]
as the learner, and a deterministic risk analyzer as the
performance analyzer [8]. In this paper, we extend our
previous work in two ways:
• The risk analyzer component is extended to handle

stochastic models
• By introducing a new wrapper, learning methods with

no explicit policy formulation can be integrated within
the iCCA framework

The first extension allows for accurate approximation of
realistic world dynamics, while the second extension broad-
ens the applicability of iCCA framework to a larger set of
learning methods.

The remainder of this paper proceeds as follows: Section
II provides background information for the core concepts of
this research, including Markov decision processes and Sarsa
and natural actor-critic reinforcement learning algorithms.
Section III then highlights the problem of interest by defining
a pedagogical scenario where planning and learning algo-
rithms are used in conjunction with stochastic risk models.
Section IV outlines the proposed technical approach for
learning to mitigate risk by providing the details of each
element of the chosen iCCA framework. The performance
of the chosen approach is then demonstrated in Section V
through simulation of a team of limited-fuel UAVs servicing
stochastic targets. We conclude the paper in Section VI.

II. BACKGROUND

A. Markov Decision Processes

Markov decision processes (MDPs) provide a general
formulation for sequential planning under uncertainty [?,
10,12]–[14]. MDPs are a natural framework for solving
multi-agent planning problems as their versatility allows
modeling of stochastic system dynamics as well as inter-
dependencies between agents. An MDP is defined by tuple
(S,A,Pass′ ,Rass′ , γ), where S is the set of states, A is the
set of possible actions. Taking action a from state s has Pass′
probability of ending up in state s′ and receiving reward
Rass′ . Finally γ ∈ [0, 1] is the discount factor used to prior-
itize early rewards against future rewards.1 A trajectory of
experience is defined by sequence s0, a0, r0, s1, a1, r1, · · · ,
where the agent starts at state s0, takes action a0, receives
reward r0, transits to state s1, and so on. A policy π is
defined as a function from S × A to the probability space
[0, 1], where π(s, a) corresponds to the probability of taking

1γ can be set to 1 only for episodic tasks, where the length of trajectories
are fixed.

action a from state s. The value of each state-action pair
under policy π, Qπ(s, a), is defined as the expected sum of
discounted rewards when the agent takes action a from state
s and follow policy π thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expectation for
all state-action pairs:

π∗ = argmax
a

Qπ
∗
(s, a)

B. Reinforcement Learning in MDPs

The underlying goal of the two reinforcement learning
algorithms presented here is to improve performance of
the cooperative planning system over time using observed
rewards by exploring new agent behaviors that may lead to
more favorable outcomes. The details of how these algo-
rithms accomplish this goal are discussed in the following
sections.

1) Sarsa: A popular approach among MDP solvers is to
find an approximation to Qπ(s, a) (policy evaluation) and
update the policy with respect to the resulting values (policy
improvement). Temporal Difference learning (TD) [15] is
a traditional policy evaluation method in which the current
Q(s, a) is adjusted based on the error between the expected
reward given by Q and the actual received reward. Given
(st, at, rt, st+1, at+1) and the current value estimates, the
temporal difference (TD) error, δt, is calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).

The one-step TD algorithm, also known as TD(0), updates
the value estimates using:

Qπ(st, at) = Qπ(st, at) + αδt(Q), (1)

where α is the learning rate. Sarsa (state action reward state
action) [9] is basic TD for which the policy is directly derived
from the Q values as:

πSarsa(s, a) =

{
1− ε a = argmaxaQ(s, a)
ε
|A| Otherwise .

