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This paper introduces and demonstrates a full hardware testbed for research in

multi-agent planning and learning for long-duration missions. The testbed includes

an automated battery changing/charging platform and multiple UAV/UGV agents.

The planner for each agent was formulated as a decentralised multi-agent Markov

decision process and implemented using a distributed solution approach. Learning

methods were also included at the agent-level to collect observations and fine-tune

planning parameters for the purpose of increasing performance. Information was

shared between agents according to a dynamic communication topolgy. Results are

presented for persistent mission scenarios and include actuator and sensor degra-

dations to demonstrate (1) The robustness of the mission-level planning/learning

system and (2) The initially reactive and ultimately proactive qualities of the planner

due to the coupling with the learning algorithm within the planning environment.

I. Introduction

In the context of teams of coordinating agents, many mission scenarios of interest are inherently

long-duration and require a high level of agent autonomy due to the expense and logistical com-

plexity of direct human control over the individual agents. Long-duration missions are practical

scenarios that can show well the benefits of agent cooperation. However, such persistent missions

can accelerate mechanical wear and tear on an agent’s hardware platform, increasing the likelihood

of related failures. Additionally, unpredictable failures such as the loss of a critical sensor or per-

haps damage sustained during the mission may lead to severely sub-optimal mission performance.

For these reasons, it is important that the planning system accounts for the possibility of such fail-

ures when constructing a mission plan. In general, planning problems that coordinate the actions
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Figure 1: Mission scenario: N autonomous agents cooperate to continuously survey a specified
region and to track any objects of interest discovered there. This behavior is to be maintained even
under sensor and actuator health degradations.

of multiple agents, where each of which is subject to failures are referred to as multi-agent health

management problems1,2.

There are two typical approaches for dealing with multi-agent health management problems3.

The first is to construct a plan based on a deterministic model of nominal agent performance. This

approach ignores the possibility of failures and simply computes a new plan if failures do occur.

Since the system does not anticipate the possibility of failures, but rather responds to them after

they have already occurred, this approach is referred to as a reactive planner.

In contrast, the second approach is proactive and constructs a plan based on stochastic models

which capture the inherent possibility of failures. Using stochastic models increases the complexity

of computing the plan, as it then becomes necessary to optimize expected performance, where the

expectation is taken over all possible scenarios that might occur. However, since proactive planners

prescribe actions that mitigate the consequences of possible future failures, the resulting mission

performance can be much better than that achieved by a reactive planner (naturally, depending

on the validity of the underlying stochastic models). Learning methods are needed to ensure the

validity of these models by tuning the associated parameters online using accumulated sensor and

performance data.

This research aims to develop a complete hardware testbed to enable proactive planning and

learning for teams of autonomous agents. In this paper, we implement a mission involving a group

of N autonomous agents, each equipped with some type of sensor and initially situated at some

base location, as shown in Figure 1. Their objectives are to continuously survey a pre-specified

region of interest and to closely track any objects of interest discovered there. The problem becomes

challenging when stochastic models for sensor and actuator health are included in the formulation
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as well as stochastic dynamics for fuel consumption. Previous work has shown dynamic program-

ming techniques to be a well-suited solution approach when planning for persistent missions4. For

example, in4 the planning problem is formulated as a Markov decision process (MDP) and solved

using value iteration. The resulting optimal control policy showed a number of desirable properties,

including the ability to proactively recall vehicles to base with an extra, reserve quantity of fuel

which resulted in fewer vehicle losses and a higher average mission performance.

One downside to the MDP formulation is that the optimality of the resulting policy relies on

the accuracy of the underlying model(s)5,6. If the model used to solve the MDP differs significantly

from the actual system model, suboptimal performance will result when implemented on the real

system. Despite efforts toward accurate models, this type of model-mismatch is frequent and, to

some degree, unavoidable. This research adopts one approach that has been shown to be successful

for dealing with this issue, which is to adapt the system model online and periodically re-solve the

MDP using the most recent model7.

