
A Bayesian Approach to Finding
Compact Representations for Reinforcement Learning

Alborz Geramifard†, Stefanie Tellex⇤, David Wingate†, Nicholas Roy⇤, Jonathan How†
†{AGF,WINGATED,JHOW}@MIT.EDU

⇤{STEFIE10,NICKROY}@CSAIL.MIT.EDU

Abstract

Feature-based function approximation
methods have been applied to reinforce-
ment learning to learn policies in a
data-efficient way, even when the learner
may not have visited all states during
training. For these methods to work, it
is important to identify the right set of
features in order to reduce over-fitting,
enable efficient learning, and provide
insight into the structure of the problem. In
this paper, we propose a Bayesian method
for reinforcement learning that finds a
policy by identifying a compact set of
high-performing features. Empirical results
in classic RL domains demonstrate that our
algorithm learns concise representations
which focus representational resources on
regions of the state space that are necessary
for good performance.

Keywords: reinforcement learning, representation
learning, policy iteration, Metropolis-Hastings

1. Introduction

For many learning problems, the choice of represen-
tation is critical to an algorithm’s performance: a
good representation can make learning easy, but a
poor one can make learning impossible. In reinforce-
ment learning (RL), this problem is most pronounced
when designing function approximators to solve com-
plex problems: underpowered representations require
a small number of samples to fit yet they often lead
to poor polices. Expressive representations provide
good approximations, yet they often require a plethora

of training data and the learned representation may
not provide insight into the structure of the problem.
Hence, finding a concise set of features that leads to a
good approximation is of high importance when sam-
ples and computation are limited.

While many function approximators have been pro-
posed, linear value function approximators have en-
joyed special attention because of a combination
of analytic tractability and good empirical perfor-
mance (Sutton, 1988; Bradtke and Barto, 1996;
Lagoudakis and Parr, 2003; Bowling et al., 2008; Sut-
ton et al., 2009). In any linear architecture, a function
f(x) is approximated by a linear combination of fea-
tures: f(x) ⇡ w

T
�(x), where �(x) is known as a fea-

ture extractor and w is a corresponding weight vector.
In order for the system to avoid over-fitting and gen-
eralize to previously unseen states, a compact set of
predictive features must be identified. Previous ap-
proaches have identified heuristics for expanding the
feature representation (Geramifard et al., 2011; Sut-
ton and Whitehead, 1993; Mahadevan, 2005; Fahlman
and Lebiere, 1991), but these methods are not biased
towards learning a compact set of features that cap-
tures only the essential elements necessary to solve
the planning problem.

This paper proposes a Bayesian approach to feature
construction which addresses these concerns. We use
the performance of a particular representation as a
likelihood term, and combine it with a prior that fa-
vors simple representations. Inference in the result-
ing probabilistic model jointly optimizes both terms,
identifying a set of features which is simultaneously
compact and performs well. For example, for the in-
verted pendulum problem, our algorithm identifies a
single extra feature, which, when added to the repre-
sentation, enables the system to perform optimally.

2. Background

Reinforcement learning (RL) is a powerful framework
for sequential decision making in which an agent in-
teracts with an environment on every time step. The
environment is often modeled using a Markov De-
cision Process (MDP) which is defined by a tuple
(S,A,Pa

ss0 ,Ra
ss0 , �), where S identifies the finite set

of states, A corresponds to the finite set of actions,
Pa
ss0 dictates the transition probability from state s to

state s

0 when taking action a, Ra
ss0 is the correspond-

ing reward along the way, and � 2 [0, 1] is a dis-
count factor emphasizing the relative significance of
immediate rewards versus feature rewards.1 A tra-
jectory of experience is identified by the sequence
s0, a0, r1, s1, a1, r2, · · · , where at time i the agent in
state si took action ai, received reward ri+1, and tran-
sited to state si+1. The behavior of the agent is cap-
tured through the notion of policy ⇡ : S ⇥A! [0, 1]

governing the probability of taking each action in each
state. We limit our attention to deterministic poli-
cies mapping each state to one action. The value of a
state given policy ⇡ is defined as the expected cumula-
tive discounted rewards obtained starting the sequence
from s and following ⇡ thereafter:

V

⇡
(s) = E⇡

" 1
X

t=1

�

t�1
rt

�

�

�

�

s0 = s

#

Similarly the value of a state-action pair is defined as:

Q

⇡
(s, a) = E⇡

" 1
X

t=1

�

t�1
rt

�

�

�

�

s0 = s, a0 = a,

#

The objective is to find the optimal policy defined as:

⇡

⇤
(s) = argmax

a
Q

⇡⇤
(s, a).

