
University of Alberta

Library Release Form

Name of Author: Alborz Geramifard

Title of Thesis: Incremental Least-Squares Temporal Difference Learning

Degree: Master of Science

Year this Degree Granted: 2007

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial por-
tion thereof may be printed or otherwise reproduced in any material form whatever without
the author’s prior written permission.

Alborz Geramifard
#532 - 8801 - 111St.
Edmonton, AB
Canada, T6G2X5

Date:

Think? Why think! We have computers to do that for us.

— Jean Rostand

University of Alberta

INCREMENTAL LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING

by

Alborz Geramifard

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Incremental Least-Squares Tem-
poral Difference Learning submitted by Alborz Geramifard in partial fulfillment of the
requirements for the degree of Master of Science.

Richard S. Sutton

Michael Bowling

Dale Schuurmans

Petr Musilek

Date:

To my beloved parents

Abstract

Sequential decision making is a challenging problem for the artificial intelligence commu-

nity. It can be modeled as an agent interacting with an environment according to its policy.

Policy iteration methods are a popular approach involving the interleaving of two stages:

policy evaluation to compute the desirability of each state with respect to the policy, and

policy improvement to improve the current policy with respect to the state values. The ef-

fectiveness of this approach is highly dependent on the effectiveness of policy evaluation,

which is the focus of this dissertation. The per time step complexity of traditional methods

like temporal difference learning (TD) are sublinear in the number of features. Thus, they

can be scaled to large environments, however they use training data relatively inefficiently

and so require a large number of sample interactions. The least-squares TD (LSTD) method

addresses the data inefficiency of TD by using the sum of the TD updates on all past ex-

periences. This makes LSTD a formidable algorithm for tackling problems where data is

limited or expensive to gather. However, the computational cost of LSTD cripples its ap-

plicability in most large environments.We introduce an incremental version of the LSTD

method, called iLSTD, for online policy evaluation in large problems.

On each time step, iLSTD uses the sum TD update vector in a gradient fashion by

selecting and descending in a limited set of dimensions. We show that if a sparse feature

representation is being used, the iLSTD algorithm’s per time step complexity is linear in

the number of features whereas for LSTD, it is quadratic. This allows iLSTD to scale up

to large environments with many features where LSTD cannot be applied. On the other

hand, because iLSTD takes advantage of all data on each time step, it requires far less data

than the TD method. Empirical results in the Boyan chain and mountain car environments

shows the superiority of iLSTD with respect to TD and the speed advantage of iLSTD with

respect to LSTD. We also extend iLSTD with eligibility traces, resulting in iLSTD(λ), and

show that the additional computation does not change the linear per time step complexity.

Additionally, we investigate the performance and convergence properties of iLSTD with

different dimension selection mechanisms. Finally, we discuss the limitations of this study.

Preface

A long time ago, there was a king ruling over the vast land of Agencia. He was old but

generous, wise, and kind, and all of his citizens were happy to have such a king. The country

was wealthy because of its business relationship with the neighbor country: Envirocia.

Desiring to extend the relationship between the two countries, the king of Envirocia sent an

ambassador to Agencia in order to open the discussion about new domains of cooperation.

After a few months, on a lovely morning, the Vazir of Agencia saw the ambassador of

Envirocia coming down the stairs of the palace with a gloomy face.

Being asked by the Vazir, the ambassador replied sadly:

“Your king is generous, wise, and kind, but he is forgetful. Sometimes he makes deci-

sions which are not wise in light of our earlier conversations.”

The Vazir started to think about this problem. It was true that sometimes the king would

forget some details of the previous conversations, and make unwise decisions accidentally.

However, he was a bit old and no one should expect him to remember all previous discus-

sions. After consulting on this issue with the king, it was decided to assign a consultant for

each subject and before any decision, the king would negotiate with all of the consultants

and make an informed decision.

After a while, consultants of agriculture, politics, etc. were elected, and the course of

meetings was adopted accordingly. Everything was going well for a few months. One day

the Vazir saw the same ambassador. Being puzzled by his unhappy face again, he asked the

ambassador about the recent flow of meetings.