The remainder of the paper is outlined as follows: The multi-agent persistent mission planning

problem is described and formulated in Section II, following which the technical details of the

learning algorithms are given in Section III. Details regarding the testbed itself are given in Section

IV. Results of flight tests performed at Boeing VSTL8 are provided in Section V, followed by some

concluding remarks.

II. Problem Description

In this section, mission objectives and constraints are modeled as a Markov Decision Process

(MDP). Base of this formulation is provided in the paper 3. In this work we extend the formulation

to capture the effects of recharging at the base and persistent swapping between vehicles.

II.A. Mission Description

Mission area is divided into three distinct regions geometrically. These regions are labeled as base,

communication area and tasking area. Quadrotors start at the base area in landing position, take

off and travel to other regions for tasking and communication duties and come back to base for

recharging or repair for failed actuators and sensors. Communication area is a transition region

between base and tasking areas and requires persistent existence of a quadrotor to achieve relay link

in between them. This area also serves as a base for ground vehicles. Tasking area accommodates

target vehicles together with a number of neutral vehicles, and is the area where persistent search

and tracking takes place.

The objective of the mission is to search and detect target vehicles in the tasking area and

achieve a persistent tracking once a vehicles is detected either by quadrotors or ground vehicles,

while keeping a quadrotor at the communication area at all times to accomplish a relay link between

base and tasking area.

There exists a number of different constraints on the mission. Each vehicle has limited fuel

capacity and therefore can only operate in a limited amount of time in communication and tasking
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areas. If a vehicle runs out of fuel, it goes into crashed state and cannot be recovered. A recharge

station is placed in the base area to refuel the vehicles in low fuel state in order to avoid crashing.

Moreover each vehicle has a probability of experiencing a sensor or actuator failure, which limits

the capabilities of them which are required to perform the mission. For instance a vehicle with

a failed sensor cannot perform search or tracking missions in the tasking are. All failures can be

repaired once the vehicle gets back to the base.

Based on the problem description above, a reasonable plan would send quadrotors to taking

area to detect the targets and pass tracking duties to ground vehicles in order to get quadrotors

back to base for recharging while maintaining persistent tracking of targets. Such a plan can be

described explicitly but it would not be robust to stochastic events in operation such as random

actuator/sensor failures and fuel burning rates. Therefore it is desirable to model the mission as

a stochastic optimal control problem which can be solved off-line to extract a reasonable policy

without explicitly forcing a heuristic strategy.

In this study, mission is modeled as a finite state MDP and problem of finding the optimal

policy is approached by approximate dynamic programming techniques due to fact that number of

states grow exponentially with number of vehicles and discretization of the fuel state. Details on

MDP formulation such as state and action space and transition dynamics are provided in the next

subsection.

II.B. MDP Formulation

II.B.1. Markov Decision Processes

An infinite-horizon, discounted MDP is specified by (S,A, P, g), where S is the state space, A is

the action space, Pij(u) gives the transition probability from state i to state j under action u, and

g(i, u) gives the cost of taking action u in state i. We assume that the MDP model is known.

Future costs are discounted by a factor 0 < α < 1. A policy of the MDP is denoted by µ : S → A.

Given the MDP specification, the problem is to minimize the cost-to-go function Jµ over the set of

admissible policies Π:

min
µ∈Π

Jµ(i0) = min
µ∈Π

E

[ ∞∑
k=0

αkg(ik, µ(ik))

]
.

For notational convenience, the cost and state transition functions for a fixed policy µ are

defined as

gµi ≡ g(i, µ(i))

Pµij ≡ Pij(µ(i)),

respectively. The cost-to-go for a fixed policy µ satisfies the Bellman equation9

Jµ(i) = gµi + α
∑
j∈S

PµijJµ(j) ∀i ∈ S, (1)
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which can also be expressed compactly as Jµ = TµJµ, where Tµ is the (fixed-policy) dynamic

programming operator.

