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Abstract
Risk and reward are fundamental concepts in the
cooperative control of unmanned systems. In
this research, we focus on developing a con-
structive relationship between cooperative plan-
ning and learning algorithms to mitigate the
learning risk while boosting system (planner +
learner) asymptotic performance and guarantee-
ing the safety of agent behavior. Our frame-
work is an instance of the intelligent coopera-
tive control architecture (iCCA) where the learner
incrementally improves on the output of a base-
line planner through interaction and constrained
exploration. We extend previous work by ex-
tracting the embedded parameterized transition
model from within the cooperative planner and
making it adaptable and accessible to all iCCA
modules. We empirically demonstrate the ad-
vantage of using an adaptive model over a static
model and pure learning approaches in a grid
world problem. Finally we discuss two exten-
sions to our approach to handle cases where the
true model can not be captured through the pre-
sumed functional form.

1. Introduction
The concept of risk is common among humans, robots and
software agents alike. Amongst the latter two, risk mod-
els are routinely combined with relevant observations to
analyze potential actions for unnecessary risk or other un-
intended consequences. Risk mitigation is a particularly
interesting topic in the context of the intelligent coopera-
tive control of teams of autonomous mobile robots (Kim,
2003; Weibel & Hansman, 2005). In such a multi-agent
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Figure 1. The intelligent cooperative control architecture (iCCA)
is a customizable template for tightly integrating planning and
learning algorithms.

setting, cooperative planning algorithms rely on knowledge
of underlying transition models to provide guarantees on
resulting agent performance. In many situations however,
these models are based on simple abstractions of the system
and are lacking in representational power. Using simpli-
fied models may aid computational tractability and enable
quick analysis, but at the possible cost of implicitly intro-
ducing significant risk elements into cooperative plans.

Aimed at mitigating this risk, we adopt the intelligent co-
operative control architecture (iCCA) as a framework for
tightly coupling cooperative planning and learning algo-
rithms (Redding et al., 2010). Fig. 1 shows the template
iCCA framework which is comprised of a cooperative plan-
ner, a learner, and a performance analysis module. The
performance analysis module is implemented as a risk-
analyzer where actions suggested by the learner can be
overridden by the baseline cooperative planner if they are
deemed unsafe. This synergistic planner-learner relation-
ship yields a “safe” policy in the eyes of the planner, upon
which the learner can improve.

This research focused on developing a constructive rela-
tionship between cooperative planning and learning algo-
rithms to reduce agent risk while boosting system (planner
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+ learner) performance. We extend previous work (Geram-
ifard et al., 2011) by extracting the parameterized transition
model from within the cooperative planner and making it
accessible to all iCCA modules. In addition, we consider
the cases where the assumed functional form of the model
is both correct and incorrect.

When the functional form is correct, we update the as-
sumed model using an adaptive parameter estimation
scheme and demonstrate that the performance of the re-
sulting system increases. Furthermore, we explore two
methods for handling the case when the assumed func-
tional form can not represent the true model (e.g., a system
with state dependent noise represented through a uniform
noise model). First, we enable the learner to be the sole
decision maker in areas with high confidence, in which it
has experienced many interactions. This extension elimi-
nates the need for the baseline planner altogether asymp-
totically. Second, we use past data to estimate the reward
of the learner’s policy. While the policy used to obtain past
data may differ from the current policy of the agent, we
can still exploit the Markov assumption to piece together
trajectories the learner would have experienced given the
past history (Bowling et al., 2008). Additionally, we use
the incorrect functional form of the model to further reduce
the amount of experience required to accurately estimate
the learner’s reward using the method of control variates
(Zinkevich et al., 2006; White, 2009).

