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Abstract

This paper addresses the problem of model learning in a Markov decision process (MDP) that exhibits an underlying
multiple model structure. In particular, each observed episode from the MDP has a latent classification that determines
from which of an unknown number of models it was generated, and the goal is to determine both the number and the
parameterization of the underlying models. The main challenge in solving this problem arises from the coupling between
the separation of observations into groupings and the selection of a low-dimensional representation for each group.
Present approaches to multiple model learning involve computationally expensive probabilistic inference over Bayesian
nonparametric models. We propose Simultaneous Clustering on Representation Expansion (SCORE), an iterative scheme
based on classical clustering and adaptive linear representations, which addresses this codependence in an efficient
manner and guarantees convergence to a local optimum in model error. Both a batch and an incremental version of
SCORE are presented. Empirical results on simulated domains demonstrate the advantages of SCORE when compared
to contemporary techniques with respect to both sample and time complexity.
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1 Introduction
A key component of model-based Reinforcement Learning (RL) techniques is to build an accurate model of a Markov
Decision Process (MDP) from observed interactions [1, 2]. This paper considers the problem of model learning in a
system that exhibits an underlying multiple model structure, where the number of underlying models is unknown.
In particular, each of the latent models contains a complete description of the transition dynamics and reward of the
MDP, and each observed episode (or “trajectory”) has a latent classification that determines from which model it was
generated. An example of such a scenario is a pursuit task, where an agent seeks to capture a target whose movement
model can be neutral (e.g. random walk) or defensive (e.g. avoiding the agent), and where the agent does not know about
these behaviors a priori. Such missions are of great interest to the autonomous planning community. For example, in
mobile robot path planning problems the models can describe various types of terrain, or for aircraft routing problems
the models can describe the evolution of various weather patterns.

There are two major challenges posed by this problem formulation. The first is that of simultaneous model distinction
and learning: In order to learn the models, the algorithm must first separate the trajectories into groupings based on their
latent classifications, but in order to separate the trajectories into such groupings, the algorithm must have a good param-
eterization of the models. The second is that model distinction depends on the representation: Since learning exact models is
infeasible, a lower-dimensional representation is required, but the ability to separate trajectories into groupings depends
on the chosen representation. Past representation expansion approaches [3, 4] do not take advantage of multiple-model
structure, leading to high sample complexity and suboptimal policies that arise from averaging over all the underlying
models. Multiple-model approaches [5, 6] assume rigid model structure and a known number of models. Bayesian non-
parametric approaches [7, 8] can infer both the number of models and the representation, but these approaches do not
scale well to typical RL problem sizes.

The main contribution of this paper is the simultaneous clustering on representation expansion (SCORE) architecture,
which solves these problems using a combination of clustering and linear representation adaptation.

2 Background

A Markov decision process (MDP) is defined as tuple 〈S,A, P,R, γ〉, where S is a finite set of states, and A is a finite set
of actions, P describes transition dynamics, R is a reward function, and γ is a discount factor. In this paper, we focus on
learning given a fixed policy; consequently, A is removed from consideration. This situation occurs as a subcomponent
of many approximate planning algorithms, such as the policy evaluation step of policy iteration [4]. Further, we make
the assumption that the only uncertain component in the MRP model is an unknown scalar field f : S → R: However, it
is straightforward to extend the work presented here to the case of learning P and R without any partial knowledge. In
this work, we make use of linear function approximation [4, 9], where φ : S → Rm maps each state to m feature values.
This reduces the goal of model learning to learning fΦ, where

Φ =
[
φ(s1) · · · φ(s|S|)

]T
,ΦfΦ ≈ f =

[
f(s1) · · · f(s|S|)

]T
. (1)

Let the set of observed episodes be {yi}Ni=1, where yi = {(si1, fi1), . . . , (siTi
, fiTi

)}, fij is a noisy unbiased estimate of
f(sij), and φ (sij) ≡ φij for brevity. Then the problem of minimizing the sum of |fij − fΦ

Tφij |2 over all the observed
samples for a single model is solved via

fΦ =

∑
i,j

φijφ
T
ij

−1 ∑
i,j

φijfij

 , (2)

where the sums are over the range j ∈ {1, . . . , Ti} ∀ i ∈ {1, . . . , N}. To replace f with learning P and R (as mentioned
earlier), simply replace f with R directly (as they are both |S|-dimensional vectors), and add P by considering feature
prediction errors and swapping vector norms for Frobenius norms where required. For a more thorough discussion
of single model-based RL with a linear representation, the reader is directed to the analysis by Parr et al. [9]. Feature
adaptation algorithms (such as Batch iFDD[2], which is used in this work) increase the feature dimension m (add a
column to Φ) based on the resulting predictive errors fij − fΦ

Tφij in order to better capture the model.

