
One Step Interaction

Update Weights
 - use Algorithm 2 for

Discover Features
- use Algorithm 1

φ(.)

0 2 4 6 8 10

x 10
4

!10

!5

0

5

10

15

Steps

R
e

tu
rn

 Initial+iFDD

ATC

Initial

Tabular

SDM

0 2 4 6 8 10

x 10
4

!1.5

!1

!0.5

0

0.5

1

Steps

R
e

tu
rn

Tabular

Initial

ATC

initial+iFDD

SDM

0 2 4 6 8 10

x 10
4

0

500

1000

1500

2000

2500

3000

Steps

S
te

p
s

Initial

Tabular

Gaussian

ATC

Initial+iFDD

SDM

B
a
la

n
c
in

g
 S

te
p

s

!1

Initial

!2

!3

Discovered

!1!!2!!3

Potential

!2!!3

!1!!2

 = State
 = Policy

 = Value of stateV π(s)
π
s

Introduced incremental Feature Dependency Discovery (iFDD) as a
simple and computationally-inexpensive feature expansion method

Provided asymptotic convergence and per-time-step computational
complexity analysis

Empirically showed the scalability of the new approach in domains
with large planning spaces ≈ 108

Representations used with Sarsa:
(1)initial (2)initial+iFDD (3)ATC[3](4)SDM[5] (5)Tabular

.

.

.

�

θ1

θ2

φ1

φ2

φn θn

V π(s) ≈ φ(s)�θ
s

Lack of convergence guarantees due to nonlinear approximation [1]

Expensive computational complexity such as inverting large matrices[2]

Excessive sample complexity[3]

Requires tuning many parameters by hand[4]

Finding the right set of features used for approximation
is hard. Our algorithm autonomously finds relevant
feature dependencies as new features, given an initial
set of binary features.

0 2 4 6 8 10

x 10
4

!50

0

50

100

150

200

250

300

350

400

450

Steps

R
e
tu

rn

Initial

ATC

SDM,Tabular

Initial+iFDD

Inverted Pendulum: 1.2×103

!

!
·

"

Memory:Expand φ(s)

φ(s)Make sparse

Sponsored by:

FA9550-09-1-0522 374172-2009

Existing Gap in the Literature

Real-world sequential deci-
sion making problems such as
multi-agent domains have
large state spaces, making it
impractical to store state
values using a lookup table.

Linear function approximation has been a successful
approach.

Contributions

Approach

Empirical Results

1

2

3

[3] S. Whiteson, M. E. Taylor, and P. Stone, “Adaptive tile coding for value function approximation”, Technical Report AI-TR-07-339, University of Texas at Austin, 2007.

Conclusion

Online representational expansion techniques have improved the learning speed of existing
reinforcement learning (RL) algorithms in low dimensional domains, yet existing online expan-
sion methods do not scale well to high dimensional problems. We conjecture that one of the
main difficulties limiting this scaling is that features defined over the full-dimensional state
space often generalize poorly. Hence, we introduce incremental Feature Dependency Discov-
ery (iFDD) as a computationally-inexpensive method for representational expansion that can
be combined with any online, value-based RL method that uses binary features. Unlike other
online expansion techniques, iFDD creates new features in low dimensional subspaces of the
full state space where feedback errors persist. We provide convergence and computational
complexity guarantees for iFDD, as well as showing empirically that iFDD scales well to high
dimensional multi-agent planning domains with hundreds of millions of state-action pairs.

iFDD performed really well across all domains and its success was not due to the
quantity of features as shown by the low memory usage but the quality of features.
Given sparse features, iFDD has per-time-step complexity independent of the
number of features. Combined with TD learning, iFDD is guaranteed to converge
to the best possible approximation of the value function for a fixed policy.

Online Discovery of Feature Dependencies
Alborz Geramifard, Finale Doshi-Velez, Joshua Redding, Nicholas Roy, Jonathan P. How

Problem

Abstract

[1] F. Rivest and D. Precup, “Combining TD-learning with cascade-correlation networks”, In Proceedings of the Twentieth International Conference on Machine Learning (ICML), pages 632–639.AAAI Press, 2003.

[2] J. hong Wu and R. Givan, “Feature-discovering approximate value iteration methods”, in Symposium on Abstraction, Reformulation, and Approximation (SARA), Vol. 3607, pp. 321-331, Springer, Lecture Notes in Computer Science, 2005.