The proposed approach of integrating an adaptive model
into the planning & learning framework is shown to yield
significant improvements in sample complexity in the grid
world domain, when the assumed functional form of the
model is correct. When incorrect, we highlight the draw-
backs of our approach and discuss two extensions which
can mitigate such drawbacks. The paper proceeds as fol-
lows: Section 2 provides background information and Sec-
tion 3 highlights the problem of interest by defining a ped-
agogical scenario where planning and learning algorithms
are used to mitigate stochastic risk. Section 4 outlines the
proposed technical approach for learning to mitigate risk.
Section 6 highlights two extensions to our approach when
the true model can not be captured in the parametric form
assumed for the model. Section 7 concludes the paper.

2. Background
2.1. Markov Decision Processes

Markov decision processes (MDPs) provide a general
formulation for sequential planning under uncertainty
(Howard, 1960; Puterman, 1994; Littman et al., 1995;
Kaelbling et al., 1998; Russell & Norvig, 2003). MDPs
are a natural framework for solving multi-agent planning
problems as their versatility allows modeling of stochas-

tic system dynamics as well as inter-dependencies between
agents. An MDP is defined by tuple (S,A,Pass′ ,Rass′ , γ),
where S is the set of states, A is the set of possible ac-
tions. Taking action a from state s has Pass′ probability of
ending up in state s′ and receiving reward Rass′ . Finally
γ ∈ [0, 1] is the discount factor used to prioritize early re-
wards against future rewards.1 A trajectory of experience
is defined by sequence s0, a0, r0, s1, a1, r1, · · · , where the
agent starts at state s0, takes action a0, receives reward r0,
transits to state s1, and so on. A policy π is defined as a
function from S × A to the probability space [0, 1], where
π(s, a) corresponds to the probability of taking action a
from state s. The value of each state-action pair under
policy π, Qπ(s, a), is defined as the expected sum of dis-
counted rewards when the agent takes action a from state s
and follow policy π thereafter:

Qπ(s, a) = Eπ

[ ∞∑
t=1

γtrt

∣∣∣∣s0 = s, a0 = a,

]
.

The optimal policy π∗ maximizes the above expectation for
all state-action pairs: π∗ = argmaxaQ

π∗(s, a).

2.2. Reinforcement Learning in MDPs

The underlying goal of the two reinforcement learning al-
gorithms presented here is to improve performance of the
cooperative planning system over time using observed re-
wards by exploring new agent behaviors that may lead to
more favorable outcomes. The details of how these algo-
rithms accomplish this goal are discussed in the following
sections.

2.2.1. SARSA

A popular approach among MDP solvers is to find an ap-
proximation to Qπ(s, a) (policy evaluation) and update the
policy with respect to the resulting values (policy improve-
ment). Temporal Difference learning (TD) (Sutton, 1988)
is a traditional policy evaluation method in which the cur-
rentQ(s, a) is adjusted based on the difference between the
current estimate ofQ and a better approximation formed by
the actual observed reward and the estimated value of the
following state. Given (st, at, rt, st+1, at+1) and the cur-
rent value estimates, the temporal difference (TD) error, δt,
is calculated as:

δt(Q) = rt + γQπ(st+1, at+1)−Qπ(st, at).

The one-step TD algorithm, also known as TD(0), updates
the value estimates using:

Qπ(st, at) = Qπ(st, at) + αδt(Q), (1)

1γ can be set to 1 only for episodic tasks, where the length of
trajectories are fixed.
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where α is the learning rate. Sarsa (state action reward state
action) (Rummery & Niranjan, 1994) is basic TD for which
the policy is directly derived from the Q values as:

πSarsa(s, a) =

{
1− ε a = argmaxaQ(s, a)
ε
|A| Otherwise ,

where ε is the probability of taking a random action. This
policy is also known as the ε-greedy policy2.