3 Simultaneous Clustering On Representation Expansion (SCORE)

3.1 Problem Formulation

The problem considered in the present work extends the traditional MRP learning scenario by allowing an unknown
number of models to be responsible for generating the observations. More precisely, suppose there is a set F = {fk}|F|k=1
of unknown cardinality |F| of scalar fields defined on S, each associated with an MRP. Given a collection of N observed
trajectories, each trajectory having been generated by one of the MRPs, the goal is to infer the set F , i.e. both |F| and
fk ∀ k = 1, . . . , |F|. As it is often intractable to learn the full representation of f for even just a single system, a linear
feature representation of the system is used to reduce the problem to learning FΦ = {fΦk}|FΦ|

k=1 . However, the capability
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Figure 1: Algorithm block diagram.

to distinguish MRPs based on observed data is intimately linked to the particular chosen linear representation; thus, Φ
itself must also be inferred in order to find the best grouping of the trajectories.

Based on the standard formulation of MRP model learning, the natural extension to the case with multiple models is a
minimization of the sum of the squared predictive errors over all the trajectories from each MRP with respect to fΦk. Let
zi ∈ {1, . . . , |FΦ|} be the label denoting the index of the MRP from which episode yi was generated. Then the squared
predictive error of trajectory i in MRP k is

δ2
y (i, k) =

Ti∑
j=1

(fij − fTΦkφij)
2. (3)

Finally, define |Φ| to be the number of features (columns) in Φ, then the overall goal of multimodel learning is to solve
the optimization problem

min
Φ,FΦ,{zi}Ni=1

λ|FΦ|+ η|Φ|+
|FΦ|∑
k=1

[
ν‖fΦk‖2 +

∑
i:zi=k

δ2
y (i, k)

]
, (4)

where λ|FΦ| (with λ > 0) is a cost penalty on the complexity of the learned model (based on past literature in the classical
limits of Bayesian nonparametric models [10]), η|Φ| (with η > 0) is a cost penalty on the complexity of the representation,
and ν‖fΦk‖2 (with ν > 0) is a regularization term. The optimization problem (4) is a mixed integer nonlinear program,
with complexity that is nonlinear in N for both exact and heuristic methods [11], even with fixed |FΦ| and |Φ|. As the
size of the dataset grows, finding a good approximate solution with standard methods becomes intractable. Thus the
focus of this paper is to present a tractable algorithm for solving (4) for large (and possibly increasing with time) N .

3.2 Batch SCORE

The batch SCORE algorithm, shown in Figure 1, is an iterative algorithm for minimizing the objective (4). It starts by
using the CLUSTER algorithm (5) to find an initial clustering of the data given an initial representation Φ. Then, the
ADAPT algorithm expands the representation using the predictive error for each observation with respect to its assigned
cluster. If the expansion results in a decrease in (4), the expansion is accepted and the loop begins again. If it does not
(due to the η penalty), the CLUSTER algorithm is run in an attempt to build a new clustering in the new representation.
If that clustering yields an overall reduction in (4), the expansion is accepted and the loop begins again. If (4) is still not
reduced, the algorithm terminates and returns FΦ, Φ, and {zi}Ni=1.

CLUSTER
fΦk ← (νI +

∑
i,j:zi=k

φijφ
T
ij)
−1

∑
i,j:zi=k

fijφij (5)

zi ← argmin
k

{
δ2
y (i, k) k ∈ {1, . . . ,K}
λ+ ν‖fΦk‖2 + δ2

y (i, k) k = K + 1
(6)

ADAPT
θ∗ ← iFDD[2] (7)

Φ←
[

Φ θ∗
]

(8)

