Online Discovery of Feature Dependencies

Alborz Geramifard - June, zoII agf@mit.edu

$\because \cdot$
 Joint Work

 Finale Doshi

Nicholas Roy

$:$ Problem

Why is it a hard?

- Unknown Model

Q Stochastic Environment

- Large State Space

Q Limited Online Computation

Why is it a hard?

Q Unknown Model

Online Model-Free RL

Q Stochastic Environment

- Large State Space
- Limited Online Computation

Existing Gap in the Literature

© Lack of Convergence [Rivest et al. 2003]

Q Computational Complexity [Wu et al. 2004]
© Sample Complexity [Whiteson et al. 2007]
Q Hand tuning many parameters [Kolter et al. 2009]

Existing Gap in the Literature

Q Lack of Convergence [Rivest et al. 2003] Has convergence proof
© Computational Complexity [Wu et al. 2004]
© Sample Complexity [Whiteson et al. 2007]
© Hand tuning many parameters [Kolter et al. 2009]

Existing Gap in the Literature

© Lack of Convergence [Rivest et al. 2003] Has convergence proof
Q Computational Complexity [Wu et al. 2004] Required < $4 \mathbf{m s}$ per step
© Sample Complexity [Whiteson et al. 2007]

Q Hand tuning many parameters [Kolter et al. 2009]

Existing Gap in the Literature

Q Lack of Convergence [Rivest et al. 2003] Has convergence proof
© Computational Complexity [Wu et al. 2004] Required < $4 \mathbf{m s}$ per step

- Sample Complexity [Whiteson et al. 2007]

Scaled to large problems
© Hand tuning many parameters [Kolter et al. 2009]

Existing Gap in the Literature

Q Lack of Convergence [Rivest et al. 2003] Has convergence proof
Q Computational Complexity [Wu et al. 2004] Required < $4 \mathbf{m s}$ per step

- Sample Complexity [Whiteson et al. 2007] Scaled to large problems
© Hand tuning many parameters [Kolter et al. 2009] Has one parameter

Contributions

Q Introduced Incremental Feature Dependency Discovery (iFDD) as a novel feature expansion method
O Provided asymptotic convergence analysis
Q Empirically showed the scalability of the new approach in problems with $\approx \mathbf{1 0} \mathbf{0}^{8}$ possibilities

Reinforcement Learning

$$
V^{\pi}(s)=E_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s\right]
$$

Linear Function Approximation

Why Features Expansion?

s					

Why Features Expansion?

Why Features Expansion?

Why Features Expansion?

Why Features Expansion?

Control Loop:

Sarsa

Control Loop:

Sarsa

Sarsa

$$
s_{t} \xrightarrow{(\pi) \mathrm{a}, \mathrm{r}} s_{t+1}
$$

0
Temporal Difference (TD) Error

$$
\delta_{t}=r_{t}+\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right)
$$

θ
Linear Function Approximation
$\theta_{t+1}=\theta_{t}+\alpha_{t} \phi\left(s_{t}\right) \delta_{t}(V)$.
[Sutton 88]

Sources of TD Error

- Incorrect Weights

Q Stochasticity

- Underpowered Representation

Sources of TD Error

Incorrect Weights

Q Stochasticity

- Underpowered Representation

Sources of TD Error

Incorrect Weights
Model Based MethodsUnderpowered Representation

Sources of TD Error

- Incorrect Weights

Q Stochasticity
iFDD
Underpowered Representation

Sources of TD Error

- Incorrect Weights

Q Stochasticity

iFDD

Q Underpowered Representation

Most accumulated error \Rightarrow where the representation should grow.

Control Loop:

2. Update Weights

Sarsa $\underset{\mathrm{iFDD}}{\boldsymbol{\downarrow}}\left|\delta_{t}\right|$

Control Loop:

2 Update Weights

Update Features

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Incremental Feature Dependency Discovery

Empirical Results

Representations used with Sarsa
initial
iFDD
ATC [Whiteson et al. 2007]
SDM [Ratitch et al. 2004]
Tabular

Domains

Domains

Pendulum BlocksWorld

Domains

Simulation Results

iFDD Theory

TD-iFDD will provide the best possible approximation given the initial set of features.
-
Given initial features with sparse outputs, the per-time-step computational complexity of iFDD is independent of the total number of features.