“I should admit that recently the king makes decent judgments, but as the number of our

meetings increases, it takes a while for me to hear back from the majesty, since he reviews

all previous discussions with his consultants and states his final decision only after much

consultation ...”, the ambassador replied with a tired face.

This story highlights the main drawbacks of two alternative approaches of online policy

evaluation in the reinforcement learning framework. The per time step complexity of TD

is low, but it does not use all past experiences efficiently. On the other hand, the LSTD

method considers all of the previous interactions. Doing so, it requires far less data, but its

expensive per time step complexity makes it inapplicable for large problems. The iLSTD

method, introduced in this thesis, achieves the best of both worlds: it makes use of all data

while maintaining a linear per time step complexity.

Acknowledgements

I would like to thank both of my supervisors, Richard Sutton and Michael Bowling, who

kindly guided me through every step of my research and donated a great deal of their pre-

cious time. Rich always had a good grasp of the big picture of this work, which was a

blessing when you want to travel a few miles in the research field. On the other hand,

whenever I felt that I was confused about the next step, Mike was always there for me with

a bag full of new interesting ideas. He devoted lots of his time in order to polish different

aspects of this research. Without both of them, I could not have made it this far.

I want to recognize the insightful comments of Dale Schuurmans and his permission

for using the Salient cluster for my experiments. I would also like to thank Mohammad

Ghavamzadeh, Amir massoud Farahmand, Martin Zinkevich, Mark Ring, Dan Lizotte and

all other members of the RLAI lab at the University of Alberta for proofreading my thesis

and helping me through my research.