One popular thrust of online reinforcement learning
methods such as SARSA (Rummery and Niranjan,
1994) and Q-Learning (Watkins and Dayan, 1992)
tackle the problem by updating the estimated value of
a state based on temporal difference error (TD-error),
while acting mostly greedy with respect to the esti-
mated values. TD-error is defined as

�t(Q
⇡
) = rt + �Q

⇡
(st+1, at+1)�Q

⇡
(st, at).

One of the main challenges facing researchers is that
most realistic domains consist of large state spaces

1. � = 1 is only valid for episodic tasks.

and continuous state variables. Function approxima-
tors have been used as a machinery to overcome these
obstacles, enabling an agent to generalize its experi-
ence in order to act appropriately in states it may have
never previously encountered during training. Lin-
ear function approximators, which are the focus of
this paper, have been favored due to their theoret-
ical properties and low computational complexities
(Sutton, 1996; Tsitsiklis and Van Roy, 1997; Geram-
ifard et al., 2006). Using a linear function approxi-
mation Q

⇡
(s, a) is approximated by w

T
�(s, a) where

� : S⇥A! <n is the mapping function and w is the
weight vector. For simplicity we call �(s, a) the fea-
ture vector and each element of the vector a feature.

Finding a suitable mapping function is one of the
critical elements to obtain an adept policy. Early
studies on random feature generation methods have
shown promising directions on expanding the repre-
sentation using some basic set of features (Sutton and
Whitehead, 1993). Representational Policy Iteration
(RPI) (Mahadevan, 2005) is another approach for dis-
covering task independent representations fusing the
theory of smooth functions on a Riemannian mani-
fold with the Least-Squares method. Another popu-
lar trend of methods migrated the idea of Cascade-
Correlation (Fahlman and Lebiere, 1991) to the re-
inforcement learning realm using temporal difference
learning (Rivest and Precup, 2003), approximate dy-
namic programming (Girgin and Preux, 2007), and
LSPI (Girgin and Preux, 2008). (Geramifard et al.,
2011) described a method for incrementally adding
a feature which maximally reduces TD-error. How-
ever, none of these techniques facilitate a regulariza-
tion scheme by which the designer incorporates his
knowledge over the set of hypotheses.

From the Bayesian cognitive science community,
Goodman et al. (2008) used a grammar-based in-
duction scheme to learn human concepts in a super-
vised learning setting. In their approach new con-
cepts (features) were derived from a limited set of
initial propositions using a generative grammar. This
work motivated us to revisit the representational ex-
pansion within the RL community from the Bayesian
approach.

3. Our Approach

We adopt a Bayesian approach to find well perform-
ing policies. The core idea is to find a representation

D

�

G

(a)

D

�

Q

⇡

G

(b)
Figure 1: Graphical models a) compact and b) detailed. The gray

node (Data) is given.

for which, given a dataset, the resulting policy is most
likely to be optimal. For this purpose, we define vari-
able G 2 {0, 1} that indicates if a given policy is op-
timal.2 Define D as our observed variable that is a set
of interactions in the form of (st, at, rt, st+1, at+1).
Hence our search for a good representation is formu-
lated as:

�

⇤
= argmax

�
P (�|G, D). (1)

Figure 1-(a) depicts the corresponding graphical
model. D is filled to show that it is a known vari-
able. We factor the distribution in order to break it
down into a prior and a likelihood. The solution to
our optimization problem in Equation 1 can be stated
as finding the Maximum-a-Posteriori (MAP) solution
to the following distribution:

P (�|G, D) / P (G|�, D)P (�|D)

/ P (G|�, D)P (�). (2)

We define a family of representations by forming new
features which are combinations of existing features
using logical operators. This space is infinite, and
could lead to very complex representations; we ad-
dress this issue by defining a prior on representations
that favors simplicity, so that concise representations

2. From this point, we use G instead of G = 1 for brevity.

should have a higher a priori probability compared to
complex ones. The likelihood function is based on
the performance of the representation at obtaining re-
ward. Defining the likelihood requires first computing
the value of each state, Q, using LSPI. Then the policy
⇡ is calculated as a function of Q. Finally G probes
the quality of the computed policy. This chain of rela-
tions is captured in Figure 1-(b).