This policy is also known as the ε-greedy policy2.
2) Natural Actor-Critic: Actor-critic methods parameter-

ize the policy and store it as a separate entity named actor.
In this paper, the actor is a class of policies represented as
the Gibbs softmax distribution:

πAC(s, a) =
eP (s,a)/τ∑
b e
P (s,b)/τ

,

in which P (s, a) ∈ R is the preference of taking action a in
state s, and τ ∈ (0,∞] is a knob allowing for shifts between
greedy and random action selection. Since we use a tabular
representation, the actor update amounts to:

P (s, a)← P (s, a) + αQ(s, a)

2Ties are broken randomly, if more than one action maximizes Q(s, a).
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Fig. 2. The GridWorld domain (a), the corresponding policy calculated with a planner assuming deterministic movement model and its true value function
(b) and the optimal policy with the perfect model and its value function (c). The task is to navigate from the top left corner highlighted as • to the right
bottom corner identified as ?. Red regions are off-limit areas where the UAV should avoid. The movement dynamics has 30% noise of moving the UAV
to a random free neighboring grid cell. Gray cells are not traversable.

following the incremental natural actor-critic framework [6].
The value of each state-action pair (Q(s, a)) is held by the
critic and is calculated/updated in an identical manner to
Sarsa.

III. PROBLEM STATEMENT

In this section, we use a pedagogical example to explain:
(1) the effect of unknown noise on the planner’s solution,
(2) how learning methods can improve the performance and
safety of the planner solution, and (3) how the approximate
model and the planner solution can be used for faster and
safer learning.

A. The GridWorld Domain: A Pedagogical Example

Consider a grid world scenario shown in Fig. 2-(a), in
which the task is to navigate a UAV from the top-left
corner (•) to the bottom-right corner (?). Red areas highlight
the danger zones where the UAV will be eliminated upon
entrance. At each step the UAV can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances, there
is 30% chance that the UAV is pushed into any unoccupied
neighboring cell while executing the selected action. The
reward for reaching the goal region and off-limit regions are
+1 and −1 respectively, while every other move results in
−0.001 reward.

Fig. 2-(b) illustrates the policy (shown as arrows) cal-
culated by a planner that is unaware of the wind together
with the nominal path highlighted as a gray tube. As
expected the path suggested by the planner follows the
shortest path that avoids direct passing through off-limit
areas. The color of each cell represents the true value of
each state (i.e., including the wind) under the planner’s

policy. Green indicates positive, white indicate zero, and red
indicate negative values3. Lets focus on the nominal path
from the start to the goal. Notice how the value function
jumps suddenly each time the policy is followed from an
off-limit neighbor cell (e.g., (8, 3) → (8, 4)). This drastic
change highlights the involved risk in taking those actions
in the presence of the wind.

The optimal policy and its corresponding value function
and nominal path are shown in Fig. 2-(c). Notice how the
optimal policy avoids the risk of getting close to off-limit
areas by making wider turns. Moreover, the value function
on the nominal path no longer goes through sudden jumps.
While the new nominal path is longer, it mitigates the risk
better. In fact, the new policy raises the mission success
rate from 29% to 80%, while boosting the value of the
initial state by a factor of ≈3. Model-free learning techniques
such as Sarsa can find the optimal policy through mere
interaction, although they require many training examples.
More importantly, they might deliberately move the UAV
towards off-limit regions to gain information about those
areas. If the learner is integrated with the planner, the
estimated model can be used to rule out intentional poor
decisions. Furthermore, the planner’s policy can be used as
a starting point for the learner to bootstrap on, reducing the
amount of data the learner requires to master the task.

Though simple, the preceding problem is fundamentally
similar to more meaningful and practical UAV planning sce-
narios. The following sections present the technical approach
and examines the resulting methods in this toy domain and
a more complex multi-UAV planning task where the size of

3We set the value for blocked areas to −∞, hence the intense red color



the state space exceeds 200 million state-action pairs.

IV. TECHNICAL APPROACH

This section provides further details of the intelligent
cooperative control architecture (iCCA), describing the pur-
pose and function of each element. Fig. 3 shows that the
consensus-based bundle algorithm (CBBA) [5] is used as the
cooperative planner to solve the multi-agent task allocation
problem. The learning algorithms used are the natural actor-
critic [6] and Sarsa [9] methods. These algorithms use
past experience to explore and suggest promising behav-
iors leading to more favorable outcomes. The performance
analysis block is implemented as a risk analysis tool where
actions suggested by the learner can be overridden by the
baseline cooperative planner if they are deemed too risky.
The following sections describe each of these blocks in
detail.