Table of Contents

1 Introduction 1

1.1 Motivation . 3

1.2 The New Approach . 4

1.3 Contributions . 4

1.4 Overview . 5

2 Background 6

2.1 Reinforcement Learning . 6

2.2 Function Approximation . 9

2.2.1 Tile Coding . 9

2.3 Temporal Difference Learning . 10

2.3.1 TD with Eligibility Traces . 12

2.4 Least-Squares TD . 14

2.4.1 Derivation . 14

2.4.2 Alternative Derivation . 15

2.4.3 Iterative Matrix Inversion . 16

2.4.4 LSTD Algorithm . 17

2.5 LSTD(λ) . 18

2.6 Conclusion . 19

3 Incremental Least-Squares Temporal Difference Learning 20

3.1 Incremental Computation . 20

3.2 Parameter Update . 21

3.3 Algorithm . 22

3.3.1 Time Analysis of iLSTD . 22

3.4 Convergence Analysis . 23

3.5 Experimental Results . 28

3.5.1 Boyan Chain Problem . 29

3.5.2 Mountain Car Problem . 32

3.6 Alternative Solvers . 35

3.7 Conclusion . 38

4 iLSTD with Eligibility Traces 39

4.1 Algorithm . 39

4.2 Time Analysis . 41

4.3 Convergence Analysis . 42

4.4 Experimental Results . 42

4.4.1 Small Boyan Chain Problem . 43

4.4.2 Hard Mountain Car Problem . 44

4.4.3 Comparison of Theoretical and Empirical Ratios 46

4.5 Conclusion . 46

5 Dimension Selection Alternatives 48

5.1 Greedy . 48

5.2 Non-zero ε-greedy . 49

5.3 Boltzman Distribution . 49

5.4 Empirical Results . 50

5.5 Conclusion . 53

6 Conclusions and Future Work 55

6.1 Contributions . 55

6.1.1 iLSTD Algorithm . 55

6.1.2 iLSTD with Eligibility Traces . 56

6.1.3 Empirical Results . 56

6.1.4 iLSTD and Dimension Selection Mechanisms 57

6.2 Batch LSTD vs. iLSTD . 57

6.3 Future Work . 57

6.3.1 Advances in Theoretical Analysis 57

6.3.2 More Realistic Problems . 58

6.3.3 Control . 58

Bibliography 59

A Parameter Settings 62

List of Figures

1.1 Reinforcement learning framework . 2

2.1 A simple MDP . 7

2.2 Tile Coding of a 2D state space with two tilings 11

3.1 Generalized Boyan chain problem . 29

3.2 Data based and time based results in the Boyan chain environment 31

3.3 Mountain car problem . 32

3.4 Data based and time based results in the mountain car environment 33

3.5 Results of iLSTD using gradient descent and steepest descent 36

4.1 Results of methods with eligibility traces in the small Boyan chain problem 43

4.2 Results of methods with λ = .9 in the hard mountain car problem 44

4.3 Results of methods with eligibility traces in the hard mountain car problem 45

4.4 Time and feature ratio comparison . 47

5.1 Results of iLSTD with various dimension selection methods 51

5.2 Searching in parameter space in the large Boyan chain problem 53

5.3 Timing results of iLSTD with various dimension selection mechanism . . . 54

List of Tables

3.1 Timing results of methods with eligibility traces 35

3.2 Timing results of iLSTD using gradient descent and steepest descent 37

4.1 Timing results of the methods in hard mountain car problem 46

4.2 Feature specification of the environments. 46

5.1 Timing results of iLSTD with various feature selection mechanism 54

A.1 General parameter settings . 63

A.2 Parameter settings for TD and iLSTD . 63

A.3 Parameter settings for dimension selection mechanisms 63

List of Algorithms

1 Temporal difference learning . 12
2 Temporal difference learning with eligibility traces 14
3 Least-squares TD learning . 17
4 Least-squares TD learning with eligibility traces 19
5 Incremental least-squares TD learning . 22
6 Incremental least-squares TD learning with eligibility traces 41

List of Symbols

x Scaler (any lowercase variable) . N/A
x Vector (any bolded lowercase variable) . N/A
X Matrix (any bolded uppercase variable) . N/A

a Action . 7
A Action space . 7
s State . 7
S State space . 7
r Reward . 7
R Return . 7
π Policy . 7
γ Discount factor . 7
V Value function . 8
θ Weight vector . 9
φ Feature vector . 9
φt Feature vector corresponding to st . 9
n Number of features . 10
k Number of active features . 10
α Learning rate . 10
δ TD error . 10
u Temporal difference update . 11
Rn n-step return . 12
Rλ λ-return . 12
λ Eligibility trace factor . 12
z Eligibility trace vector . 13
l Maximum number of active eligibility traces 13
µ Sum of temporal difference updates . 14
A Transition model . 15
b Reward model . 15
Ã Approximation of A−1 . 17
ω Initial regularization factor for Ã . 17
I Identity matrix . 17
m Number of descents per time step in iLSTD 21
ei Identity vector . 21
ε Probability for random selection in ε-greedy mechanism 49
τ Temperature parameter used for Boltzmann distribution 50
ψ Lower bound probability for Boltzmann distribution 50

Chapter 1

Introduction

Humans are smart, demanding, and lazy. They have always sough to invent tools. Long

ago, these tools were only meant to help them to perform their tasks easier and faster.

Demanding even more free time, they started to create computer programs to perform their

jobs related to military, medicine, education, business, etc. These programs or agents may

be a part of a vision system recognizing vehicles along a road, or software installed on a

physical robot in a rehabilitation center helping a patient recover after an accident. This

new research field is called artificial intelligence (AI), and has raised many new challenges.

These programs should be able to accomplish complicated tasks, be flexible to resolve new

situations reasonably, and make fast decisions to be applicable in real-time domains. One

significant characteristic that all problems in the AI area share, is experience. A popular

subfield of AI, called machine learning, is based on the idea of using experience through

“learning.” ML has been categorized into three main problems:

• Supervised learning: In this problem, the agent is provided with labeled examples,

with which it finds a solution to map a new unlabeled example to its label (classi-

fication). For example, a vision system may be trained with a large set of images.

Each image contains one specific object and tagged with the name of the object. Af-

ter training the system, it is able to recognize the same objects in the new images.

Support vector machines (SVM) and decision trees [e.g., see Alpaydin, 2004] are

instances of methods that are used to solve supervised learning problems.