Since inference for Equation 2 is searching an expo-
nential space, our algorithm samples representations
from the posterior distribution using the Metropolis-
Hastings algorithm. Because our algorithm integrates
Metropolis-Hastings with LSPI, we call the algorithm
Metropolis-Hastings Policy Iteration (MHPI).

3.1. Space of Representations

In this work, we assume the presence of a set of prim-

itive binary features. Starting with the initial set of
features, the system adds extended features, which are
logical combinations of primitive features built using
the ^ and _ operators. Each representation is main-
tained as a directed acyclic graph (DAG) structure,
where nodes are features, and edges are logical op-
erators. We use sparse binary features (i.e., feature
vectors with very limited non-zero values) to reduce
the computational complexity of learning methods, a
common practice within the RL community (Bowling
and Veloso, 2002; Sherstov and Stone, 2005). While
adding negation (¬) to the set of operators expands
the hypothesis space, it eliminates the sparsity char-
acteristic, so we do not include it in the space of rep-
resentations. Figure 2 (left) shows an example feature
set, where each feature is marked with its correspond-
ing index. The number of features for this set is 8,
where 6 of the features are primitive and 2 extended
features are: f8 = f4 ^ f6 and f7 = f2 _ f3. Notice
that more complex extended features can be built on
top of existing extended features (e.g., f9 = f1 ^ f7).
In order to discourage representations with complex
structures, we adopted the following Poisson distri-
bution akin to the work of Goodman et al. (2008) to
mathematically encourage conciseness:

P (�) /
n
Y

i=1

�

di
e

��

di!
,

where n is the total number of features and di is the
depth of feature fi in the DAG structure. Lower values
of � > 0 make complex DAG structures less and less
likely.

3.2. Likelihood

The likelihood function states the probably of a re-
sulting policy with a fixed representation and set of
data to be optimal. This term often encourages ex-
pressive representations. One approach is to relate the
likelihood to the accuracy of the value function after
policy iteration.3 The main drawback of this approach
is that the likelihood function encourages representa-
tions with good value function approximation, rather
than good resulting policies. In general a greedy pol-
icy with respect to the the exact value function is guar-
anteed to be optimal (Sutton and Barto, 1998), but
when the value function is approximated, more accu-
rate value functions do not necessarily provide better
policies as the greedy policy is related to the rank-
ing of the values not their accuracies. Consequently,
we adopt a likelihood function that has high values
for high-performing policies, based on reward earned
from the initial state:

P (G|�, D) / e

⌘V ⇡i (s0) (3)

⌘ > 0 is the distribution parameter. Higher values
of ⌘ make well performing policies more likely to be
optimal.

To obtain ⇡i and V

⇡i
(s0), we use the least-squares

policy iteration (LSPI) (Lagoudakis and Parr, 2003)
algorithm, with one modification. It is known that
each iteration of LSPI does not necessarily improve
the resulting policy. Hence on each iteration of LSPI,
we test the performance of the policy using Monte-
Carlo simulations. After all iterations, the highest per-
forming policy and its performance is returned. No-
tice that if a simulation box is not present, off-policy
evaluation techniques such as importance sampling
(Sutton and Barto, 1998) and model-free Monte Carlo
(Fonteneau et al., 2010) can be used.

3.3. Inference

So far, we have introduced a probability distribution
over representations, where representations with the
best trade-off between conciseness and expressivity
are most likely. While P (�|G, D) can be sampled
for each representation, the shape of it is not known,
posing a challenging for direct inference. To mit-
igate this problem, we use the Metropolis-Hastings
(MH) (Hastings, 1970) algorithm.

3. Assuming each TD-error, �i is sampled independently from
N (0,�2) then P (D|�) = ⇧|D|

i=1G(�i; 0,�
2), where G is the

Gaussian probability density function.

Input: �, propose, T, P (�|G, D), SampleSize

Output: Samples
foreach i 2 {1, · · · , SampleSize} do

Samples(i) = �

�

0 propose(�)

if rand < min

n

1,

P (�0|G,D)T (�|�0)
P (�|G,D)T (�0|�)

o

then
� �

0

return Samples

Algorithm 1: Metropolis-Hastings Policy Iteration

MH is a Markov chain Monte Carlo method for sam-
pling random variables for which the underlying dis-
tribution is not known, shown in Algorithm 1. The
algorithm is seeded with the initial representation
�. The propose function generates a new candidate
sample (�0) on each iteration. The T function is the
transition probability; T (�

0|�) states the probability
of the propose function generating �

0 from �.4 The
posterior distribution function, P (�|G, D), is calcu-
lated using Equation 2. SampleSize states the num-
ber of samples generated through MH. On each itera-
tion, the new candidate sample �

0 is accepted scholas-
tically based on a probability value that highlights the
desirability of the sample. As the number of samples
generated through MH goes to infinity, the distribu-
tion of the samples converges to P .

