
Time Constrained MDPs
16.420-Project Report

Alborz Geramifard-921700902
agf@mit.edu

1 Introduction

In some planning problems, there are time dependent constraints over the trajectory of states. For
example consider a scenario where an unmanned underwater vehicle (AUV) is exploring deep-sea
areas. As Figure 1 highlights, the AUV is dropped at a certain area and is going to be fished in
another location within a timeline. While mapping the area along the way is a static desired be-
havior, in certain periods of time, interesting phenomena going to happen, and the research team
requires the AUV to be present and captures such incidents. While in some cases such information
are not available beforehand, through this work we assume that the agent has prior access to such
timelines. In particular, we are interested in the problem of finding the trajectory which satisfies
such constraints while maximizing the reward along the way. We begin by providing the formal
problem formulation in the next section. Then, we introduce Soft Dynamic Programing (Soft-DP)
and DP2 as two algorithms to deal with such problems and discuss their space and time complexity.
Further we extend these methods to tackle the problem of planning under uncertain transition model.
We empirically examine the quality and speed of the proposed algorithms. Finally we conclude.

[3,7]

[8,10]

[15,16]

Figure 1: An example exploring scenario using a AUV: (a) timing constraints through the trajectory
(b) A simulation shot showing a submarine capturing data from an erupting underwater volcano
[MBA, 2008]

2 Problem Formulation

Markov Decision Processes (MDPs) is a rich framework for modeling sequential decision mak-
ing problems (e.g. see [Sutton and Barto, 1998]). We formulate our problem as an extended ver-
sion of MDPs called Time Constrained MDPs (TCMDPs). A TCMDP is defined as a tuple of
(S,A,Pass′ ,Rass′ , γ, T,Da,H) in which S is the set of States, A is the set of actions, Pass′ is the
probability of getting to state s′ when executing action a from state s, Rass′ is the corresponding
reward, γ ∈ [0, 1] is the discount factor, T : S̄ ⊂ S → (tmin, tmax), tmin ≤ tmax is the time
constrain which maps state s to a bound, meaning that state s must be visited within [tmin, tmax] at
least once, Da is the duration for action a, andH is the planning horizon.1 Solving a TCMDP in the
general case is very challenging. Therefore we will have the following assumptions, though we will
extend the results to the stochastic case later.

• ∀a ∈ A, Da = 1

• Pass′ is deterministic.

• ∀s, s′ ∈ S, s 6= s′, T (s) ∩ T (s′) = ∅
• ∀s ∈ S, T (s) = (tmin, tmax) ∈ N× N
• H = maxtmax{T (s) = (tsmin, t

s
max)|s ∈ S̄ ⊂ S}

Since we assume that there is no time overlap between time constraint intervals, we define st as the
state corresponding to the constraint at time t if such constraint exist. For example sH is the state
corresponding to the last time constraint at the end of horizon. Further, we address the lower and
upper bound of an existing constraint at time t with tsmin and tsmin. We are interested in policies
generating trajectories of length H starting from any state, satisfying all time constraints T , while
maximizing the sum of discounted rewards along the way.

V ∗(s) = E

[H∑
t=1

γt−1rt

∣∣∣∣s0 = s, π∗

]
.

3 Proposed Algorithms

3.1 Soft Dynamic-Programing

Algorithm 1 : Soft-DP (penalty)
For all s ∈ S

V (s,H, False) = penalty
V (s,H, T rue) = 0

V (sH,H, F lase) = 0

For t =H− 1 to 0
For f ∈ {True, False}

For s ∈ S
V (s, t, f) = maxaE

[
ra(s,t,f)(s′,t+1,f ′) + γV (s′, t+ 1, f ′)

]
π(s, t, f) = argmaxaE

[
ra(s,t,f)(s′,t+1,f ′) + γV (s′, t+ 1, f ′)

]
One approach to deal with TCMDPs, is to turn all hard constraints into soft constraints by penalizing
the agent for not meeting any of the timing constraints along the way (extra negative reward =
penalty). Additionally to translate the TCMDP into conventional MDPs, we have to change the
state definition in order to be independent of the past history. To do so, we include the time step
together with a flag stating whether the possible time constraint related to that time has been met
so far or not. Notice that one flag is enough since according to our assumption there is no overlap

1Notice that we can set γ = 1, as the planning horizon is limited.

between time constraints. In general, the number of flags equals to the maximum overlapping time
constraints. In particular,

S ′ = {(s, t, f)|s ∈ S, t ∈ {0, ...,H}, f ∈ {True, False}} .