3. The GridWorld Domain: A Pedagogical
Example

Consider the gridworld domain shown in Fig. 2-(a), in
which the task is to navigate from the bottom-middle (•)
to one of the top corner grids (?), while avoiding the dan-
ger zone (◦), where the agent will be eliminated upon en-
trance. At each step the agent can take any action from the
set {↑, ↓,←,→}. However, due to wind disturbances un-
beknownst to the agent, there is a 20% chance the agent
will be transferred into a neighboring unoccupied grid cell
upon executing each action. The reward for reaching ei-
ther of the goal regions and the danger zone are +1 and
−1, respectively, while every other action results in −0.01
reward.

Let’s first consider the conservative policy shown in Fig. 2-
(b) designed for high values of wind noise. As expected,
the nominal path, highlighted as a gray watermark, follows
the long but safe path to the top left goal. The color of
each grid represents the true value of each state under the
policy. Green indicates positive, and white indicates zero.
The value of blocked grids are shown as red.

Fig. 2-(c) depicts a policy designed to reach the right goal
corner from every location. This policy ignores the exis-
tence of the noise, hence the nominal path in this case gets
close to the danger zone. Finally Fig. 2-(d) shows the op-
timal solution. Notice how the nominal path avoids getting
close to the danger zone. Model-free learning techniques
such as Sarsa can find the optimal policy of the noisy en-
vironment through interaction, but require a great deal of
training examples. More critically, they may deliberately
move the agent towards dangerous regions just to gain in-
formation about those areas. Previously, we demonstrated
that when a planner (e.g., methods to generate policies in
Fig. 2-(b),(c)) is integrated with a learner, it can rule out
intentionally poor decisions, resulting in safer exploration.
Furthermore, the planner’s policy can be used as a starting
point for the learner to bootstrap on, potentially reducing
the amount of data required by the learner to master the
task (Redding et al., 2010; Geramifard et al., 2011). In our
past work, we considered the case where the model used

2Ties are broken randomly, if more than one action maximizes
Q(s, a).

for planning and risk analysis were static. In this paper,
we expand our framework by representing the model as a
separate entity which can be adapted through the learning
process. The focus here is on the case where the paramet-
ric form of the approximated model (T̂ ) includes the true
underlying model (T ) (e.g., assuming an unknown uniform
noise parameter for the gridworld domain). In Section 6,
we discuss drawbacks of our approach when T̂ is unable to
exactly represent T and introduce two potential extensions.

Adding a parametric model to the planning/learning
scheme is easily motivated by the case when the initial
bootstrapped policy is wrong, or built from incorrect as-
sumptions. In such a case, it is more effective to simply
switch the underlying policy with a better one, rather than
requiring a plethora of interactions to learn from and refine
a poor initial policy. The remainder of this paper shows that
by representing the model as a separate entity which can be
adapted through the learning process, we enable the ability
to intelligently switch-out the underlying policy, which is
refined by the learning process.

4. Technical Approach
In this section, we introduce the architecture in which this
research was carried out. First, notice the addition of
the “Models” module in the iCCA framework as imple-
mented when compared to the template architecture of Fig-
ure 1. This module allows us to adapt the agent’s transition
model in light of actual transitions experienced. An esti-
mated model, T̂ , is output and is used to sample successive
states when simulating trajectories. As mentioned above,
this model is assumed to be of the correct functional form
(e.g., a single uncertain parameter). Additionally, Figure 1
shows a dashed boxed outlining the learner and the risk-
analysis modules, which are formulated together within a
Markov decision process (MDP) to enable the use of rein-
forcement learning algorithms in the learning module.

The Sarsa (Rummery & Niranjan, 1994) algorithms is im-
plemented as the system learner which uses past experi-
ences to guide exploration and then suggests behaviors that
are likely to lead to more favorable outcomes than those
suggested by the baseline planner. The performance anal-
ysis block is implemented as a risk analysis tool where ac-
tions suggested by the learner can be rejected if they are
deemed too risky. The following sections describe iCCA
blocks in further detail.