II.B.2. State Space S

The state of each UAV is given by two scalar variables describing the vehicle’s flight status and

fuel remaining. The flight status yi describes the UAV location,

yi ∈ {Yb, Y0, Y1, . . . , Ys, Yc}

where Yb is the base location, Ys is the surveillance location, {Y0, Y1, . . . , Ys−1} are transition states

between the base and surveillance locations (capturing the fact that it takes finite time to fly

between the two locations), and Yc is a special state denoting that the vehicle has crashed.

Similarly, the fuel state fi is described by a discrete set of possible fuel quantities,

fi ∈ {0,∆f, 2∆f, . . . , Fmax −∆f, Fmax}

where ∆f is an appropriate discrete fuel quantity. The total system state vector x is thus given by

the states yi and fi for each UAV, along with r, the number of requested vehicles:

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; r)T

II.B.3. Control Space A

The controls ui available for the ith UAV depend on the UAV’s current flight status yi.

• If yi ∈ {Y0, . . . , Ys − 1}, then the vehicle is in the transition area and may either move away

from base or toward base: ui ∈ {“+′′, “−′′}

• If yi = Yc, then the vehicle has crashed and no action for that vehicle can be taken: ui = ∅

• If yi = Yb, then the vehicle is at base and may either take off or remain at base: ui ∈ {“take

off”,“remain at base”}

• If yi = Ys, then the vehicle is at the surveillance location and may loiter there or move toward

base: ui ∈ {“loiter”, “−′′ rbrace

The full control vector u is thus given by the controls for each UAV:

u = (u1, . . . , un)T (2)

II.B.4. State Transition Model P

The state transition model P captures the qualitative description of the dynamics given at the start

of this section. The model can be partitioned into dynamics for each individual UAV.

The dynamics for the flight status yi are described by the following rules:
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• If yi ∈ {Y0, . . . , Ys − 1}, then the UAV moves one unit away from or toward base as specified

by the action ui ∈ {“+′′, “−′′}.

• If yi = Yc, then the vehicle has crashed and remains in the crashed state forever afterward.

• If yi = Yb, then the UAV remains at the base location if the action “remain at base” is

selected. If the action “take off” is selected, it moves to state Y0.

• If yi = Ys, then if the action “loiter” is selected, the UAV remains at the surveillance location.

Otherwise, if the action “−” is selected, it moves one unit toward base.

• If at any time the UAV’s fuel level fi reaches zero, the UAV transitions to the crashed state

(yi = Yc).

The dynamics for the fuel state fi are described by the following rules:

• If yi = Yb, then fi increases at the rate Ḟrefuel (the vehicle refuels).

• If yi = Yc, then the fuel state remains the same (the vehicle is crashed).

• Otherwise, the vehicle is in a flying state and burns fuel at a stochastically modeled rate: fi

decreases by Ḟburn with probability pnom and decreases by 2Ḟburn with probability (1−pnom).

II.B.5. Cost Function g

The cost function g(x,u) penalizes three undesirable outcomes in the persistent surveillance mission.

First, any gaps in surveillance coverage (i.e. times when fewer vehicles are on station in the

surveillance area than were requested) are penalized with a high cost. Second, a small cost is

associated with each unit of fuel used. This cost is meant to prevent the system from simply

launching every UAV on hand; this approach would certainly result in good surveillance coverage

but is undesirable from an efficiency standpoint. Finally, a high cost is associated with any vehicle

crashes. The cost function can be expressed as

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x)

where:

• ns(x): number of UAVs in surveillance area in state x,

• ncrashed(x): number of crashed UAVs in state x,

• nf (x): total number of fuel units burned in state x,

and Cloc, Ccrash, and Cf are the relative costs ofand loss of coverage events, crashes, and fuel usage,

respectively.
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II.B.6. Communications Relay Requirement

The addition of a communications relay requirement is motivated by the fact that in many UAV

applications, it is necessary to maintain a communications link between the UAVs performing the

mission and a fixed based location. This link may be used by human operators and/or ground-

based autonomous planning systems to send commands to the UAVs, or to collect and analyze

real-time sensor data from the UAVs. For example, in a search-and-rescue mission with camera-

equipped UAVs, a human operator may need to observe the real-time video feeds from each UAV in

order to determine probable locations of the party to be rescued. Furthermore, in many cases, the

communication range of each UAV may be limited, and in particular may be less than the distance

between base and the surveillance area. Therefore, in these situations, it is necessary to form a

communications “chain” consisting of a spatially separated string of UAVs which relay messages

back and forth between the base and the surveillance area10,11.