Respectively the new transition function is defined over S ′ ×A× S ′ in which s evolves according
to Pass′ , t increments after each move by one, and f is set to True, only if it was True and the
current and next time constraint both are the same, or if the new state meets the corresponding
time constraint. The new MDP can be solved efficiently with one backward sweep of dynamic
programing. Algorithm 1 shows Soft-DP in detail. At the beginning the algorithm initialize the
states at the end of horizon (t = H). Notice that only states s 6= sH for which flag is False are
panelized. Soft-DP performs backward DP from timeH−1 to 0, over all possible states. we already
talked about how to find f ′. ra(s,t,f)(s′,t+1,f ′) is calculated by the sum of TCMDP reward, Rass′ , and
the penalty only if the agent passes a deadline while still have not met the constraint. (i.e. t = tsmax
and f = False).

The space complexity of Soft-DP isO(H|S|), while its running time isO(H|S||A|) in the determin-
istic case and O(H|S|2|A|) in the stochastic case. An interesting fact about the resulting V and π is
that it captures two policies for each state-time pair. The conservative policy (f = False) to satisfy
the constraint while maximizing the reward along the way, and the aggressive policy (f = True),
where the agent is no longer worried about the constraint and only focuses on maximizing the re-
ward along the way. As time evolves, the agent switches back and forth between such policies. We
will talk further about how the agent uses its policy to act in the world in the following sections.

3.2 Deterministic DP2

Another approach for solving TCMDPs with the assumptions made earlier is to run backward-DP
with the goal of only maximizing the reward while logging time consistencies (C). This will build
the aggressive policy. Whenever, a lower bound of a time constraint is found, we run another DP to
find the conservative policy within the time constraint interval as well and switch back to find the
rest of the aggressive policy based on the last step of conservative data in order to assure consistency
along the plan.

Algorithm 2 : Deterministic DP2

For all s ∈ S
V (s,H, False) = 0
C(s,H, False) = False

C(sH,H, False) = True

For t =H to 0
f = False
if t == tsmin

Deterministic DP-Interval(V, π, C, tsmin, tsmax)
f = True

For s ∈ S
Deterministic Update(V, π, C, s, t, f, False)

Algorithm 6 shows the detail of this new approach named DP2. C keeps track of the consistency
of all states. A state is consistent if it is guaranteed to meet all future constraints following the
resulting policy. The algorithm starts by initialization all states at the end of the horizon. All values
at the end of horizon are zero and only state sH is consistent. On each timestep, DP2 checks to
see if it hits the lower bound of any constraints. If that happens, it calls Deterministic DP-interval
on the constraint’s interval, and set f to True, meaning that the next aggressive DP must use the
conservative results as opposed to use aggressive results (f = False)

The Deterministic DP-interval function, shown in Algorithm 3, copies the values (V) and consis-
tencies (C) of aggressive policy (f = False) to the conservative part (f = True). Afterwards
it sets all values of conservative section for which the constraint did not meet to −∞. This will

Algorithm 3 : Deterministic DP-Interval(V, π, C, t1, t2)
For t = t1 to t2

For s ∈ S
V (s, t, T rue) = V (s, t, False)
C(s, t, T rue) = C(s, t, False)
if not C(s, t, T rue)
V (s, t, T rue) = −∞

For t = t2 − 1 to t1
For s ∈ S

if C(s, t, T rue) == False
Deterministic Update(V, π, C, s, t, T rue, True)

discourage any state to backup from such states. Finally it calculates the conservative policy for all
inconsistent states by calling the Deterministic Update sub-function.

Algorithm 4 : Deterministic Update(V, π, C, s, t, source, target)
π(s, t, target) = argmaxa [rass′ + γV (s′, t+ 1, source)]
V (s, t, target) = maxa [rass′ + γV (s′, t+ 1, source)]
if s 6= st and t == tsmax

C(s, t, target) = False
else

C(s, t, target) = C(s′, t+ 1, source)

The main update part is being done by the Deterministic Update sub-function as shown in Algo-
rithm 4. Notice that source is used as the base of backup and target specifies where information
should be backed up to. These two variables can be either True meaning conservative or False
meaning aggressive. After performing the famous Bellman backup on the value and policy, the
algorithm updates the consistency as follows: if the current time is equal to the upper bound of a
constraint and the state could not satisfy it then it is not consistent, otherwise it is backed up from
the next state according to the selected action.