• Unsupervised learning: There are cases where the examples are not labeled before

being given to the agent. The agent must assign the labels based on some notion of

1

Reward

Observation

Action
Agent

Environment

Figure 1.1: Reinforcement Learning Framework: At each time step, the agent select an
action and send it to the environment and receives the resulting observation and reward.

similarity, which is called clustering. For example, given a bunch of points along

a line and the number of classes, a program may cluster each point into a class.

Kohonen self-organizing maps (KSOM) [Kohonen, 2001] and K-means clustering

[e.g., see Jain et al., 1999] are examples of unsupervised learning methods.

• Reinforcement learning (RL): As shown in Figure 1.1, in this problem the agent in-

teracts with an environment, sends an action, and receives a resulting observation

and a reward signal. Each action can change the state of the environment, while the

reward signal is a score stating how well the agent behaved in the last interaction.

The goal of the agent is to maximize some measure of long-term reward which we

call the goal function. For example, the game of chess can be mapped into the RL

framework: the position of all pieces on the board forms the current state of the en-

vironment, possible moves for all pieces of the board define the action set, and the

reward signal can be +1 for winning, -1 for losing, and 0 for a tie. For all other non-

finishing moves during the game the reward is also 0. Notice that being greedy with

respect to the reward function on each time step will not necessarily maximize the

goal function, which makes RL problems interesting and distinct from the supervised

2

learning problems. The effect of some early actions might not be visible only till the

very end. Q-Learning and Sarsa [e.g., see Sutton and Barto, 1998] are examples of

popular RL algorithms.

This thesis focuses on the reinforcement learning problem. In general, the state of the

environment and the reward signal are dependent on all previous observations and actions,

but in the special case of Markov decision processes (MDPs),1 they only depend on the last

observed state and executed action (Markov property). On each time-step, the agent chooses

an action according to its policy, which is a mapping from state-action pairs to probabili-

ties. Searching for a policy that maximizes the goal function is the main objective. This is

achieved commonly by RL methods through two phases: the agent evaluates the values of

state-action pairs with respect to its current policy (policy evaluation), and then improves

the policy on the next iteration (policy improvement). This loop continues until no further

improvement can be made to the policy. Policy evaluation determines the desirability of

each state given the current policy (value function) by evaluating each state. However in

real applications the number of states can be large, and the value function is usually approx-

imated with a function approximator which can be either non-linear (e.g., neural networks

[Kohonen, 1988]) or linear (e.g., coarse coding [Sutton and Barto, 1998]). Policy evaluation

is similar to the way humans cogitate about their actions. For example, people do not get

too close to the edge of a cliff. This is not because standing close to the edge is painful by

itself (i.e., immediate reward), but it is due to the higher probability of falling down from

the cliff (i.e., state value). This dissertation addresses the policy evaluation problem with

linear function approximators, where each state is represented by a feature vector and the

value function is considered to be a linear combination of the features.

1.1 Motivation

Temporal difference (TD) learning [Sutton, 1988] is a traditional method of solving MDPs.

This method has a sublinear running time in the number of features and can be scaled

to large problems because of its low computational complexity, although TD is forgetful
1For the reminder of the thesis, we will refer to the observation as state in MDPs, since it uniquely defines

the environment’s state.

3

and consequently it uses the data inefficiently. Bradtke and Barto [1996] extended the TD

method by introducing least-squares TD algorithm (LSTD), which finds the solution to the

zero sum TD updates for all past experiences. However, when this method is applied to

large problems, its running time becomes a critical obstacle because LSTD is quadratic in

the number of features. This fact motivated us to search for an algorithm which is less

computationally expensive, thus scalable to larger problems, but at the same time uses the

data more efficiently than TD.

1.2 The New Approach

We introduce iLSTD2 as a new TD based method, which achieves the best of the TD and

LSTD worlds: its per time step complexity is linear in the number of features, and it makes

use of all data on each time step. These two properties lead to an algorithm which is

dramatically faster than LSTD in large environments and performs better than TD. The

main idea behind the iLSTD method is that it evades the computation for solving the zero

sum TD update (n × n matrix inversion) on each time step, and instead it uses the sum

TD update vector as a gradient to descend in a limited number of dimensions.3 After each

descent, it updates the sum TD update vector. By taking advantage of a sparse feature

representation, this update costs only linear computation in the number of features.