In order to model the requirement for establishment of a communications chain in the MDP

formulation, the cost function g(x,u) is modified in the following way. Recall that the form of the

cost function is

g(x,u) = Cloc max{0, (r − ns(x))}+ Ccrashncrashed(x) + Cfnf (x),

where ns(x) is a function that counts the number of UAVs in the surveillance area, and the term

Cloc max{0, (r − ns(x))} serves to penalize loss of surveillance coverage (i.e. having fewer UAVs in

the surveillance area than are needed). To enforce the communications requirement, let comm(x)

be a function that indicates whether communications are possible between base and the surveillance

area:

comm(x) =

1 if communications link exists in state x

0 otherwise
.

The functional form of comm(x) should be chosen to reflect the communication range capabilities

of each UAV. For example, if the base and surveillance locations are separated by 2 miles, and

each UAV has a communication range of 1 mile, then comm(x) should be 1 whenever there is a

UAV halfway between the base and the surveillance location (since in this case, this UAV has just

enough range to relay communications to both areas). In the results presented in this paper, we

use a communications model of this type for comm(x), assuming that communications are possible

anytime a UAV is halfway between base and the surveillance location. Note that more complex

communications models can be easily incorporated by simply changing the form of comm(x).

Once the particular form of comm(x) is chosen, it is incorporated into the cost function g(x,u)

as follows:

g(x,u) = Cloc max{0, (r − ns(x)comm(x))}+ Ccrashncrashed(x) + Cfnf (x).

Note the only change from the original cost function is through the term ns(x)comm(x). Thus,

whenever a communications link is established, comm(x) is 1 and the cost function behaves as
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before, penalizing loss of coverage. However, if communications are broken, comm(x) is 0 and

any UAVs that are in the surveillance location become useless to the mission since they cannot

communicate with base. Therefore, in order to minimize the cost g(x,u), it is necessary to maintain

UAVs in the surveillance area and maintain a communications link, as desired.

II.B.7. Sensor Failure Model

In order to perform the surveillance missions of interest in this paper, UAVs may be equipped with

a variety of sensors, such as visible-light cameras, infrared sensors, radars, etc. Of course, these

sensors are not totally reliable, and in general may fail at any point during the mission. In order

to develop a realistic, health-management problem formulation, it is necessary to account for the

possibility of these failures in the MDP model. The qualitative description of our failure model is

as follows. We assume that a UAV’s sensor may fail at any point during the mission, and that the

probability of failure at any given moment is described by a parameter 0 < psensor fail < 1. When

a sensor failure occurs, the UAV becomes useless for performing any tasks in the surveillance area.

Note, however, that we assume the failure does not affect the UAV’s communication subsystem, so

that a UAV with a failed sensor can still perform a useful function by serving as a communications

relay. Furthermore, upon returning to base, the UAV’s sensor can be repaired.

In order to incorporate this failure model into the MDP, it is necessary to modify the state space

S, the system state transition model P , and the cost function g(x,u). The state space modification

is straightforward; the state vector for every UAV is simply augmented with a binary variable that

describes whether that UAV’s sensor is failed or not. In particular, the full state vector x is given

by

x = (y1, y2, . . . , yn; f1, f2, . . . , fn; s1, s2, . . . , sn; r)T ,

where si ∈ {0, 1} describes the sensor state of UAV i. We use the convention that si = 1 indicates

that the sensor is failed, and si = 0 indicates that it is operational.

