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Introduced incremental Feature Dependency Discovery (iFDD) as a 
simple and computationally-inexpensive feature expansion method

Provided asymptotic convergence and per-time-step computational 
complexity analysis

Empirically showed the scalability of the new approach in domains 
with large planning spaces ≈ 108
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Lack of convergence guarantees due to nonlinear approximation [1]

Expensive computational complexity such as inverting large matrices[2]

Excessive sample complexity[3] 

Requires tuning many parameters by hand[4]

Finding the right set of features used for approximation 
is hard. Our algorithm autonomously finds relevant 
feature dependencies as new features, given an initial 
set of binary features.
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Existing Gap in the Literature

Real-world sequential deci-
sion making problems such as 
multi-agent domains have 
large state spaces, making it 
impractical to store state 
values using a lookup table.

Linear function approximation has been a successful 
approach.  
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Conclusion

Online representational expansion techniques have improved the learning speed of existing 
reinforcement learning (RL) algorithms in low dimensional domains, yet existing online expan-
sion methods do not scale well to high dimensional problems. We conjecture that one of the 
main difficulties limiting this scaling is that features defined over the full-dimensional state 
space often generalize poorly. Hence, we introduce incremental Feature Dependency Discov-
ery (iFDD) as a computationally-inexpensive method for representational expansion that can 
be combined with any online, value-based RL method that uses binary features. Unlike other 
online expansion techniques, iFDD creates new features in low dimensional subspaces of the 
full state space where feedback errors persist. We provide convergence and computational 
complexity guarantees for iFDD, as well as showing empirically that iFDD scales well to high 
dimensional multi-agent planning domains with hundreds of millions of state-action pairs.

iFDD performed really well across all domains and its success was not due to the 
quantity of features as shown by the low memory usage but the quality of features. 
Given sparse features, iFDD has per-time-step complexity independent of the 
number of features. Combined with TD learning, iFDD is guaranteed to converge 
to the best possible approximation of the value function for a fixed policy.
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Where the most accumulated error is gathered, is 
where the representation should grow. 
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf (s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3

Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F,ψ
Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h
3 if f /∈ F then

4 ψf ← ψf + |δt|
5 if ψf > ξ then

6 F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)

1 φ(s) ← 0̄
2 activeInitialFeatures ← {i|φ0

i (s) = 1}
3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7 activeInitialFeatures ← activeInitialFeatures −f
8 φf (s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4

For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf (s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h
are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

controls the rate of expansion. This parameter is domain-

dependent and requires expert knowledge to set appropri-

ately. However, intuitively lower values encourage faster

expansion and improve the convergence to the best possible

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

While the ideal value for ξ will depend on the stochasticity

of the environment, we found our empirical results to be

fairly robust to the value of the discovery threshold.

We focus on iFDD integrated with TD learning, but any on-

line, value-based RL method could supply the feedback er-

ror. Sec. 3.2 provides a proof that for the policy evaluation

case the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf (s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3

Considering only conjunctive features is sufficient

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

Algorithm 1:Discover

Input: φ(s), δt, ξ,F,ψ
Output: F,ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do1

f ← g ∧ h2

if f /∈ F then3

ψf ← ψf + |δt|4

if ψf > ξ then5

F ← F ∪ f6

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)
φ(s) ← 0̄1

activeInitialFeatures ← {i|φ0
i (s) = 1}2

Candidates ← SortedPowerSet(activeInitialFeatures)3

while activeInitialFeatures �= ∅ do4

f ← Candidates.next()5

if f ∈ F then6

activeInitialFeatures ← activeInitialFeatures �f7

φf (s) ← 18

return φ(s)9

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The relevance ψf of each potential feature f = g∧h is

then incremented by the absolute approximation error |δt|
(line 4). If the relevance ψf of a feature f exceeds the dis-

covery threshold ξ, then feature f is added to the set F and

used for future approximation (lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4

For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf (s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.
4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.
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