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Online representational expansion techniques have improved the learning speed of existing
reinforcement learning (RL) algorithms in low dimensional domains, yet existing online expan-
sion methods do not scale well to high dimensional problems. We conjecture that one of the
main dithiculties limiting this scaling 1s that features defined over the full-dimensional state
space often generalize poorly. Hence, we introduce incremental Feature Dependency Discov-
ery (1IFDD) as a computationally-inexpensive method for representational expansion that can
be combined with any online, value-based RLL method that uses binary features. Unlike other
online expansion techniques, iIFDD creates new features in low dimensional subspaces of the

full state space where feedback errors persist. We provide convergence and computational
complexity guarantees for iIFDD, as well as showing empirically that 1IFDD scales well to high

dimensional rnulti-agent planning domains with hundreds of millions of state-action pairs.

*Real-world sequential deci-
sion making problems such as
multi-agent domains have
large state spaces, making it
impractical to store state
values using a lookup table.
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Linear function approximation has been a successful
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Finding the right set of features used for approximation
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is hard. Our algorithm autonomously finds relevant
feature dependencies as new features, given an imitial

set of binary features.
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& Lack of convergence guarantees due to nonlinear approximation !
& Expensive computational complexity such as inverting large matrices!?
&) Excessive sample complexity!’]

& Requires tuning many parameters by hand!“!
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& Introduced incremental Feature Dependency Discovery 1FDD) as a

Sponsored by:

& Provided asymptotic convergence and per-time-step computational

utions

simple and computationally-inexpensive feature expansion method

complexity analysis

' Empirically showed the scalability of the new approach in domains
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Algorithm 1:Discover ¢ Discovery
Input: ¢(s), d;, &, F, ¢ F Set of featere
Output: F, ¢ ) Sum of errors
1 foreach (g,h) € {(¢,7)|¢i(s)p;(s) =1} do 5; Error at fime ¢
: S Inn Qbo Basis function for the
3 if f §§ F then ‘nitial feature set
4 hy <= g+ 0
5 if ¢ > £ then -d ¢(s)
6 F«—FUf

Algorithm 2: Generate Feature Vector (¢)

Input: ¢°(s), F

Output: ¢(s)

P(s) < 0

activelnitialFeatures < {i|¢3(s) = 1}

Candidates < SortedPowerSet(activelnitialFeatures)
while activelnitialFeatures #+ () do

f < Candidates.next() -) sparse

if f € F then
activelnitialFeatures < activelnitialFeatures \ f

i _¢f(8) — 1

9 return ¢(s)
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9 1IFDD performed really well across all domains and its success was not due to the
quantity of features as shown by the low memory usage but the quality of features.
Given sparse features, 1IFDD has per-time-step complexity independent of the
number of features. Combined with TD learning, iIFDD 1s guaranteed to converge
to the best possible approximation of the value function for a fixed pohcy
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