Along with the augmented state space, the transition model P must also be updated to reflect

the failure dynamics of the sensors. First, whenever a UAV is flying and its sensor is already failed

(si = 1), it remains failed with probability 1; if its sensor is operational (si = 0), then it fails with

probability psensor fail and remains operational with probability (1−psensor fail). Finally, if a UAV

returns to the base location (yi = Yb), then its sensor is restored to operational status (si = 0) with

probability 1.

The final requirement to incorporate the sensor failure model is to update the cost function

g(x,u) to reflect the fact that UAVs with failed sensor are useless for performing tasks in the

surveillance area. To do this, the function ns(x), which previously counted the total number of

UAVs in the surveillance area, is modified to instead count the number of UAVs in the surveillance

area with operational sensors.
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II.B.8. Recharge Requirement

Formulation above allows vehicles to takeoff from landing area without fully recharging, since

recharge station has a constant recharging rate and unlike repair of sensor and actuator failures, a

vehicle is not instantaneously switched to fully charged state once it arrives at the base. In order

to avoid this situation we place the following constraint on system dynamics:

• If yi = Yb, then the vehicle is at base and may remain at base: ui ∈ {“remain at base”} or it

may take-off if it is fully charged yi = Yb and fi = Fmax then ui ∈ {“remain at base”,“take-

off”}

Therefore vehicle can leave the base if and only if it is fully charged.

II.B.9. Persistent Swapping Requirement

Since transition dynamics evolve in discrete time in the current formulation, swapping of two

vehicles between communication and tasking areas assumed to be occurred instantaneously which

results in loss of coverage of tasking area during swapping. A reasonable design choice would be

penalizing the situation where a vehicle leaves the tasking area without any backup vehicle to

replace it. For this purpose we count the number of vehicles which are commanded to leave the

task area and commanded to stay at the task area , represented by nleaving(x,u) and nstaying(x,u)

respectively. Then cost function is updated into its final form where Cswap is the cost of swapping:

g(x,u) = Cloc max{0, (r − ns(x)comm(x))}+

Cswap max{0, (nleaving(x,u)− nstaying(x,u)comm(x))}+ Ccrash

ncrashed(x) + Cfnf (x).

With latest addition to cost function, situations where no penalty occurs corresponds to state

where the number of vehicles leaving the task area is equal to the number of vehicles staying in the

task area, such that leaving the tasking area does not have a negative effect on coverage.

III. Multi-Agent Learning

Planning for teams of heterogeneous autonomous mobile agents in stochastic systems is a chal-

lenging problem arising in many domains such as robotics, aviation, and military applications.

While cooperative planners provide fast and reliable solutions to these problems12–20, their solu-

tions are sub-optimal due to the inaccuracy of the model (e.g., the exact model is approximated by

a linear system), or violation of assumptions (e.g., the experienced noise does not obey a Gaussian

disribution). Moreover, the output of cooperative planners are often nominal trajectories corre-

sponding to a narrow part of the state space. The limited applicability of the solution requires

recalculation of the plan after each deviation from the nominal path. By relaxing most assump-

tions made by cooperative planners, online reinforcement learning (RL) techniques operate in a
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more realistic framework where the system reasons about the consequences of its own actions and

improves its future performance without the need of a third party. Additionally, RL techniques

provide global policies executable from anywhere in the state space. However, applying RL methods

to multi-agent domains involves three main challenges:

(I) Sample Complexity: For multi-agent domains, the size of the state space is often very large

as it is exponential in the number of agents. For example a domain with 10 agents where each

agent can take 2 modes and 50 positions has 1020 possible states. On the other hand, the number

of interactions required by RL methods to achieve reasonable performance often grows with the

size of the state space. Hence, scaling RL methods to multi-agent domains is challenging.

(II) Limited Computation: Onboard computation is typically limited, particularly on airborn

platforms. In addition, embedding learning within the normal operation of the system (i.e., online

setting) results in a very limited amount of time allowed for learning on each interaction.