A. Cooperative Planner

At its fundamental level, the cooperative planner yields a
solution to the multi-agent path planning, task assignment or
resource allocation problem, depending on the domain. This
means it seeks to fulfill the specific goals of the application in
a manner that optimizes an underlying, user-defined objective
function. Many existing cooperative control algorithms use
observed performance to calculate temporal-difference errors
which drive the objective function in the desired direction
[16,17]. Regardless of how it is formulated (e.g. MILP,
MDP, CBBA), the cooperative planner, or cooperative control
algorithm, is the source for baseline plan generation within
iCCA. In our work, we focus on the CBBA algorithm. CBBA
is a deterministic planner and therefore cannot account for
noise or stochasticity in action outcomes, but, as outlined in
the following section, the algorithm has several core features
that make it particular attractive as a cooperative planner.

1) Consensus-Based Bundle Algorithm: CBBA is a de-
centralized auction protocol that produces conflict-free as-
signments that are relatively robust to disparate situational
awareness over the network. CBBA consists of iterations
between two phases: In the first phase, each vehicle generates
a single ordered bundle of tasks by sequentially selecting
the task giving the largest marginal score. The second phase
resolves inconsistent or conflicting assignments through local
communication between neighboring agents.

In the second phase, agent i sends out to its neighboring
agents two vectors of length Nt: the winning agents vector
zi ∈ INt and the winning bids vector yi ∈ RNt

+ . The j-th
entries of the zi and yi indicate who agent i thinks is the
best agent to take task j, and what is the score that agent
gets from task j, respectively. The essence of CBBA is to
enforce every agent to agree upon these two vectors, leading
to agreement on some conflict-free assignment regardless of
inconsistencies in situational awareness over the team.

There are several core features of CBBA identified in
[5]. First, CBBA is a decentralized decision architecture.
For a large team of autonomous agents, it would be too
restrictive to assume the presence of a central planner (or

server) with which every agent communicates. Instead, it
is more natural for each agent to share information via
local communication with its neighbors. Second, CBBA is
a polynomial-time algorithm. The worst-case complexity of
the bundle construction is O(NtLt) and CBBA converges
within max{Nt, LtNa}D iterations, where Nt denotes the
number of tasks, Lt the maximum number of tasks an agent
can win, Na the number of agents and D is the network
diameter, which is always less than Na. Thus, the CBBA
methodology scales well with the size of the network and/or
the number of tasks (or equivalently, the length of the
planning horizon). Third, various design objectives, agent
models, and constraints can be incorporated by defining
appropriate scoring functions. It is shown in [5] that if the
resulting scoring scheme satisfies a certain property called
diminishing marginal gain, a provably good feasible solution
is guaranteed.

While the scoring function primarily used in [5] was a
time-discounted reward, a more recent version of the algo-
rithm [18] handles the following extensions while preserving
convergence properties:
• Tasks that have finite time windows of validity
• Heterogeneity in the agent capabilities
• Vehicle fuel cost

Starting with this extended version of CBBA, this research
adds additional constraints on fuel supply to ensure agents
cannot bid on task sequences that require more fuel than
they have remaining or that would not allow them to return
to base upon completion of the sequence.

B. Risk/Performance Analysis

One of the main reasons for cooperation in a cooperative
control mission is to minimize some global cost, or objective
function. Very often this objective involves time, risk, fuel,
or other similar physically-meaningful quantities. The pur-
pose of the performance analysis module is to accumulate
observations, glean useful information buried in the noise,
categorize it and use it to improve subsequent plans. In other
words, the performance analysis element of iCCA attempts
to improve agent behavior by diligently studying its own
experiences [14] and compiling relevant signals to drive the
learner and/or the planner.