1.3 Contributions

• Introducing the incremental version of the LSTD algorithm, iLSTD, as a new policy

evaluation method.

• Extending the iLSTD method with eligibility traces: iLSTD(λ)

• Proving the linear running time of iLSTD(λ) with a sparse feature representation in

the general case.

• Comparing the experimental results of TD(λ), iLSTD(λ), and LSTD(λ) methods in

Boyan chain and mountain car environments.
2Some of the material in this thesis has been published previously [Geramifard et al., 2006, Geramifard et

al., 2007].
3In this thesis, we use dimension and feature terms interchangeably.

4

• Studying the performance and convergence properties of the iLSTD algorithm with

different dimension selection rules.

1.4 Overview

We first begin by reviewing the RL framework and the MDP class of problems in more

detail in Chapter 2. TD methods [Sutton, 1988] will be introduced as traditional algo-

rithms of solving online policy evaluation. After explaining how they were extended to

large problems using function approximators, the merits and limitations of TD methods

will be covered. Then, eligibility traces are introduced as a technique for improving TD

methods. We explain how these ideas which led to more advanced methods such as experi-

ence replay [Lin, 1993], least-squares TD (LSTD) [Bradtke and Barto, 1996] and LSTD(λ)

[Boyan, 1999], and analyze the LSTD methods in more detail. In Chapter 3, we present

incremental LSTD (iLSTD) and study its convergence. We also prove that with any sparse

feature representation, the running time of this method is linear in the number of features.

This property together with the usage of all past experience at any moment, make iLSTD a

capable algorithm which can be scaled to large problems with running time restrictions, and

at the same time, its performance exceeds TD’s significantly. In Chapter 4, we investigate

the use of eligibility traces with the iLSTD algorithm and show that this extension does not

hurt the per time step complexity of the algorithm. Various feature selection mechanisms

that can be combined with iLSTD(λ) method are introduced in Chapter 5 and their perfor-

mance and convergence properties are examined. We finally conclude the thesis in Chapter

6 by highlighting the main contributions of this study. We also discuss the extensions and

limitations of this work.

5

Chapter 2

Background

In this chapter, we present background work in reinforcement learning (RL), although for

a more comprehensive introduction, we encourage the reader to look at more detailed text

books [Sutton and Barto, 1998, Bertsekas and Tsitsiklis, 1995]. First we present the RL

framework and the Markov Decision Processes (MDP) formalism. We also review temporal

difference learning (TD) as a traditional method for solving MDPs, and describe how it can

be applied to problems with large state spaces using linear function approximation. After a

brief review of tile coding and its use as a common linear function approximator, we move

on and present eligibility traces and least-squares methods that are the building blocks of

more data efficient MDP solutions such as TD(λ), LSTD(λ), and experience replay. Finally,

the TD and LSTD methods are presented in more detail and their positive and negative

points are discussed serving as a basis for the new algorithms presented in the following

chapters.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a class of learning problems in which an agent interacts

with an unfamiliar, dynamic and stochastic environment with the goal of minimizing some

measure of its long-term performance [Sutton and Barto, 1998]. This interaction is con-

ventionally modeled as an MDP, or if the environment state is not always completely ob-

servable, as a partially observable MDP (POMDP) [Jaakkola et al., 1995]. In this thesis

we restrict our attention to the discrete-time MDP setting. An MDP is defined as a tu-

ple
〈
S,A,Pass′ ,Rass′ , γ

〉
, in which S is a set of states, A is a set of actions, Pass′ is the

6

B.S.

100%,+85

M.S.

100%,+120

Studying

10%,-50

80%,-50 Studying

30%,-200

70%,-200
Ph.D.