(III) Safe Exploration: While catastrophic outcomes provide learners with valuable informa-

tion, sometime the loss involved in perceiving such feedbacks is not sustainable. For example,

crashing a fuel-limited unmanned aerial vehicle (UAV), while carrying the message that running

out of fuel is bad, costs a lot of money and potentially endangers the life of nearby civilians. Avoid-

ing such fatal states requires a robust learning scheme where the range of exploration is bounded

within some safe region.

III.A. Temporal Difference Learning

The temporal difference (TD) error after taking action at from state st at time t is defined as the

difference between the current value for the state-action pair and the estimated Q value based on

the observed reward received after action at and the value for the next state-action pair in the

trajectory:

δt(Q
π) = rt + γQπ(st+1, at+1)−Qπ(st, at). (3)

TD methods21 use the TD error at each time step as a gradient for reducing the error in the Q

function estimation.

III.B. Linear Function Approximation

A lookup-table representation of the Q function is impractical when the state space is large, and a

common approach is to use a linear function approximation of the form Qπ(s, a) = θTφ(s, a), where

φ : S × A → <n is the basis function and θ is a weight vector. Each element of the basis function

φ(s) is called a feature ; φf (s) = c denotes feature f is c in state s.a The representation for Q

function is formed by the space spanned by the linear combination of basis functions of all states,

and hence named the feature representation. Since adaptive function approximation is central to

aFor readability, φ(s) is used instead of φ(s, a), but φ is always conditioned on the action implicitly.

10 of 18

American Institute of Aeronautics and Astronautics



this document, let φtf (s) indicate the value of feature f corresponding to the basis function at time

t for state s. Given a feature representation formed by φ, several methods22,23 exist to learn the

weight vector θ.

Of special interest is the set of basis functions φ where the output is a binary vector (φ : S×A →
{0, 1}n); not only can the corresponding weights θ be computed efficiently24, but the weights also

indicate the importance of each binary property25. If φ contains a unique non-zero feature for each

state-action pair, then the function approximation reduces to a lookup table that assigns a value

to each state-action pair.

Value based RL techniques, a popular family of RL, calculate the optimal control policy by

estimating the long term advantage of each action from every state and then acting greedily with

respect to those values. Function approximators have scaled RL methods to large domains by

reducing their sample complexity26,27, allowing RL methods to exceed the human level of expertise

in several domains25,28,29. In particular, practitioners have favored the linear family of approxima-

tors26,30–34 due to their desirable properties such as theoretical analysis35 and cheap computational

complexity36.

A fundamental open problem in the realm of RL is how to pick basis functions for the lin-

ear function approximator in order to make the task learnable. While for most applications, the

domain expert selects the set of basis functions through manual tuning25, in recent years a sub-

stantial body of research has been dedicated towards automating this process resulted in adaptive

function approximators (AFAs)31,32,34,37–40. Finding a computationally cheap AFA which scales to

large domains, provides convergence guarantees when combined with RL techniques, and requires

minimal design skill is still an open problem.

Safe exploration is another hurdle that practitioners come across when applying RL to realistic

domains. Existing methods for safe exploration either behave too pessimistically41, lack conver-

gence guarantees42, or provide no safety guarantees43. This thesis introduces cooperative learning

methods that take advantage of existing cooperative planners by regarding them as safe policies in

order to verify the safety of the action suggested by the learner. Furthermore, solutions generated

by cooperative planners will guide the learning exploration regime to focus on promising parts of

the state space, thus addressing challenges (I) and (III).