4.1. Cooperative Planner

At its fundamental level, the cooperative planning algo-
rithm used in iCCA yields a solution to the multi-agent
path planning, task assignment or resource allocation prob-
lem, depending on the domain. This means that it seeks
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Figure 2. The gridworld domain is shown in (a), where the task is to navigate from the bottom middle (•) to one of the top corners (?).
The the danger region (◦) is an off-limit area where the agent should avoid. The corresponding policy and value function, are depicted
with respect to (b) a conservative policy to reach the left corner in most states, (c) an aggressive policy which aims for the top right
corner, and (d) the optimal policy.

to optimize an underlying, user-defined objective function.
Many existing cooperative control algorithms use observed
performance to calculate temporal-difference errors which
drive the objective function in the desired direction (Mur-
phey & Pardalos, 2002; Bertsekas & Tsitsiklis, 1996). Re-
gardless of how it is formulated (e.g. MILP, MDP, CBBA),
the cooperative planner, or cooperative control algorithm,
is the source for baseline plan generation within iCCA. We
assume that this module can provide safe solutions to the
problem in reasonable amount of time.

4.2. Learning and Risk-Analysis

As discussed earlier, learning algorithms may encourage
the agent to explore dangerous situations (e.g., flying close
to the danger zone) in hope of improving the long-term per-
formance. While some degree of exploration is necessary,
unbounded exploration can lead to undesirable scenarios
such as crashing or losing a UAV. To avoid such undesirable
outcomes, we implemented the iCCA performance analy-
sis module as a risk analysis element where candidate ac-

tions are evaluated for safety against an adaptive estimated
transition model T̂ . Actions deemed too “risky” are re-
placed with the safe action suggested by the cooperative
planner. As the risk-analysis and learning modules are cou-
pled within an MDP formulation, as shown by the dashed
box in Fig. 3, we now discuss the details of the learning and
risk-analysis algorithms.

Previous research employed a risk analysis scheme that
used the planner’s transition model, which can be stochas-
tic, to mitigate risk (Geramifard et al., 2011). In this re-
search, we pull this embedded model from within the plan-
ner and allow it to be updated online. This allows both
the planner and the risk-analysis module to benefit from
model updates. Algorithm 1, explains the risk analysis
process where we assume the existence of the function
constrained: S → {0, 1}, which indicates if being in a
particular state is allowed or not. We define “risk” as the
probability of visiting any of the constrained states. The
core idea is to use Monte-Carlo sampling to estimate the
risk level associated with the given state-action pair if the
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Figure 3. The intelligent cooperative control architecture as im-
plemented. The conventional reinforcement learning method
(e.g., Sarsa, Natural Actor Critic) sits in the learner box while the
performance analysis block is implemented as a risk analysis tool.
Together, the learner and the risk-analysis modules are formulated
within a Markov decision process (MDP).

Algorithm 1: safe

Input: s, a, T̂
Output: isSafe
risk ← 01

for i← 1 to M do2

t← 13

st ∼ T̂ (s, a)4

while not constrained(st) and not5

isTerminal(st) and t < H do
st+1 ∼ T̂ (st, πp(st))6

t← t+ 17

risk ← risk + 1
i (constrained(st)− risk)8

isSafe← (risk < ψ)9

planner’s policy is applied thereafter. This is done by sim-
ulating M trajectories from the current state s. The first
action is the learner’s suggested action a, and the rest of
actions come from the planner policy, πp. The adaptive ap-
proximate model, T̂ , is utilized to sample successive states.
Each trajectory is bounded to a fixed horizonH and the risk
of taking action a from state s is estimated by the probabil-
ity of a simulated trajectory reaching a “risky” (e.g., con-
strained) state within horizon H . If this risk is below a
given threshold, ψ, the action is deemed to be safe.

It is important to note that, though not explicitly required,
the cooperative planner should take advantage of the up-
dated transition model by replanning. This ensures that
the risk analysis module is not overriding actions deemed
“risky” by an updated model with actions deemed “safe” by
an outdated model. Such behavior would result in conver-
gence of the cooperative learning algorithm to the baseline
planner policy and the system would not benefit from the

iCCA framework.