3.3.1. The propose Function

As stated in Section 3.1, we focus on set of features
built using Boolean logic. Figure 2 explains three
actions used in our propose function: add, mutate,

and remove. The add action attaches a node with a
random operator 2 {^,_} connecting two children
selected uniformly randomly from existing features
(e.g., f9). The second action is to mutate the oper-
ator in one of the extended nodes (e.g., f7). Because
the representation is preserved as a DAG, the effect of
mutation is propagated to related features on the top
of the affected node, allowing fast exploration of the
representation space. The last action is to remove an
extended feature. Note that in order to have the repre-
sentation sound at all time, we only remove features
from the top of the DAG structure with no parents
(i.e., “header” features). On each iteration of MH, the
propose method selects one of the three actions with
equal probability and generates a candidate represen-
tation.

4. In the original MH algorithm the convention is to use Q for
the transition probability, yet this notation collides with the Q
function of the RL framework. Hence we use T .

∧∨

∧

∧∨

∧

∧∧

Primitive features

A
d
d

Mutate

R
em

ove

Extended features

1 2 3 4 5 6

7 8

1 2 3 4 5 6

7 8

1 2 3 4 5 6

7

1 2 3 4 5 6

7 8

9

Figure 2: Representation of primitive and extended features and
the possible outcomes of the propose function

3.3.2. The Transition Probability Function (T)

When the transition probability function is symmetric,
it can be removed from the MH algorithm, as it is can-
celed out during the calculation. In our setting, how-
ever, T is not symmetric. Given that hypothesis � has
p primitive features, e extended features and h header
features, and representation �

0 proposed by taking ac-
tion a from �, the transition probability function is
defined as:

T (�

0|�) =

8

<

:

2(p+e)
/p+e�1 a = add

1
/h a = remove

1
/e a = mutate

4. Empirical Results

In this section, we investigate the performance of run-
ning MHPI in the three domains: maze, BlocksWorld,
and the inverted pendulum problem. For each domain
samples were gathered by the SARSA (Rummery and
Niranjan, 1994) algorithm using the initial feature rep-
resentation with the learning rates generated from the
following series:

↵t = ↵0
N0 + 1

N0 + Episode#1.1
,

where N0 was set to 100, and ↵0 was initialized at
1 due to the short amount of interaction. For explo-
ration, we chose the ✏-greedy approach with ✏ = .1

(i.e., 10% chance of taking a random action on each
time step). The � parameter of the Poisson distribu-
tion was set to 0.01 while ⌘ for the exponential distri-
bution was set to 1. The initial representation used for

MH included all basic features. Additionally �(s, a)

was built by copying �(s) vector into the correspond-
ing action slot. Therefore �(s, a) has |A| times more
features compared to �(s). For LSPI, we limited the
number of policy iterations to 5, while the value of the
initial state for each policy, V ⇡i

(s0), was evaluated by
a single Monte-Carlo run.

Maze Figure 3-(a) shows a simple 11 ⇥ 11 naviga-
tion problem where the initial state is on the top left
corner of the maze (�) and the goal is at the bottom
right corner of the maze (?). Light blue cells indi-
cate blocked areas. The action set consist of one step
moves along the four cardinal directions. Actions are
noiseless and possible if the destination cell is not
blocked. Reward is �.001 for all interactions except
the move leading to the goal with reward of +1. The
episodic task is terminated if goal is reached, or 100
steps is passed. There were 22 initial features used for
�(s) corresponding to 11 rows and 11 columns of the
maze. � was set to 1.