IV. Experimental Setup

To demonstrate the capability of problem formulation and the optimal solution extracted from

it, our algorithms were implemented on an experimental testbed centered on the Boeing Vehi-

cle Swarm Technology Laboratory (VSTL). A custom designed recharge station and a group of

UAV/UGV were integrated into test platform for this purpose. This section provides details on

each component of the testbed in terms of hardware specifications.
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Figure 2: Recharge station

IV.A. Recharge Station

One of the purposes of this paper is to introduce and demonstrate a complete testbed for multi-

agent planning and learning over extended-duration missions. As missions involving unmanned

aerial vehicles (UAVs) stretch in duration, frequent and robust refueling becomes critical to overall

success. In the research setting, refueling typically means charging or swapping batteries onboard

a small-scale UAV. Automating and/or streamlining this procedure has been the topic of much

previous work44? ? ? ? ? . However, waiting for a battery to properly charge can be time-consuming,

adding undesirable delays in the overall mission. Also, “cold” battery-swapping techniques require

a complete shutdown of the vehicle’s onboard electronics as the battery is swapped for a new one,

losing onboard data and state information at each recharge cycle. As slow recharge times and cold

battery swaps are undesirable, this research introduces an automated, portable landing platform

capable of “hot” swapping batteries (e.g., swapping batteries in a manner such that the UAV never

loses power in the process) then recharging them offline. In addition, as shown in Figure 2, the

automated station holds a buffer of 8 batteries, all of which are continuously charging, and uses

a novel dual-drum structure to automatically select which battery to swap into the UAV. The

hot-swap capability, in combination with local recharging and a large battery capacity allow this

platform to refuel multiple UAVs for long-duration and persistent missions without incurring major

delays or vehicle shutdowns. A fully-functional hardware version of the automated recharge station

is tested in the context of a multi-agent, long-duration persistent mission where surveillance is

continuously required over a specified region45. In this context, the recharge station provides a

fast, reliable refueling capability that allows for persistent coverage of the surveiallance region and
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the success of the mission.

IV.B. Agent Platforms

Four different agent platforms were used in this research consisting of a quadrotor UAV and three

variations of ground-based agents. Figure 3 shows these agents with the UAV in the upper-left, the

team member UGV in the upper-right, the target UGV in the lower-left and the civilian UGV in

the lower-right.

Figure 3: Agent platforms

As seen in Figure 3, the quadrotor UAVs were equipped with a wifi-enabled webcam and a

recharge-capable base. Team member UGVs were also equipped with onboard cameras to detect

the target UGVs amongst the “civilians”.

IV.C. Test Facility

Boeing Research and Technology has developed the Vehicle Swarm Technology Laboratory (VSTL),

an environment for testing a variety of vehicles in an indoor, controlled environment8. VSTL is

capable of simultaneously supporting a large number of both air and ground vehicles, thus providing

a significant advantage over traditional flight test methods in terms of flight hours logged. As seen

in Figure 4, the primary components of the VSTL are:

• A camera-based motion capture system for reference positions, velocities, attitudes and atti-

tude rates
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Figure 4: The Boeing Vehicle Swarm Technology Laboratory (VSTL), a state-of-the-art rapid
prototyping indoor flight testing facility8.

• A cluster of off-board computers for processing the reference data and calculating control

inputs

• Operator interface software for providing high-level commands to individual and/or teams of

agents

These components are networked within a systematic, modular architecture to support rapid

development and prototyping of multi-agent algorithms8.

V. Results

Figure 5 shows a sequence of snapshots taken directly from an implementation of the mission

described in Section II. Moving from the upper-left to the lower-right image in Figure 5, we see

agents: leaving the base area to begin the persistent surveillance task, searching the area for targets,

tracking a discovered target, and returning to base for a fresh battery.

Forthcoming: There will be a plot showing robustness to failures in sensors and actuators.

There will be a plot showing the convergence of the learning method over the course of the mission.

There will be a snapshot of fuel vs time for an agent, showing that the recharge station indeed

enables long-duration missions.
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Figure 5: Mission snapshots

VI. Conclusion

In conclusion, this paper has introduced and demonstrated a full hardware testbed for research

in multi-agent planning and learning for long-duration missions. The testbed includes an automated

battery changing/charging platform and multiple UAV/UGV agents. The planner for each agent

was formulated as a decentralized multi-agent Markov decision process and implemented using a

distributed solution approach. Learning methods were also included at the agent-level to collect

observations and fine-tune planning parameters for the purpose of increasing performance.
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