The use of such feedback within a planner is of course
not new. In fact, there are very few cooperative planners
which do not employ some form of measured feedback.
In this research, we implemented this module as a risk
analysis element where candidate actions are evaluated for
risk level. Actions deemed too “risky” are replaced with
another action of lower risk. The next section, detail the
process of overriding risky actions. It is important to note that
the risk analysis and learning algorithms are coupled within
an MDP formulation, as shown in Fig. 3, which implies a
fully observable environment.

C. Learning Algorithm

A focus of this research is to integrate a learner into iCCA
that suggests candidate actions to the cooperative planner that
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Fig. 3. iCCA framework as implemented. CBBA planner coupled with risk
analysis and reinforcement learning modules, where the latter two elements
are formulated within an MDP.

it sees as beneficial. Suggested actions are generated by the
learning module through the learned policy. In our previous
work [4], we integrated natural actor-critic through iCCA
framework. We refer to this algorithm as Cooperative Natural
Actor-Critic (CNAC). As a reinforcement learning algorithm,
CNAC introduces the key concept of bounded exploration
such that the learner can explore the parts of the world that
may lead to better system performance while ensuring that
the agent remains safe within its operational envelope and
away from states that are known to be undesirable. In order
to facilitate this bound, the risk analysis module inspects
all suggested actions of the actor, and replaces the risky
ones with the baseline CBBA policy. This process guides
the learning away from catastrophic errors. In essence, the
baseline cooperative control solution provides a form of
“prior” over the learner’s policy space while acting as a
backup policy in the case of an emergency.

Algorithm 1 illustrates CNAC in more detail. In order to
encourage the policy to initially explore solutions similar to
the planner solution, preferences for all state-action pairs,
P (s, a), on the nominal trajectory calculated by the plan-
ner are initialized to a fixed number ξ ∈ <+. All other
preferences are initialized to zero. As actions are pulled
from the policy for implementation, they are evaluated for
their safety by the risk analysis element. If they are deemed
unsafe (e.g. may result in a UAV running out of fuel), they
are replaced with the action suggested by the planner (πp).
Furthermore, the preference of taking the risky action in
that state is reduced by parameter ξ, therefore dissuading
the learner from suggesting that action again, reducing the
number of “emergency overrides” in the future. Finally, both
the critic and actor parameters are updated.

Previously, we employed a risk analysis component which
had access to the exact world model dynamics. Moreover,
we assumed that the transition model related to the risk
calculation was deterministic (e.g., movement and fuel burn
did not involve uncertainty). In this paper, we introduce a
new risk analysis scheme which uses the planner’s inner
model, which can be stochastic, to mitigate risk. Algorithm
2, explains this new risk analysis process. We assume the
existence of the constrained function: S → {0, 1}, which
indicates if being in a particular state is allowed or not. Risk

Algorithm 1: Cooperative Natural Actor-Critic (CNAC)
Input: πp, ξ
Output: a
a ∼ πAC(s, a)
if not safe(s, a) then

P (s, a)← P (s, a)− ξ
a← πp

Q(s, a)← Q(s, a) + αδt(Q)
P (s, a)← P (s, a) + αQ(s, a)

Algorithm 2: safe
Input: s, a
Output: isSafe
risk ← 0
for i← 1 to M do

t← 1
st ∼ T p(s, a)
while not constrained(st) and not
isTerminal(st) and t < H do

st+1 ∼ T p(st, πp(st))
t← t+ 1

risk ← risk + 1
i (constrained(st)− risk)

isSafe← (risk < ψ)

is defined as the probability of visiting any of the constrained
states. The core idea is to use Monte-Carlo sampling to
estimate the risk level associated with the given state-action
pair if planner’s policy is applied thereafter. This is done by
simulating M trajectories from the current state s. The first
action is the suggested action a, and the rest of actions come
from the planner policy, πp. The planner’s inner transition
model, T p, is utilized to sample successive states. Each
trajectory is bounded to a fixed horizon H and the risk of
taking action a from state s is estimated by the probability of
a simulated trajectory reaching a risky state within horizon
H . If this risk is below a given threshold, ψ, the action is
deemed to be safe.