We used 200 samples through 2 episodes, gathered
in the domain using SARSA. The agent reached the
goal in the first episode following the top right cor-
ner of the middle blocked square. The second episode
failed as the agent struggled behind the blocked area
on the bottom. Figure 3-(b) shows the distribution
of the representation sizes sampled along 1, 000 iter-
ations of the MH algorithm, while Figure 3-(c) shows
the corresponding performance of the sampled rep-
resentations. The distribution together with the per-
formance measure suggest that a desirable representa-
tion should have 3 extended features. After 100 itera-
tions all sampled hypotheses were expressive enough
to solve the task. It is interesting to see how Occam’s
Razor is being carried away through the whole pro-
cess. The MH algorithm spent most of its time ex-
ploring various hypotheses with 3 extended features
while the more complicated representations were of
less interest as they provided the same performance
(i.e., likelihood) yet had lower prior.

Figure 3-(d) shows the value function (green indi-
cates positive, white represents zero, and red stands
for blocked areas) and the corresponding policy (ar-
rows) for the best performing representation. This
representation had 3 extended features: (X = 2^Y =

11), (X = 3 ^ Y = 6), and (X = 2 ^ Y = 8), where
X is the row number and Y is the column number.
Notice that the policy guides the agent successfully
from the starting point to the goal on the shortest path.

At the same the policy is not optimal in the whole
state space. This observation which is aligned with
our initial statement is due to two factors. First sam-
ples gathered were sparse and did not cover the whole
state space. Hence the algorithm generalizes the val-
ues incorrectly in some parts of the state space it has
not been exposed to (e.g., ignoring the presence of a
blockade on the last column). Secondly, the perfor-
mance measure was solely based on the execution of
the policies from the initial state. If a globally optimal
policy is desired, V

⇡i in Equation 3 should be eval-
uated from various initial states. In the next exper-
iment, we probed a larger domain that also includes
uncertainty.

BlocksWorld Figure 4-(a) depicts the classical
BlocksWorld domain. The task starts with 4 blocks
laying on the table. The episodic task is to build a
tower out of all blocks with a predefined color order.
Each episode is finished after 100 steps. In each state,
the agent can take any clear block (i.e., a block with
no other block on top of it) and attempt to move it on
the top of any other clear blocks or table. Any move
involves 20% chance of failure resulting in dropping
the block on the table. �(s) was derived directly from
the logical representation of on(A, B) resulting in 16

basic features. The reward function was identical to
the maze domain.

In this domain, we increased the number of samples
to 1, 000 as the environment was noisy and seeing the
goal state was more challenging than the previous de-
terministic task. The agent finished making the tower
only once. Figure 4-(b) shows the distribution of the
representation size after running MH, while Figure 4-
(c) shows the corresponding performance through the
number of steps to reach the goal. It is interesting to
see that the performance started from the top which
means the primitive representation was not expres-
sive enough to solve the task, yet after few iterations
the extended features made the task learnable. The
small perturbation on the performance graph is due
to the stochasticity, causing some trajectories to be
longer than the others. According to MH, representa-
tions with 4 and 5 extended features were most likely
even though fewer extended feature could solve the
task. We conjecture that if our agent gets lucky and
does not drop blocks by accident, it does not need
more extended features to solve the puzzle. On the
other hand, if blocks are dropped during the move-
ment which happens frequently, the agent experiences

new parts of the state space. Hence it needs more fea-
tures to differentiate the value function correctly. In
order to verify our hypothesis, we plotted the average
number of steps it took the agent to build the tower
based on the size of the representation. On failed tri-
als the episode cap (i.e., 100 steps) were accumulated.
Figure 4-(d) shows the corresponding result includ-
ing standard error bars with 95% confidence.5 Adding
one extended feature rendered the task learnable, yet
the resulting policies were not robust to the stochastic-
ity as the error bar highlights. Overall, extended fea-
tures reduced variance and improved the result as long
as they were less than 6. The optimal expected num-
ber of steps for this problem is 3.75. Adding more
than 5 extended features increased variance and in-
creased the expected number of steps due to overfit-
ting. This trend coincides with the sample distribu-
tion shown in Figure 4-(d). Next, we probe MHPI in
a domain with continuous state variables.

Inverted Pendulum Figure 5-(a) depicts the in-
verted pendulum domain based on the previous work
of Lagoudakis and Parr (2003). The episodic task
is to balance the pendulum up right as long as pos-
sible. Each episode is finished when the pendulum
hits the ground or reach the cap of 3, 000 steps. The
state of the system is defined by the angle and angu-
lar velocity of the pendulum, [✓, ˙✓]. Both dimensions
of the initial state were sampled from the uniform
distribution between [�0.2,+0.2] on each episode.
The set of actions were limited to three values of
force: {�50, 0,+50}+ ! where ! is a uniform noise
between [�10, 10]. The reward was +0.01 for all
steps except for the time that the pendulum hits the
ground resulting in �1 reward. Notice that we de-
viated from the reward function in the original work
in order to differentiate between the performance of
different representations. Otherwise LSPI would have
returned �1 for all representations incapable of bal-
ancing the pendulum for 3, 000 steps. � was set to
0.95. Basic features were generated by discretizing
each dimension into 21 buckets separately translating
into 42 initial features.