[4] J. Zico Kolter and Andrew Y. Ng, “Regularization and feature selection in least-squares temporal difference learning”, In Proceedings of the 26th Annual International Conference on Machine Learning (ICML), pages 521–528, New York,
NY, USA, 2009.

Where the most accumulated error is gathered, is
where the representation should grow.

Sarsa

iFDD

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovered

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf (s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3

Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F,ψ
Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h
3 if f /∈ F then

4 ψf ← ψf + |δt|
5 if ψf > ξ then

6 F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)

1 φ(s) ← 0̄
2 activeInitialFeatures ← {i|φ0

i (s) = 1}
3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7 activeInitialFeatures ← activeInitialFeatures −f
8 φf (s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4

For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf (s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h
are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

1

2

3

BlocksWorld ≈ 3.5×105

1 2 3

+1

4

.8

+1 5 +5

8 6

+1

7+5

.8

8
+10

.5

10

Maintenance Refuel Communication Target

Advance
Retreat
Loiter

Targets

UAVs

fuel=10

fuel=10

fuel=10

Persistant Surveillance ≈ 1.5×108

Rescue ≈ 2×108

Two UAVs collaborate to rescue people at nodes. Number of people
to rescue is shown as positive numbers. Probability of success is
highlighted in the clouds.

Air and ground robots carrying out a mission, MIT, 2011

Weights
Features

Online Discovery of Feature Dependencies

!1

Initial

!2

!3

Discovered

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

controls the rate of expansion. This parameter is domain-

dependent and requires expert knowledge to set appropri-

ately. However, intuitively lower values encourage faster

expansion and improve the convergence to the best possible

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

While the ideal value for ξ will depend on the stochasticity

of the environment, we found our empirical results to be

fairly robust to the value of the discovery threshold.

We focus on iFDD integrated with TD learning, but any on-

line, value-based RL method could supply the feedback er-

ror. Sec. 3.2 provides a proof that for the policy evaluation

case the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf (s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3

Considering only conjunctive features is sufficient

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

Algorithm 1:Discover

Input: φ(s), δt, ξ,F,ψ
Output: F,ψ
foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do1

f ← g ∧ h2

if f /∈ F then3

ψf ← ψf + |δt|4

if ψf > ξ then5

F ← F ∪ f6

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F
Output: φ(s)
φ(s) ← 0̄1

activeInitialFeatures ← {i|φ0
i (s) = 1}2

Candidates ← SortedPowerSet(activeInitialFeatures)3

while activeInitialFeatures �= ∅ do4

f ← Candidates.next()5

if f ∈ F then6

activeInitialFeatures ← activeInitialFeatures �f7

φf (s) ← 18

return φ(s)9

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The relevance ψf of each potential feature f = g∧h is

then incremented by the absolute approximation error |δt|
(line 4). If the relevance ψf of a feature f exceeds the dis-

covery threshold ξ, then feature f is added to the set F and

used for future approximation (lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4

For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf (s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.
4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

Discovery threshold

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

Set of features

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

Sum of errors

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

Error at time
220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

!1

Initial

!2

!3

Discovere
d

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1. A snapshot of iFDD: Initial features are circles, con-

junctive features are rectangles. The relevance ψf of a potential

feature f is the filled part of the rectangle. Potential features are

discovered if their relevance ψ reaches the discovery threshold ξ.

representation, while higher values slow down the expan-

sion and allow for a better exploitation of generalization.

We focus on iFDD integrated with TD learning, but any

on-line, value-based RL method could supply the feedback

error. In Sec. 3.2, it is proven for the policy evaluation case

that the iFDD algorithm with TD learning will converge to

the best possible function approximation given an initial set

of binary features. We note that, if the initial features are

such that no function approximation – linear or nonlinear

– can satisfactorily approximate the underlying value func-

tion, then applying iFDD will not help. For example, if a

key feature such as an agent’s location is not included in

the initial set of features, then the value function approxi-

mation will be poor even after applying iFDD.

3.1. Algorithm Details

The process begins with an initial set of binary features; let

F be the current set of features used for the linear function

approximation at any point in time. We use φf(s) = 1 to

indicate that feature f ∈ F is active in state s. After every

interaction, we compute the local value function approxi-

mation error δt (e.g., the TD error), the current feature vec-

tor φ(st), and update the weight vector θ (in the TD case,

θt+1 = θt+αtδtφ(st), where αt is the learning rate). Next,

Algorithm 1 is applied to discover new features.