The initial policy of actor-critic type learners is biased
quite simply as they parameterize the policy explicitly.
For learning schemes that do not represent the policy as
a separate entity, such as Sarsa, integration within iCCA
framework is not immediately obvious. In this paper, we
present a new approach for integrating learning approaches
without an explicit actor component. Our idea was motivated
by the concept of the Rmax algorithm [20]. We illustrate
our approach through the parent-child analogy, where the
planner takes the role of the parent and the learner takes
the role of the child. In the beginning, the child does not
know much about the world, hence, for the most part s/he
takes actions advised by the parent. While learning from such
actions, after a while, the child feels comfortable about taking
a self-motivated actions as s/he has been through the same
situation many times. Seeking permission from the parent,
the child could take the action if the parent thinks the action



Algorithm 3: Cooperative Learning
Input: N, πp, s, learner
Output: a
a← πp(s)
πl ← learner.π
knownness← min{1, count(s,a)N }
if rand() < knownness then

a′ ∼ πl(s, a)
if safe(s, a′) then

a← a′

else
count(s, a)← count(s, a) + 1

learner.update()

is not unsafe. Otherwise the child should follow the action
suggested by the parent.

Algorithm 3 details the process. On every step, the learner
inspects the suggested action by the planner and estimates
the knownness of the state-action pair by considering the
number of times that state-action pair has been experienced.
The N parameter controls the shift speed from following the
planner’s policy to the learner’s policy. Given the knownness
of the state-action pair, the learner probabilistically decides
to select an action from its own policy. If the action is
deemed to be safe, it is executed. Otherwise, the planner’s
policy overrides the learner’s choice. If the planner’s action
is selected, the knownness count of the corresponding state-
action pair is incremented. Finally the learner updates its
parameter depending on the choice of the learning algorithm.
What this means, however, is that state-action pairs explicitly
forbidden by the baseline planner will not be intentionally
visited. Also, notice that any control RL algorithm, even the
actor-critic family of methods, can be used as the input to
Algorithm 3.

V. EXPERIMENTAL RESULTS

This section compares the empirical performance of
cooperative-NAC and cooperative-Sarsa with pure learning
and pure planning methods in the GridWorld example men-
tioned in Section III, and a multi-UAV mission planning sce-
nario where both dynamics and reward models are stochastic.
For the GridWorld domain, the optimal solution was calcu-
lated using dynamic programming.4 As for the planning, the
CBBA algorithm was executed online given the expected
deterministic version of both domains. Pure planning results
are averaged over 10, 000 Monte Carlo simulations. For all
learning methods, the best learning rates were calculated by:

αt = α0
N0 + 1

N0 + Episode#1.1 .

The best α0 and N0 were selected through experimental
search of the sets of α0 ∈ {0.01, 0.1, 1} and N0 ∈

4Unfortunately, calculating an optimal solution for the UAV scenario was
estimated to take about 20 days. We are currently optimizing the code in
order to prepare the optimal solution for the final paper submission.

{100, 1000, 106} for each algorithm and scenario. The best
preference parameter, ξ, for NAC and CNAC were em-
pirically found from the set {1, 10, 100}. τ was set to 1.
Similarly, the knownness parameter, N , for CSarsa was
selected out of {10, 20, 50}. The exploration rate (ε) for
Sarsa and CSarsa was set to 0.1. All learning method results
were averaged over 60 runs. Error bars represents the 95%
confidence intervals on each side.