We gathered 1, 000 steps of experience through 70 tra-
jectories. Figure 5-(b) shows the histogram of the ex-
tended feature size through 500 iterations of MHPI,
while Figure 5-(c) depicts the corresponding perfor-

5. For representations with more than 9 extended features, we
did not have more than 30 samples, hence we excluded the
standard error.

(a) Domain

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

900

1000

of Extended Features

of

 S
am

pl
es

(b) Posterior Distribution

0 200 400 600 800 1000
10

20

30

40

50

60

70

80

90

100

S
te
p
s

Iteration

of

 S
te

ps
 to

 th
e

G
oa

l

MH Iteration

(c) Sampled Performance
1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8
9
10
11

(d) Resulting Policy
Figure 3: Maze domain empirical results

start

goal

(a) Domain

of

 S
am

pl
es

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

180

200

of Extended Features

(b) Posterior Distribution

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

S
te
p
s

Iteration

of

 S
te

ps
 to

 M
ak

e
th

e
To

w
er

MH Iteration

(c) Sampled Performance
of Extended Features

2.75

3.75

4.75

5.75

6.75

7.75

1 2 3 4 5 6 7 8 9 10 11 12#
of

 S
te

ps
 to

 M
ak

e
th

e
To

w
er

(d) Performance Dist.
Figure 4: BlocksWorld

mance along each iteration. Unlike other domains
that more features often helped the performance early
on. In this domain irrelevant features dropped the
performance resulting in MH to reject them. This
process took a while until interesting features started
to emerge. This effect is usually avoided by setting
a burn-in value discarding limited number of initial
samples in the MH setting. Yet we added this data to
highlight the fact that expanding the representation ar-
bitrary does not necessarily improve the performance
in light of limited data. Figure 5-(d) shows the perfor-
mance of the representations based on the number of
extended features. In our experiments, while adding
most extended features hurt the performance, the ex-
tended feature (� ⇡

21  ✓ < 0) ^ (0.4  ˙

✓ < 0.6)

enabled the agent to complete the task successfully.
This feature identifies an intuitive situation where the
pendulum is almost balanced with a velocity on the
opposite direction, which would be often visited. This
is very interesting results, because out of all possible
correlations among the initial features (21⇥ 21), cap-
turing one such intuitive feature made the task solv-
able with very limited amount of data.

In our work, we found that the adjustment of priors
played a critical role on the success of MHPI as priors
compete against the performance of the resulting poli-
cies. Also we found MHPI to be robust in handling
stochastic domains. For exampling adding 20% noise

to the movement of the agent in the maze domain did
not change the performance noticeably.

5. Conclusion

This paper introduces a Bayesian approach for find-
ing concise yet expressive representations for solving
MDPs. We introduced MHPI, a new RL technique
that builds new representations from limited number
of simple features that perform well. Our approach
uses a prior distribution that encourages representa-
tion simplicity, and a likelihood function based on
LSPI to encourage representations that lead to capa-
ble policies. MHPI samples representations from the
resulting posterior distribution. Although, the idea of
MHPI is general, in our implementation, we narrowed
the representation space to DAG structures on primi-
tive binary features. The empirical results show that
MHPI finds simple yet effective representations for
three classical RL problems.

There are immediate visible expansions to this work.
In our implementation, we excluded the samples gen-
erated during the performance test in order to take
advantage of caching old representation evaluations.
One can use such samples along the way while being
aware of the increase to the runtime complexity. An-
other extension is to relax the need of the simulation
box in LSPI by measuring the performance using off-

θ

θ
·

τ

(a) Domain

of

 S
am

pl
es

of Extended Features
0 1 2 3 4 5 6 7 8 9 10 11

0

50

100

150

200

250

300

350

(b) Posterior Distribution

0 100 200 300 400 500
500

1000

1500

2000

2500

3000

S
te
p
s

IterationMH Iteration

of

 B
al

an
ci

ng
 S

te
ps

(c) Performance

1000

1500

2000

2500

3000

0 1 >1
of Extended Features

of

 B
al

an
ci

ng
 S

te
ps

(d) Performance Dist.
Figure 5: Inverted pendulum

policy evaluation techniques such as importance sam-
pling (Sutton and Barto, 1998) and model-free Monte
Carlo (Fonteneau et al., 2010).