Contributions

\odotIntroduced iFDD as a novel feature expansion method
Q Provided asymptotic convergence analysis
Q Empirically showed the scalability of the new approach in problem sizes $\approx \mathbf{1 0}{ }^{8}$

Backup Slides

LFA: Example

State
Feature
$\phi_{t}(s)$
Weight
θ_{t}

Value

$$
\begin{aligned}
\mathrm{V}(\mathrm{~s}) & =20+10+10 \\
& =40
\end{aligned}
$$

Algorithms

Algorithm 1: Discover

Input: $\phi(s), \delta_{t}, \xi, \mathbf{F}, \psi$
Output: F, ψ
foreach $(g, h) \in\left\{(i, j) \mid \phi_{i}(s) \phi_{j}(s)=1\right\}$ do
$f \leftarrow g \wedge h$
if $f \notin \mathbf{F}$ then
$\psi_{f} \leftarrow \psi_{f}+\left|\delta_{t}\right|$
if $\psi_{f}>\xi$ then
$\mathbf{F} \leftarrow \mathbf{F} \cup f$
end
end
end

Algorithm 2: Activate Features

Input: $\phi^{0}(s), \mathbf{F}$
Output: $\phi(s)$
$\phi(s) \leftarrow \overline{0}$
activeInitialFeatures $\leftarrow\left\{i \mid \phi_{i}^{0}(s)=1\right\}$
Candidates $\leftarrow \wp$ (activeInitialFeatures) (*sorted by set size) while activeInitialFeatures $\neq \emptyset$ do
$f \leftarrow$ Candidates.next()
if $f \in \mathbf{F}$ then activeInitialFeatures \leftarrow activeInitialFeatures $-f$ $\phi_{f}(s) \leftarrow 1$
end
end
return $\phi(s)$
iFDD: 3D Example

iFDD: 3D Example

iFDD: 3D Example

iFDD - Mapping

- Sort Layers
- Dropping a Stone

iFDD - Mapping

- Sort Layers
- Dropping a Stone

iFDD - Mapping

- Sort Layers
- Dropping a Stone

iFDD - Mapping

iFDD - Mapping

iFDD - Mapping

Q Sort Layers

- Dropping a Stone

iFDD - Mapping

Q Sort Layers

- Dropping a Stone

iFDD - Mapping

iFDD - Mapping

iFDD - Mapping

Detailed Results

Comparison with Random Expansion

ARiFDD

ARiFDD

© iFDD is ARiFDD with SplitThreshold of ∞.
\otimes For each basic tile, weighted $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}$ are stored incrementally.

Empirical results suggest cutting through the dimension with the least variance works best.

ARiFDD

Theory

Theorems

Consider a 4 state MDP with 2 binary features

$$
\begin{aligned}
& \mathrm{s} 1 \\
& \mathrm{~s} 2 \\
& \mathrm{~s} 3 \\
& \mathrm{~s} 4
\end{aligned}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Theorems

Consider a 4 state MDP with 2 binary features

Rate of Convergence
 $$
\left|\mathbf{V}^{*}-\tilde{\mathbf{V}}\right| \mid=x>0
$$

$\forall \boldsymbol{\phi}_{f} \in \mathbb{R}^{n}: \beta=\angle\left(\boldsymbol{\phi}_{f}, \boldsymbol{\delta}\right)<\cos ^{-1}(\gamma)$

$$
\begin{aligned}
& \exists \xi \in \mathbb{R}:\left\|\mathbf{V}^{*}-\tilde{\mathbf{V}}\right\|-\left\|\mathbf{V}^{*}-\left(\tilde{\mathbf{V}}+\xi \phi_{f}\right)\right\| \geq \zeta x \\
&\left\|\mathbf{V}^{*}-\Pi \mathbf{V}^{*}\right\|-\left\|\mathbf{V}^{*}-\Pi^{\prime} \mathbf{V}^{*}\right\| \geq \zeta x
\end{aligned}
$$

$$
\zeta=1-\gamma \cos (\beta)-\sqrt{1-\gamma^{2}} \sin (\beta)<1
$$

[Parr et al. 2007]

Proof Sketch

[Parr et al. 2007]

Selection Mechanism

$f^{*}=\operatorname{argmax}_{f \in \operatorname{pair}(F)} \frac{\sum_{s \in \text { Samples }, \phi_{f}(s)=1} \delta(s)}{\sqrt{\sum_{s \in \text { Samples }} \phi_{f}(s)=1}}$

ATC and SDM

Adaptive Tile Coding

[Whiteson et al. 2007]

Sparse Distributed Memories

[Ratitch et al. 2004]