For learning schemes that do not represent the policy as
a separate entity, such as Sarsa, integration within iCCA
framework is not immediately obvious. Previously, we
presented an approach for integrating learning approaches
without an explicit actor component (Redding et al., 2010).
Our idea was motivated by the concept of the Rmax algo-
rithm (Brafman & Tennenholtz, 2001). We illustrate our
approach through the parent-child analogy, where the plan-
ner takes the role of the parent and the learner takes the
role of the child. In the beginning, the child does not know
much about the world, hence, for the most part s/he takes
actions advised by the parent. While learning from such ac-
tions, after a while, the child feels comfortable about taking
a self-motivated actions as s/he has been through the same
situation many times. Seeking permission from the parent,
the child could take the action if the parent thinks the ac-
tion is safe. Otherwise the child should follow the action
suggested by the parent.

Our approach for safe, cooperative learning is shown in Al-
gorithm 2. The cyan section highlights our previous coop-
erative method (Geramifard et al., 2011), while the green
region depicts the new version of the algorithm which in-
cludes model adaptation. On every step, the learner in-
spects the suggested action by the planner and estimates
the knownness of the state-action pair by considering the
number of times that state-action pair has been experienced
following the planner’s suggestion (line 3). The knownness
parameter controls the shift speed from following the plan-
ner’s policy to the learner’s policy. Given the knownness
of the state-action pair, the learner probabilistically decides
to select an action from its own policy (line 4). If the ac-
tion is deemed to be safe, it is executed. Otherwise, the
planner’s policy overrides the learner’s choice (lines 5-7).
If the planner’s action is selected, the knownness count of
the corresponding state-action pair is incremented (line 9).
Finally the learner updates its parameter depending on the
choice of the learning algorithm (line 11). A drawback of
Algorithm 2 is that state-action pairs explicitly forbidden
by risk analyzer will not be visited. Hence, if the model is
designed poorly, it can hinder the learning process in parts
of the state space for which the risk is overestimated. Fur-
thermore, the planner can take advantage of the adaptive
model and revisits its policy. Hence we extended the pre-
vious algorithm in order to let the model be adapted during
the learning phase (line 12). Furthermore, if the change to
the model used for planning crosses a predefined threshold
(ξ), the planner revisit its policy and keeps record of the
new model (lines 13-15). If the policy changes, the counts
of all state-action pairs are set to zero so that the learner
start watching the new policy from scratch (line 16,17). An
important observation is that the planner’s policy should
be seen as safe through the eyes of the risk analyzer at all
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Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1

πl ← learner.π2

knownness← min{1, count(s,a)
N }3

if rand() < knownness then4

al ∼ πl(s, a)5

if safe(s, al, T̂ ) then6

a← al7

else8

count(s, a)← count(s, a) + 19

Take action a and observe r, s�10

learner.update(s, a, r, s�)11

T̂ ← NewModelEstimation(s, a, s�)12

if ||T̂ p − T̂ || > ξ then13

T̂ p ← T̂14

πp ← Planner.replan()15

if πp is changed then16

reset all counts to zero17

learner suggests optimal actions such as taking → in the
3rd row, they are deemed too risky as the planner’s policy
which is followed afterward is not safe anymore.

5. Experimental Results
We compare the effectiveness of the adaptive model ap-
proach combined with iCCA framework (AM-iCCA) with
respect to two methods (i) our previous work with a
fixed model (iCCA) and (ii) the pure learning approach
Sarsa (see Sutton & Barto, 1998) in a GridWorld Domain
showin in Figure

against representations that (i) use only the initial features,
(ii) use the full tabular representation, and (iii) use two
state-of-the-art representation-expansion methods: adap-
tive tile coding (ATC), which cuts the space into finer re-
gions through time (Whiteson et al., 2007), and sparse dis-
tributed memories (SDM), which creates overlapping sets
of regions (Ratitch & Precup, 2004). All cases used learn-
ing rates αt = α0