I suspect that one can prove that DP2 calculates the optimal policy in the shortest possible compu-
tation. My intuition comes from the fact that DP2 calculates conservative data only if it is needed
along the trajectory. In general the space complexity of the algorithm is O(H|S|), and the time
complexity in the worst case is O(H|S||A|) which is the same for Soft-DP .

3.3 Following the policy

For both methods the trajectory can be derived given π from any starting position. The agent should
always follow the aggressive policy (f = False) unless it is within an unsatisfied constraint interval
where it should switch to the conservative policy (f = True) till it satisfies the constraint.

4 Stochastic Case

In this section, we relax the assumption of having deterministic transition models and elaborate on
adopting previous algorithms to the stochastic case. The Soft-DP algorithm already turned the hard
constraints into soft constraints, therefore the same algorithm can be used for the stochastic case as
well. Extending DP2 requires more work though. The notion of time consistency (C) is no longer a
binary variable, but a probability which can be between [0, 1]. In most stochastic domains it is highly
unlikely to generate a trajectory which satisfies all time constraints with probability 1, hence we add
the acceptable risk as ε. The new objective is to find the trajectory which has at least 1−ε probability
of success (meeting all constraints along the way), while maximizing the sum of discounted rewards.
The higher the acceptable risk is, the more chance for the agent to take aggressive moves along the
way and gather rewards. The DP2 algorithm should adopt to include the new risk parameter (ε),
and extend to the stochastic case. Algorithm 5 shows the DP2 in the general form.

Algorithm 5 : DP2(ε)
For all s ∈ S

V (s,H, False) = 0
C(s,H, False) = 0

C(sH,H, False) = 1

For t =H to 0
f = False
if t == tsmin

DP-Interval(V, π, C, tsmin, tsmax, ε)
f = True

For s ∈ S
Update(V, π, C, s, t, f, False, ε)

Notice the change to the main body of DP2 : switching C values from boolean to numbers and
passing epsilon to both sub-functions.

Algorithm 6 : DP-Interval(V, π, C, t1, t2, ε)
For t = t1 to t2

For s ∈ S
V (s, t, T rue) = V (s, t, False)
C(s, t, T rue) = C(s, t, False)
if C(s, t, T rue) < 1− ε
V (s, t, T rue) = −∞

For t = t2 − 1 to t1
For s ∈ S

if C(s, t, T rue) < 1− ε
Update(V, π, C, s, t, T rue, True, ε)

The DP-Interval sub-function only changes in places where C values are considered in if state-
ments. With a probabilistic approach, we define the consistency for a state as the probability of a
success when starting from that state and follow the resulting policy. We can say a state is inconsis-
tent if its consistency is less than 1− ε.

Algorithm 7 : Update(V, π, C, s, t, source, target, ε)
π(s, t, target) = argmaxaEs′ [rass′ + γV (s′, t+ 1, source)]

if not satisfyConstraint and t == tsmax
C(s, t, target) = 0

else
C(s, t, target) = Es′|π[C(s′, t+ 1, source)]

if C(s, t, target) < 1− ε
V (s, t, target) = −∞

else
V (s, t, target) = Es′|π [rass′ + γV (s′, t+ 1, source)(1− δ(V (s′, t+ 1, source),−∞)]

The most substantial changes happen to the Update sub-function. First the policy is calculated
according to the Bellman backup rule. Notice that now we included the expectations to count for
the uncertainty of the transition model. The C value are now calculated probabilistically. If the
current time and position means failing a constraint, then C is set to zero, otherwise it would be the
expected success rate. Updating the values is a bit tricky. First, if the current state does not have the
least success rate (1 − ε), we set its value to −∞ to prevent other states backing up from it. If the

state is consistent, we take the expectations ignoring states with −∞ values. The δ function is:

δ(i, j) =
{

1 i = j
0 i 6= j

5 Empirical Results

5.1 Deterministic Case

In order to empirically demonstrate the algorithms proposed so far, we ran Soft-DP and DP2 al-
gorithms in grid-world domains. The agent has 3 actions: Left, Right (moves the agent one step
in each direction), and Wait. For the first test case, we picked a toy deterministic world shown in
Figure 2. There are 3 states, and two time constraints in this environment located on the both sides.
The +10 reward is given to all transitions ending up in state 2, for all other transitions the reward
is 0. We used γ = 1. The solutions of Soft-DP and DP2 are shown in Figures 3 and 4. Time
evolves along Y-axis. V is shown on green and red scale corresponding to positive and negative
values, while C is shown in green and white corresponding to True and False. Notice that both
policies are identical. Although DP2 did not consider a conservative policy for the times outside of
time constraints intervals. Having all states at time zero consistent (C is totally green) means that
regardless of the starting point the toy TCMDP has a solution. For example the optimal trajectory
from state 1 is: right, left, right, wait, right which can be derived from both solutions. The running
time of both methods is very close, with DP2 being on the lead as it requires less computation on
average. In the best case DP2 can be two times faster that Soft-DP . We think ideas about saving
time can carry over from DP2 to Soft-DP algorithm as well, which will be interesting for the future
work.