10%,-300

Working

100%,+60

Working

Working

Figure 2.1: A simple MDP: The student starts with a bachelor degree with two actions
of studying and working. Numbers on arrows represents the probability of transition and
consequent reward respectively.

probability of ending in state s′ by taking action a from state s, Rass′ is the reward value

corresponding to that transition, and γ ∈ [0, 1] is a discount factor. On each time step, the

agent selects an action, which changes the state of the environment and receives the con-

sequent state and reward. If this loop continues forever the task is called continuing, if it

stops after a finite number of time steps, it is called an episodic task.

Figure 2.1 depicts a simple MDP modeling a graduate student. Each large circle stands

for the state node which is an educational degree and each small solid circle represents an

action. Arrows indicate the probability of transitions (Pass′) together with the consequent

rewards (Rass′). The outcome of each action is dependent on the state it was executed from.

For example, the higher educational level you achieve, the more benefit you earn for work-

ing. An agent’s trajectory, beginning in state s0, is a sequence s0, a1, r1, s1, a2, r2, s2, ...,

where the agent takes action a1, receives reward r1, and ends up in state s1, and so on. The

return at time t, Rt, is defined as the sum of future discounted rewards from time t:

Rt =

∞∑
i=0

γirt+i+1.

The goal of the agent is to take actions in order to maximize the expected return. The agent

selects actions according to its policy, π. In general, the policy is defined as a function

π : S × A → [0, 1], which gives the probability of selecting each action given the current

state.

7

The value of a state is defined as the expected sum of discounted rewards when follow-

ing the policy π:

V π(s) = E

[∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, π

]
.

The value function can be written recursively using the well-known Bellman equation:

V π(s) = E [rt+1 + γV π(st+1)|st = s, π] (2.1)

=
∑
a

π(s, a)
∑
s′

Pass′
[
Rass′ + γV π(s′)

]
.

The goal of researchers in reinforcement learning is to build agents that learn to maxi-

mize the expected return, also known as the optimal policy. A wide range of MDP solvers

accomplish this task through policy iteration which consist of two phases: policy evalua-

tion in which the state-action pairs are evaluated according to the current policy, and policy

improvement which improves the current policy according to the state-action values. This

dissertation addresses the policy evaluation problem, and unless specified a fixed policy is

assumed to be given. Note that, with a discrete state and action space, if prior knowledge

about the Pass′ and Rass′ is provided (i.e. the agent knows the model of the environment),

V π has a closed form solution. The value iteration method (also known as dynamic pro-

gramming) solves the MDP problem using its model to perform policy evaluation [Sutton

and Barto, 1998]. In real applications, usually the model is not known, which is the focus

of this research.

There are many ways to categorize RL methods. One distinction is between online and

offline algorithms. In online learning, the agent interacts with the environment and learns

at the same time. Thus, it holds the solution on every time step. If the environment puts any

constraints on the interaction speed, the agent has a limited amount of time per interaction

for learning and decision-making. In offline algorithms, the learning phase happens after

a certain number of interactions. Doing so, the agent does not have any time restrictions

on learning, but, at the same time, it does not have the solution during interaction. For

8

example, in batch TD method, all of the TD updates are saved during the interaction, and

afterwards, state values are updated based on the sum of TD updates.

2.2 Function Approximation

In many realistic reinforcement learning problems, the number of states is large or infinite.1

In such cases, the memory required to hold large tables becomes a critical issue. In addition,

learning the value of each individual state requires many visits to that state. With a large

number of states, a great deal of experience is necessary before all states are visited even a

small number of times. The solution to this problem is generalization, where the values of

“similar” states are kept similar. In particular, for value prediction, we are interested in esti-

mating the whole value function based on some sample values. This kind of generalization

is called function approximation. There are non-linear function approximators like artifi-

cial neural networks, yet they lack convergence guarantees. In this work, we focus on linear

function approximation, a well studied area, in which the value function is approximated

by a weighted combination of a set of state features:

V (s) = θ · φ(s) =

n∑
i=1

θiφi(s), (2.2)

where the weight vector, θ, is the parameter set the agent learns whileφmaps each state to a

feature vector (φ : S → <n). Through the rest of this thesis, φt means φ(st). Radial basis

functions, tile coding, and Kanerva coding are examples of linear function approximators.