kt

N0+1
N0+Episode #1.1 , where kt was the number

of active features at time t. For each algorithm and do-
main, we used the best α0 from {0.01, 0.1, 1} and N0 from
{100, 1000, 106}. During exploration, we used an �-greedy
policy with � = 0.1. Each algorithm was tested on each
domain for 30 runs (60 for the rescue mission). iFDD was
fairly robust with respect to the threshold, ψ, outperform-
ing initial and tabular representations for most values.
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Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1
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learner suggests optimal actions such as taking → in the
3rd row, they are deemed too risky as the planner’s policy
which is followed afterward is not safe anymore.

5. Experimental Results
We compare the effectiveness of the adaptive model ap-
proach combined with iCCA framework (AM-iCCA) with
respect to two methods (i) our previous work with a
fixed model (iCCA) and (ii) the pure learning approach
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Figure 3. The intelligent cooperative control architecture as im-
plemented. The consensus-based bundle algorithm (CBBA (Choi
et al., 2009)) serves as the cooperative planner to solve the multi-
agent task allocation problem. Natural actor-critic (Bhatnagar
et al., 2007) and Sarsa (Rummery & Niranjan, 1994) reinforce-
ment learning algorithms are implemented as the system learners
and the performance analysis block is implemented as a risk anal-
ysis tool. Together, the learner and the risk-analysis modules are
formulated within a Markov decision process (MDP).

Algorithm 1: safe

Input: s, a, T̂
Output: isSafe
risk ← 01

for i← 1 to M do2

t← 13

st ∼ T̂ (s, a)4

while not constrained(st) and not5

isTerminal(st) and t < H do
st+1 ∼ T̂ (st,π

p(st))6

t← t + 17

risk ← risk + 1
i (constrained(st)− risk)8

isSafe← (risk < ψ)9

simply as they parameterize the policy explicitly. For learn-
ing schemes that do not represent the policy as a separate
entity, such as Sarsa, integration within iCCA framework is
not immediately obvious. Previously, we presented an ap-
proach for integrating learning approaches without an ex-
plicit actor component(Redding et al., 2010). Our idea was
motivated by the concept of the Rmax algorithm (Brafman
& Tennenholtz, 2001). We illustrate our approach through
the parent-child analogy, where the planner takes the role of
the parent and the learner takes the role of the child. In the
beginning, the child does not know much about the world,
hence, for the most part s/he takes actions advised by the
parent. While learning from such actions, after a while,
the child feels comfortable about taking a self-motivated
actions as s/he has been through the same situation many

Algorithm 2: Cooperative Learning
Input: N,πp, s, learner
Output: a
a← πp(s)1

πl ← learner.π2

knownness← min{1, count(s,a)
N }3

if rand() < knownness then4

a� ∼ πl(s, a)5

if safe(s, a�, T̂ ) then6

a← a�7

else8

count(s, a)← count(s, a) + 19

Take action a and observe r, s�10

learner.update(s, a, r, s�)11

T̂ ← NewModelEstimation(s, a, s�)12

if ||T̂ p − T̂ || > ξ then13

T̂ p ← T̂14

πp ← Planner.replan()15

times. Seeking permission from the parent, the child could
take the action if the parent thinks the action is safe. Oth-
erwise the child should follow the action suggested by the
parent.

Algorithm ?details the process. On every step, the learner
inspects the suggested action by the planner and estimates
the knownness of the state-action pair by considering the
number of times that state-action pair has been experienced
following the planner’s suggestion. The N parameter con-
trols the shift speed from following the planner’s policy
to the learner’s policy. Given the knownness of the state-
action pair, the learner probabilistically decides to select an
action from its own policy. If the action is deemed to be
safe, it is executed. Otherwise, the planner’s policy over-
rides the learner’s choice. If the planner’s action is selected,
the knownness count of the corresponding state-action pair
is incremented. Finally the learner updates its parameter
depending on the choice of the learning algorithm. What
this means, however, is that state-action pairs explicitly for-
bidden by the baseline planner will not be intentionally vis-
ited. Hence, if the planner’s model designed poorly, it can
hinder the learning process in parts of the state space for
which the risk is overestimated. Also, notice that any con-
trol RL algorithm, even the actor-critic family of methods,
can be used as the input to Algorithm ?