The parameters of Batch SCORE are λ, η, ν ∈ R+, where λ, η are as in (4), and ν is the regularization parameter. K is
defined as the number of clusters currently instantiated by the algorithm, and a new cluster is only created when the
label update selects K + 1 as the minimum cost index; thus, increasing λ reduces the number of clusters created. Note
that δ2

y (i,K + 1) is equal to the distance from an observation yi to the model fΦ(K+1) found by using only the data
from that observation; this term is required to account for the fact that the best possible new model fΦ(K+1) for yi has
a nonzero error (due to a possibly poor representation). The per-iteration complexity of batch SCORE is dominated by
the O(D|Φ|2 + K|Φ|3) model update step in (5), where D =

∑N
i=1 Ti is the total number of transitions observed. The

CLUSTER step may be viewed as modified version of the DP-means [10] algorithm; this close relationship guarantees
that Batch SCORE finds a local minimum in (4), and terminates in a finite number of iterations (Theorem 3.1).

Theorem 3.1. Batch SCORE monotonically decreases the objective in (4), finds a local optimum, and terminates in a finite number
of iterations (proof omitted for brevity).
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3.3 Incremental SCORE

While simple to implement and theoretically promising, the batch algorithm becomes computationally intractable as N
grows. Incremental SCORE fixes this issue by processing smaller batches of size Nt � N in a sequence t = 1, 2, . . .
and retaining learned information between batches, thus reducing the per-iteration complexity to O(Dt|Φ|2 + K|Φ|3)
(where Dt � D). This learned information is transferred by retaining the old models from previous batches, f ′Φk, and
the representation used to create them, Φ′. Define the error between the old and new models (in the old subspace) to be

δ2
M (k) = ‖Σ 1

2 Φ′
(
f ′Φk − (Φ′T ΣΦ′)−1Φ′T ΣΦfΦk

)
‖22

where Σ is a diagonal matrix of the sample approximation of the stationary distribution of the Markov system. Further,
define Ct = {f ′Φk, wk(t−∆tk),∆tk}

|Ct|
k=1 to be the set of old models f ′Φk, weights wk(t−∆tk), and ages ∆tk. Define nkt to

be the sum over all transitions in all trajectories assigned to cluster k in batch t. Finally, to transfer information about
the representation, errors are computed in iFDD using all transitions observed in all received batches of data (these
cumulative errors are updated incrementally after each batch is processed). The steps of Incremental SCORE, shown in
the architecture in Figure 1, are as follows:

CLUSTER

γkt ←

{ ((
wk(t−∆tk)

)−1
+ ∆tkτ

)−1

k ≤ |Ct|
0 k > |Ct|

A ≡ ΦT ΣΦ′, B ≡ Φ′T ΣΦ′ (9)

fΦkt ← (γktAB
−1AT + νI +

∑
i,j:zit=k

φijφ
T
ij)
−1(γktAf

′
Φk +

∑
i,j:zit=k

fijφij)

zit ← argmin
k

 δ2
y (i, k) nkt > 0
ν‖fΦk‖2 + δ2

y (i, k) + γktδ
2
M (k) nkt = 0, k ≤ |Ct|

λ+ ν‖fΦk‖2 + δ2
y (i, k) nkt = 0, k > |Ct|

(10)

ADAPT
θ∗ ← iFDD (see [2]) (11)

Φ←
[

Φ θ∗
]

(12)

UPDATE Ct
wkt ← γkt + nkt

∆tk ←
{

1 nkt > 0
∆tk + 1 nkt = 0

(13)

The parameter τ > 0 controls how quickly the weight of old information decays (increasing τ causes old information
to decay faster). The parameter γkt is set at the beginning of each CLUSTER step, and controls the weight on prior
information in (9). During the label assignment step, the incremental algorithm can “revive” an old cluster; here, δ2

M (k)
is the error between fΦkt and fΦk(t−∆tk) after using only observation yit to compute the model update in (9). This
algorithm may be seen as a modified version of Dynamic Means [12], and due to this connection, incremental SCORE is
guaranteed to converge in a finite number of iterations (Theorem 3.2).

Theorem 3.2. For each batch Yt, the inner loop of Incremental SCORE monotonically decreases
η|Φ|+

∑
k:nkt>0

λ [∆tk = 0] + γktδ
2
M (k) + ν‖fΦkt‖2 +

∑
i:zit=k

δ2
y (i, k) , (14)

finds a local optimum, and terminates in a finite number of iterations (proof omitted for brevity).