A. GridWorld Domain

Fig. 4-(a) compares the performance of CNAC, NAC, the
baseline planner (hand-coded) policy, and the expected op-
timal solution in the pedagogical GridWorld domain shown
in Fig. 2. The X-axis shows the number of steps the agent
executed an action, while the Y-axis highlights the cumula-
tive rewards of each method after each 1, 000 steps. Notice
how CNAC achieves better performance after 6, 000 steps
by navigating farther from the danger zones. NAC, on the
other hand, could not outperform the planner by the end of
10, 000 steps.

In Fig. 4-(b), the NAC algorithm was substituted with
Sarsa. Moreover, the interaction between the learner and the
planner follows Algorithm 3. The same pattern of behavior
can be observed, although both CSarsa and Sarsa have a
better overall performance compared to CNAC and NAC
respectively. We conjecture that Sarsa learned faster than
NAC because Sarsa’s policy is embedded in the Q−value
function, whereas NAC’s policy requires another level of
learning for the policy on the top of learning the Q−value
function. While, in this domain, the performance of Sarsa
was on par with CSarsa at the end of training horizon, we
will see that this observation does not hold for large domains
indicating the importance of cooperative learners for more
realistic problems.

B. Multi-UAV Planning Scenario

Fig. 5 depicts of the mission scenario of interest where
a team of two fuel-limited UAVs cooperate to maximize
their total reward by visiting valuable target nodes in the
network. The base is highlighted as node 1 (green circle),
targets are shown as blue circles and agents as triangles.
The total amount of fuel for each agent is highlighted by
the number inside each triangle. For those targets with an
associated reward it is given as a positive number nearby.
The constraints on the allowable times when the target can
be visited are given in square brackets and the probability
of receiving the known reward when the target is visited is
given in the white cloud nearest the node.5 Each reward can
be obtained only once and traversing each edge takes one
fuel cell and one time step.

UAVs are allowed to loiter at any node. The fuel burn
for loitering action is also one unit, except for any UAV at
the base, where they are assumed to be stationary and thus
there is no fuel depletion. The mission horizon was set to 10
time steps. If UAVs are not at base at the end of the mission

5If two agents visit a node at the same time, the probability of visiting
the node would increase accordingly.
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Fig. 4. In the pedagogical GridWorld domain, the performance of the optimal solution is given in black. The solution generated by the deterministic
planner is shown in red. In addition, the performance of NAC, CNAC (left) and Sarsa and CSarsa (right) are shown. It is clear that the cooperative learning
algorithms (CNAC and CSarsa) outperform their non-cooperative counterparts and eventually outperform the baseline planner when given a sufficient
number of interactions. This result motivates the application of the cooperative learning algorithms to more complex domains, such as the Multi-UAV
planning scenario.

horizon, or crash due to fuel depletion, a penalty of −800 is
added for that trial. In order to test our new risk mitigation
approach, we added uncertainty to the movement of each
UAV by adding 5% chance of edge traverse failure. Notice
that our previous risk analyzer [4,8] could not handle such
scenarios, as it assumed the existence of an oracle knowing
catastrophic actions in each state.

Figs 6-(a),(b) show the results of the same battery of
algorithms used in the GridWorld domain applied to the UAV
mission planning scenario. In this domain, we substituted
the hand-coded policy with the CBBA algorithm. Fig. 6-(a)
represents the performance of each method after 105 steps
of interactions, while Fig. 6-(b) depicts the risk of executing
the corresponding policy. At the end of training, both NAC
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Fig. 5. The mission scenarios of interest: A team of two UAVs plan
to maximize their cumulative reward along the mission by cooperating
to visit targets. Target nodes are shown as circles with rewards noted as
positive values and the probability of receiving the reward shown in the
accompanying cloud. Note that some target nodes have no value. Constraints
on the allowable visit time of a target are shown in square brackets.

and Sarsa failed to avoid the crashing scenarios, thus yielding
low performance and more than a 90% probability of failure.
This observation coincides with our previous experiments
with this domain where the movement model was noise
free [4], highlighting the importance of biasing the policy
of learners in large domains. On average, CNAC and CSarsa
improved the performance of CBBA by about 15% and 30%
respectively. At the same time they reduced the probability
of failure by 6% and 8%.