Here is where we deal with the case of assuming an incor-
rect functional form for the model. Resuming the previous
analogy, the child may simply stop checking if the parent
thinks an action is safe once s/he feels comfortable taking
a self-motivated action. The resulting algorithm is shown
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6. Extensions
So far, we assumed that the true model can be repre-
sented accurately within functional form of the approxi-
mated model. What if this condition does not hold? In this
section, we are going to discuss challenges involved in us-
ing our proposed methods for this scenario. We suggest two
extensions to our approach to overcome these challenges.

Lets go back to the cliff domain, but now consider the case
where the 20% noise is not applied to all states but only to
grids close to the cliff marked with ∗. Fig. 4 depicts the
resulting policy and the value function. Notice that for any
larger noise value the optimal policy remains unchanged.
When the agent assumes the uniform noise model by mis-
take, it generalizes the noisy movements close to the cliff
to all states. This can cause the ACSarsa agent to converge
to a suboptimal policy, as the risk analyzer filters optimal
actions suggested by the learner due to incorrect model as-
sumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revok-
ing this authority. The first extension turns the risk an-
alyzer mandatory only to a limited degree. Back to our
parent/child analogy, the child may simply stop checking
if the parent thinks an action is safe once s/he feels com-
fortable taking a self-motivated action. Thus, the learner
would eventually circumvent the need for a planner alto-
gether. More specifically, line 6 of Algorithm 2 is changed,
so that if the knowness of a particular state reaches a certain
threshold, probing the safety of the action is not mandatory
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times. Otherwise, most actions suggested by the learner
will be deemed too risky by mistake, as they are followed
by the planner’s policy.

5. Experimental Results
We compared the effectiveness of the adaptive model ap-
proach combined with iCCA framework (AM-iCCA) with
respect to (i) our previous work with a static model (iCCA)
and (ii) the pure learning approach. All algorithms used
Sarsa for learning with the following form of learning rate:

αt = α0
N0 + 1

N0 + Episode #1.1
.

For each algorithm, we used the best α0 from {0.01, 0.1, 1}
and N0 from {100, 1000, 106}. During exploration, we
used an ε-greedy policy with ε = 0.1. Value functions
were represented using lookup tables. Both iCCA meth-
ods started with the noise estimate of 40% with the count
weight of 100, and the conservative policy (Fig. 2-c). We
used 5 Monte-Carlo simulations to evaluate risk and re-
jected actions for which any of the trajectories entered the
danger zone. The knowness parameter (N) was set to 10.
For the AM-iCCA, the noise parameter was estimated as:

noise =
#unintended agents moves + initial weight
#total number of moves + initial weight

.

The planner switched to the aggressive policy (Fig. 2-
b) whenever the wind disturbance estimate reached below
25%. Each algorithm was tested for 100 trials. Error bars
represent 95% confidence intervals.
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Figure 4. Empirical results of AM-iCCA, iCCA, and Sarsa algo-
rithms in the grid world problem.

Fig. 4 compares the cumulative return obtained in the grid
world domain for Sarsa, iCCA, and AM-iCCA based on the
number of interactions. The expected performance of both
static policies are shown as horizontal lines. The improve-
ment of iCCA with a static model over the pure learning ap-
proach is statistically significant in the beginning, while the
improvement is less significant as more interactions were
obtained.