References

M. Bowling and M. Veloso. Scalable learning in stochastic games,
2002.

Michael Bowling, Alborz Geramifard, and David Wingate. Sigma
point policy iteration. In AAMAS ’08: Proceedings of the 7th

international joint conference on Autonomous agents and mul-

tiagent systems, pages 379–386, 2008.
S. Bradtke and A. Barto. Linear least-squares algorithms for tem-

poral difference learning. Machine Learning, 22:33–57, 1996.
Scott E. Fahlman and Christian Lebiere. The Cascade-

Correlation Learning Architecture, 1991.
Raphael Fonteneau, Susan A. Murphy, Louis Wehenkel, and

Damien Ernst. Model-free monte carlo-like policy evaluation.
Journal of Machine Learning Research - Proceedings Track,
9:217–224, 2010.

Alborz Geramifard, Michael Bowling, and Richard S. Sutton.
Incremental least-square temporal difference learning. In
The Twenty-first National Conference on Artificial Intelligence

(AAAI), pages 356–361, 2006.
Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy,

and Jonathan How. Online discovery of feature dependencies.
In Lise Getoor and Tobias Scheffer, editors, International Con-

ference on Machine Learning (ICML), pages 881–888, New
York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

Sertan Girgin and Philippe Preux. Feature Discovery in Rein-
forcement Learning using Genetic Programming. Research
Report RR-6358, INRIA, 2007.

Sertan Girgin and Philippe Preux. Basis function construction
in reinforcement learning using cascade-correlation learning
architecture. In ICMLA ’08: Proceedings of the 2008 Sev-

enth International Conference on Machine Learning and Ap-

plications, pages 75–82, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3495-4. doi: http:
//dx.doi.org/10.1109/ICMLA.2008.24.

N. D. Goodman, J. B. Tenenbaum, T. L. Griffiths, and J. Feld-
man. Compositionality in rational analysis: Grammar-based
induction for concept learning. In M. Oaksford and N. Chater,
editors, The probabilistic mind: Prospects for Bayesian cogni-

tive science, 2008.
W. K. Hastings. Monte carlo sampling methods using markov

chains and their applications. Biometrika, 57(1):97–109, April
1970. doi: 10.1093/biomet/57.1.97.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy it-
eration. Journal of Machine Learning Research, 4:1107–1149,

2003.
Sridhar Mahadevan. Representation policy iteration. Proceedings

of the 21st International Conference on Uncertainty in Artifi-

cial Intelligence, 2005.
Franois Rivest and Doina Precup. Combining td-learning with

cascade-correlation networks. In In Proceedings of the Twen-

tieth International Conference on Machine Learning, pages
632–639. AAAI Press, 2003.

G. A. Rummery and M. Niranjan. Online q-learning using con-
nectionist systems (tech. rep. no. cued/f-infeng/tr 166). Cam-

bridge University Engineering Department, 1994.
Alexander A. Sherstov and Peter Stone. Function approxima-

tion via tile coding: Automating parameter choice. In J.-D.
Zucker and I. Saitta, editors, SARA 2005, volume 3607 of Lec-

ture Notes in Artificial Intelligence, pages 194–205. Springer
Verlag, Berlin, 2005.

Richard S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

Richard S. Sutton. Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding. In Advances in

Neural Information Processing Systems 8, pages 1038–1044.
The MIT Press, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:

An Introduction. MIT Press, 1998.
Richard S. Sutton and Steven D. Whitehead. Online learning with

random representations. In In Proceedings of the Tenth In-

ternational Conference on Machine Learning, pages 314–321.
Morgan Kaufmann, 1993.

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shal-
abh Bhatnagar, David Silver, Csaba Szepesvári, and Eric
Wiewiora. Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In
ICML ’09: Proceedings of the 26th Annual International Con-

ference on Machine Learning, pages 993–1000, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: http:
//doi.acm.org/10.1145/1553374.1553501.

John N. Tsitsiklis and Benjamin Van Roy. An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690,
1997.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Ma-

chine Learning, 8(3):279–292, May 1992. doi: 10.1007/
BF00992698.