VI. CONCLUSIONS

This paper extended the capability of the previous work
on merging learning and cooperative planning techniques
through two innovations: (1) the risk mitigation approach
has been extended to stochastic system dynamics where the
exact world model is not known, and (2) learners without
a separate policy parameterization can be integrated in the
iCCA framework through the cooperative learning algorithm.
Using a pedagogical GridWorld example, we explained how
the emerging algorithms can improve the performance of ex-
isting planners. Simulation results verified our hypothesis in
the GridWorld example. We finally tested our algorithms in a
multi-UAV planning scenario including stochastic transition
and rewards models, where none of the uncertainties were
known a priori. On average, the new cooperative learning
methods boosted the performance of CBBA up to 30%, while
reducing the risk of failure up to 8%.

For future work, we are interested in increasing the
learning speed of cooperative learners by taking advantage
of function approximators. Function approximation allows
generalization among the values of similar states often boost-
ing the learning speed. However, finding a proper function
approximator for a problem is still an active area of research,
as poor approximations can render the task unsolvable, even
with infinite amount of data. While in this work, we assumed



Maze +- UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

-0.0501 0.1366 -138.5667 34.9960 -131

0.5928 0.0994 -145.0167 38.3822 -132

0.2764 0.0000 450.7656 3.5486

0.6027 0.1005 517.6333 43.8171 15 561.4504

0.7900 0.0725 584.6000 43.9108 30 540.6892

0.7716 0.0000

-200

0

200

400

600

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

0.9333 0.0325 255

0.9167 0.0360 249

0.2627 0.0044

0.2 0.0521 -6

0.1833 0.0504 -8

0%

25%

50%

75%

100%

P(Crash)

NAC Sarsa CBBA CNAC CSarsa

(a) Average Performance

Maze +- UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

-0.0501 0.1366 -138.5667 34.9960 -131

0.5928 0.0994 -145.0167 38.3822 -132

0.2764 0.0000 450.7656 3.5486

0.6027 0.1005 517.6333 43.8171 15 561.4504

0.7900 0.0725 584.6000 43.9108 30 540.6892

0.7716 0.0000

-200

0

200

400

600

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

0.9333 0.0325 255

0.9167 0.0360 249

0.2627 0.0044

0.2 0.0521 -6

0.1833 0.0504 -8

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P(Crash)

NAC Sarsa CBBA CNAC CSarsa

(b) Failure Probability

Maze +- UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

-0.0501 0.1366 -138.5667 34.9960 -131

0.5928 0.0994 -145.0167 38.3822 -132

0.2764 0.0000 450.7656 3.5486

0.6027 0.1005 517.6333 43.8171 15 561.4504

0.7900 0.0725 584.6000 43.9108 30 540.6892

0.7716 0.0000

-200

0

200

400

600

Performance

NAC Sarsa CBBA CNAC CSarsa

Success Rate UAV-5-S +- Optimality - UAV

NAC

Sarsa

Planner

CNAC

CSarsa

Optimal

0.9333 0.0325 255

0.9167 0.0360 249

0.2627 0.0044

0.2 0.0521 -6

0.1833 0.0504 -8

0%

25%

50%

75%

100%

P(Crash)

NAC Sarsa CBBA CNAC CSarsa

Fig. 6. Results of NAC, Sarsa, CBBA, CNAC, and CSarsa algorithms at the end of the training session in the UAV mission planning scenario. Cooperative
learners (CNAC, CSarsa) perform very well with respect to overall reward and risk levels when compared with the baseline CBBA planner and the non-
cooperative learning algorithms.

a static model for the planner, a natural extension is to
adapt the model with the observed data. We foresee that
this extension will lead to a more effective risk mitigation
approach as the transition model used for Monte-Carlo
sampling resembles the actual underlying dynamics with
more observed data.
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