The first step in the discovery process (lines 1,2) iden-

tifies all conjunctions of active features as potential fea-

tures.
3 Considering only conjunctive features is sufficient

for iFDD to converge to the best approximation possible

given the initial feature set; conjunctive features also re-

main sparse and thus keep the per-time-step computation

low. The potential relevance ψf of each potential feature

f = g ∧ h is then incremented by the absolute approxi-

mation error |δt| (line 4). If the potential relevance ψf of

3
Conjunctions are stored in a “flat” representation, so there

is only one conjunctive feature a ∧ b ∧ c for the conjunction of

features a ∧ (b ∧ c) and (a ∧ b) ∧ c.

Algorithm 1:Discover

Input: φ(s), δt, ξ,F
,ψ

Output: F,ψ

1 foreach (g, h) ∈ {(i, j)|φi(s)φj(s) = 1} do

2 f ← g ∧ h

3 if f /∈ F then

4
ψf ← ψf + |δt|

5
if ψf > ξ then

6
F ← F ∪ f

Algorithm 2:Generate Feature Vector (φ)

Input: φ0(s),F

Output: φ(s)

1 φ(s) ← 0̄

2 activeInitialFeatures ← {i|φ0i (s) = 1}

3 Candidates ← ℘(activeInitialFeatures) *sorted

4 while activeInitialFeatures �= ∅ do

5 f ← Candidates.next()

6 if f ∈ F then

7
activeInitialFeatures ← activeInitialFeatures −f

8
φf(s) ← 1

9 return φ(s)

a feature f exceeds the discovery threshold ξ, then feature

f is added to the set F and used for future approximation

(lines 5,6).

The computational complexity of iFDD can be reduced

through a sparse summary of all active features. Note that if

feature f = g ∧ h is active, then features g and h must also

be active. Thus, we can greedily consider the features com-

posed of the largest conjunction sets until all active initial

features have been included to create a sparse set of fea-

tures that provides a summary of all active features.
4 For

example, if initial features g and h are active in state s and

feature f = g ∧ h has been discovered, then we set the

φf(s) = 1 and φg(s),φh(s) = 0 since g and h are cov-

ered by f . Algorithm 2 describes the above process more

formally: given the initial feature vector, φ0(s), candidate

features are found by identifying the active initial features

and calculating its power set (℘) sorted by set sizes (lines

2,3). The loop (line 4) keeps activating candidate features

that exist in the feature set F until all active initial features

are covered (lines 5-8). In the beginning, when no feature

dependencies have been discovered, this function simply

outputs the initial features.

Using the sparse summary also can help speed up the learn-

ing process. Suppose there are two features g and h that,

when jointly active, result in high approximation errors.

However, if one of them is active, then the approxima-

tion error is relatively low. Let f be the discovered fea-

ture f = g ∧ h. In our sparse summary, when g and h

are both active in the initial representation, we set φf = 1

4
Finding the minimum covering set is NP-complete but greedy

selection gives the best polynomial time approximation.

Basis function for the

initial feature set

[5] B. Ratitch and D. Precup, “Sparse distributed memories for on-line value-based reinforcement learning”, In Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, ECML, volume 3201 of Lecture Notes in Com-
puter Science, pages 347–358. Springer, 2004.

Pitmaze Pendulum BlocksWorld PSM Rescue

Hand Tuned

Initial Features

Sarsa + iFD

ATC

SDM

Tabular

Total Q(s,a)

30.00

88.00 120.00 1,296.00 1,377.00 5,632.00 10.00 0.35

454.13 546 9,882.00 17,670.00 10,022.00 45.49 2.68

366 59,162.40 16,031.70 27,217.00 30.50 16.06

493.00 72,000 53,092 132,247 41.08 19.55

380.00 466.00 144,039.60 881,875.00 972,898.13 38.83 39.11

484 1,200.00 368,316 147,197,952 207,618,048

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

Inverted Pendulum BlocksWorld Persistant Surveillance Rescue Mission

F
e

a
tu

re
s

Initial initial+iFDD ATC SDM Tabular |(s,a)|

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

Inverted Pendulum BlocksWorld Persistant Surveillance Rescue Mission

F
e

a
tu

re
s

Initial initial+iFDD ATC SDM Tabular Total