4 Experimental Results
In this simulation experiment, we used SCORE to capture the effects of thermal updrafts on an unmanned aerial ve-
hicle(UAV). The domain was a two-dimensional 25 × 25 grid world, and the UAV could take actions selected from
{↑, ↓,←,→, ·}. Each state s had a mean updraft strength selected from µk(s) = {0, 1, 5, 10}, with K = 3 different latent
mean updraft strength fields, and k ∈ {1, . . . ,K}. At the start of each episode, a label z ∼ UNIFORM(1,K) was sampled,
and in each step t the UAV was given an altitude boost of rt ∼ N (µz(st), σ = 0.5). The goal of the experiment was:
1) To learn the latent updraft fields µk(s) from a set of training data (collected with a uniform random policy); 2) To
create a Q(s, a) function for each learned field; and 3) To take actions by keeping track of the likelihood of each latent
field given altitude boost observations, weighting the differentQ(s, a) functions accordingly, and acting greedily with re-
spect to the weighted Q(s, a) function (a QMDP approach[13]). We compared six approaches: batch/incremental SCORE
(Batch SCORE/Inc. SCORE), batch/incremental clustering with a tabular representation (Tab. Clus./Inc. Tab. Clus.), no
clustering with iFDD (iFDD), and no clustering with a tabular representation (Tab.). The initial representation for the
approaches with feature expansion consisted of an indicator function for each value of the two axes in the plane (i.e. 50
features for the 25 × 25 grid). The tabular representation had an indicator function feature for each grid cell (i.e. 625
features for the 25× 25 grid).

Figures 2(a)-2(c) show the mean squared error (MSE) of altitude boost prediction (with 95 % confidence intervals) com-
puted with respect to the sample stationary distribution. The X-axis represents the clock time in seconds. Each datapoint
in Figures 2(a)-2(c) represents one expansion for iFDD, one round of expansion and clustering for SCORE, or one round
of clustering for Tab. Clus.. Note that Tab. Clus. and Inc. Tab. Clus. failed to run on the large dataset (Figure 2(c)) due to
memory limitations.
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Figure 2: (a)-(c): Model error of batch SCORE (Batch SCORE), incremental SCORE (Inc. SCORE), batch clustering with a tabular representation (Tab. Clus.), incremental
clustering with a tabular representation (Inc. Tab. Clus.), no clustering with a tabular representation (Tab.), and no clustering with feature expansion (iFDD). (d): Mean
QMDP return using a training dataset of 200 observations.

From Figures 2(a)-2(c), it is clear that feature expansion or clustering alone is inadequate. Both Tab. and iFDD converged
quickly but to a poor solution, due to an inability to discover the underlying latent models. Tab. Clus. yielded a lower
MSE but required significantly more time as the size of the observations grew. Batch SCORE yielded the lowest final
modeling error of the batch algorithms (especially when data was scarce), demonstrating its capability to both generalize
and discover underlying models. The incremental versions of Tab. Clus. and SCORE had similar final MSEs to their batch
counterparts, but required significantly less computation time; this reduction was magnified as the size of the dataset
increased.

The models learned using the 200 observation training dataset were then used in a planning exercise, where the UAV
altitude boost was used as the reward signal; a comparison of the cumulative return is shown in Figure 2(d) with 95%
confidence intervals. The incremental algorithms (not shown) did not perform as well as their batch counterparts on this
dataset; the sample stationary distribution for the small individual batches was not reflective of the true stationary dis-
tribution, and thus their MSEs were not reflective of their true predictive accuracy over the whole state space. For such
small datasets, batch algorithms are preferred. The performance using models generated from the Tab. and iFDD algo-
rithms is approximately the same, in agreement with Figures 2(a)-2(c); using these models, the agent effectively planned
on an average of all the true updraft fields, so that the optimal actions to take become less clear. Tab. Clus. performed
slightly better, as the planning agent was able to identify which of its underlying learned models it was experiencing;
however, the lack of data prevented it from learning accurate models. Batch SCORE significantly outperformed the other
batch algorithms, as it simultaneously identified the underlying multiple model structure and constructed individual
models which generalized well using scarce data.

5 Conclusion
This work addressed the problem of model learning in a system that exhibits an underlying multiple model structure
using the Simultaneous Clustering on Representation Expansion (SCORE) algorithm. SCORE addresses the codepen-
dence between representation selection and observation clustering, and guarantees convergence to a local optimum in
model error. Empirical results demonstrated the advantage of this approach when compared to standard techniques
with respect to both sample and time complexity.
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