Although initialized with the conservative policy, the adap-
tive model approach within iCCA (shown in green in Fig-
ure 4) quickly learned that the actual noise in the system
was much less than the initial 40% estimate and switched
to using (and refining) the aggressive policy. As a result of
this early discovery and switch, AM-iCCA outperformed
both iCCA and Sarsa. Over time, however, all methods
reached the same level of performance. On that note, it is
important to see that all learning methods (Sarsa, iCCA,
AM-iCCA) improved on the baseline static policies, high-
lighting their sub-optimality.

6. Extensions
So far, we assumed that the true model can be repre-
sented accurately within functional form of the approxi-
mated model. In this section, we are going to discuss the
challenges involved in using our proposed methods when
this condition does not hold and suggest two extensions to
overcome such challenges.

Returning to the grid world domain, consider the case
where the 20% noise is not applied to all states. Fig. 5 de-
picts such a scenario where the noise is only applied to the
grid cells marked with a ∗. While passing close to the dan-
ger zone is safe, when the agent assumes the uniform noise
model by mistake, it generalizes the noisy movements to
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Figure 5. The solution to the grid world scenario where the noise is only applied in windy grid cells (∗).

all states including the area close to the danger zone. This
can cause the AM-iCCA to converge to a suboptimal pol-
icy, as the risk analyzer filters optimal actions suggested by
the learner due to the incorrect model assumption.

The root of this problem is that the risk analyzer has the
final authority in selecting the actions from the learner and
the planner, hence both of our extensions focus on revok-
ing this authority. The first extension turns the risk ana-
lyzer mandatory only to a limited degree. Back to our par-
ent/child analogy, the child may simply stop checking if
the parent thinks an action is safe once s/he feels comfort-
able taking a self-motivated action. Thus, the learner would
eventually circumvent the need for a planner altogether.
More specifically, line 6 of Algorithm 2 is changed, so
that if the knownness of a particular state reaches a certain
threshold, probing the safety of the action is not mandatory
anymore. While this approach would introduce another pa-
rameter to the framework, it guarantees that in the limit, the
learner would be the final decision maker. Hence the re-
sulting method will converge to the same solution of Sarsa
asymptotically.

Furthermore, an additional approach to dealing with an in-
correct model is to use the previous experience of our agent
to estimate the reward of the learner’s policy. By accurately
estimating the learner’s policy from past data we can dis-
regard the opinion of the risk analyzer, whose estimate of
the learner’s policy is based on an incorrect model. For a
given action from the learner a and the planner’s policy πp

we evaluate this joint policy’s return by combining two ap-
proaches. First, we estimate the reward from the joint pol-
icy by calculating the reward our agent would receive from
the training data when taking the joint policy, conditioned
on the agent’s current state. Unfortunately, this estimate
of the joint policy’s reward can suffer from high variance
if little data has been seen. To reduce the variance of this
estimate we use the method of control variates (Zinkevich
et al., 2006; White, 2009). A control variate is a random
variable y that is correlated with a random variable x and
is used to reduce the variance of the estimate of x’s expec-
tation. Assuming we know y’s expectation we can write

E[x] = E[x− α(y −B)]

where E[y] = B. Using the incorrect model we can form
a control variate that is correlated with the reward experi-
enced by our agent and can therefore be used to reduce the
variance of the joint policy’s estimated reward.

7. Conclusions
In this paper, we extended our previous iCCA framework
by representing the model as a separate entity which can be
shared by the planner and the risk analyzer. Furthermore,
when the true functional form of the the transition model is
known, we discussed how the new method can facilitate a
safer exploration scheme through a more accurate risk anal-
ysis. Empirical results in a grid world domain verified the
potential of the new approach in reducing the sample com-
plexity. Finally we argued through an example that model
adaptation can hurt the asymptotic performance, if the true
model can not be captured accurately. For this case, we
provided two extensions to our method in order to mitigate
the problem. For the future work, we are going to apply
our algorithms to large UAV mission planning domains to
verify their scalability.
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