+10

[1,2] [4,5]

1 2 3

Figure 2: A toy deterministic TCMDP

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Aggresive Conservative

T=0

T=1

T=2

T=3

T=4

T=5

V, π V, π

Figure 3: Soft-DP Solution of the toy TCMDP

5.2 Stochastic Case

We used the same toy domain explained in the previous section although we added 5% failure
probability to all movements, meaning that there is 5% chance that the agent stays in the same

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Aggresive Conservative

T=0

T=1

T=2

T=3

T=4

T=5

V, π C

V, π C

Figure 4: DP2 Solution of the toy TCMDP

position taking a move action from. Notice that wait action wont suffer from this change. We also
set ε = 0.1 for DP2 . The solution of Soft-DP and DP2 are shown in Figures 5 and6. For DP2 C
values are now scaled between [0,1]. Notice the change between the resulting policy between Soft-
DP and DP2 algorithms. Soft-DP ’s policy is always aligned in the direction of satisfying constraints
because of the uncertainty. For example the aggressive policy for state 2 at time 3, is to move right.
Even though staying at the same position will result into +10 reward, Soft-DP ’s policy prefers to
move towards the next state with the time constraint, state 3. On the other hand DP2 inspected the
probabilistic consistencies at each time step and could trade off the risk for higher amount of reward
along the way. The resulting policy is not different from the deterministic case. Looking at the C
values at time 0, we can see that only state 3 has inconsistent success rate (C < 0.9). Now The
question is now how well such policies perform. We ran 10,000 trajectories from state 1 using both
policies and calculated the average success rate and return. If a trajectory failed, we set its return to
0.

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Aggresive Conservative

T=0

T=1

T=2

T=3

T=4

T=5

V, π V, π

Figure 5: Soft-DP Solution of the stochastic toy TCMDP

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Aggresive Conservative

T=0

T=1

T=2

T=3

T=4

T=5

V, π C

V, π C

.9 .9 .85

.05 0 0 .95 .90 0

.95 0 0 .95 0 0

.9 .95 .95

.050 0 .95 10

0 100 10

Figure 6: DP2 Solution of the stochastic toy TCMDP

Runtime
(ms)

Success Return

DP^2

Soft-DP

14.459 90.16 26.64

21.401 99.96 10.5

0

10

20

30

40

50

60

70

80

90

100

Runtime (ms) Success Return

DP! Soft-DP

Figure 7: Averaged results of DP2 and Soft-DP for the stochastic toy TCMDP

Figure 7 shows the running time in milliseconds to compute the policies together with the aver-
aged success rate and the cumulative reward (Return) for DP2 and Soft-DP methods. As expected
DP2 algorithm has lower running time. An stark observation can be observed by comparing 2nd
and 3rd bars. Soft-DP had a higher success rate compared to DP2 . Although this translated into
less return value. On the other hand, DP2 traded off the success rate by taking advantage of the risk
parameter (ε = .1) and gathered more reward on average.

6 Conclusion

Through this work, we introduced TCMDP framework which can be used to represent many research
problems. we also introduce Soft-DP and DP2 as two algorithms for solving such problems under
certain assumptions. DP2 seems to be a promising algorithm which can trade off risk for higher
rewards in stochastic problems. Perhaps one can map such a risk parameter to the penalty in the
case of Soft-DP , although such a mapping is not immediately obvious to us. Future work includes,
relaxing more assumptions such as having actions with arbitrary execution time and continuous
timesteps. Perhaps such ideas can carry over to the realm of POMDPs as well. Finally it would
be interesting to run these algorithms on large scale problems as their running time suggests nice
scalability.

7 Acknowledgement

we would like to give credit to Tom, Emma, Nick and Prof. Bertsekas, who kindly helped me mature
some ideas through this work.

References

[MBA, 2008] Monterey bay aquarium research institute. http://www.mbari.org/, 2008.
[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998.