We discuss tile coding in more detail in the next section. Readers should refer to [Sutton

and Barto, 1998] for explanations of the other methods.

2.2.1 Tile Coding

Tile coding is one of the popular methods for applying linear function approximation to

reinforcement learning (also known as CMACS [Albus, 1971]). This method discretizes

the state space with many tiles such that each point in the state space is within a small

number of tiles. φ(s) is the function that maps each point to a feature vector which has

ones in the rows corresponding to “active” tiles for that state and zeros for the rest. Figure
1Even a reinforcement learning task with one continuous state variable has an infinite number of states.

9

2.2 illustrates an example of applying tile coding to a 2D state space. Two sets of tiles,

tilings, are used and each point corresponds to two tiles, so the feature vector φ(s) will

have two ones and the rest zeros. The number of tilings and the way they cover the space

can be selected arbitrarily [i.e. see Sutton and Barto, 1998], although simple grids are most

common. As the accuracy of tile coding can be controlled through the number of tilings and

the tile size, this method is capable of approximating any underlying non-linear function.

These properties make tile coding an easy to implement yet powerful method and it has

been used extensively [Tham, 1995, Sutton, 1996, Bowling and Veloso, 2002, Bowling and

Veloso, 2003, Stone et al., 2005, Sherstov and Stone, 2005]. An interesting property of tile

coding, which is common among most linear function approximators, is that it represents

the state space with sparse feature vectors: the maximum number of active features at any

given moment (the number of tilings, k), is much smaller than the total number of features

(n) or simply k � n. Throughout the rest of this thesis, we assume this sparsity property on

all feature vectors. Sparse feature vectors are commonly used to deal with large state spaces.

Stone et al. used ten thousand features for the keep away soccer domain [2005], but only

416 of these features were active at any given moment. Bowling et al. used tile coding to

represent the state of a card game using only three tilings for one million features [Bowling

and Veloso, 2002].

2.3 Temporal Difference Learning

Temporal difference methods are a class of methods for learning a value function from

experience [e.g., Sutton and Barto, 1998]. At each time step, given a new experience tuple

(st, at, rt+1, st+1), TD reduces the error of estimated values by shifting the value V (st)

towards rt + γV (st+1):

V (st) ← V (st) + αtδt,

where

δt = rt + γV (st+1)− V (st).

The αt parameter is the learning rate, and δt is the TD error at time t. If states are

10

!

Tiling #1 Tiling #2

Figure 2.2: Tile Coding of a 2D state space with two tilings

represented by feature vectors then the above equations turn to:

θt+1 = θt + αtut(θt), (2.3)

where

ut(θt) = φ(st)δt(Vθt), (2.4)

δt(Vθt) = rt + γVθt(st+1)− Vθt(st),

Using Equation 2.2, we get:

= r +
(
γφ(s′)− φ(s)

)T
θt· (2.5)

We call ut(θt) the TD update at time t . Notice that δt is now a function of Vθ and computes

the TD error of the estimated values with respect to θt.

Algorithm 1 shows the complete TD algorithm with the computational complexity of

its main line. The simplicity of the TD method has made this algorithm a common method

for solving reinforcement learning problems. Line 4 computes the TD update according to

Equations 2.3–2.5 and updates the weight vector (θ) at each time step. Line 4 first com-

11

Algorithm 1: TD Complexity
0 s← s0

1 Initialize θ arbitrarily
2 repeat
3 Take an action according to π and observe r, s′

4 θ ← θ + αφ(s)
(
r +

[
γφ(s′)− φ(s)

]T
θ
)

O(k)

5 s← s′

6 end repeat

putes the inner product of two vectors, of which one is sparse, and then multiplies another

sparse vector by the result. Thus, as Algorithm 1 states, with the sparsity assumption, TD’s

complexity per time step is O(k). However, the main drawback of the TD method is its

forgetfulness. At each time step, TD takes only the current tuple, (st, at, rt+1, st+1), into

account. This inefficient use of data has encouraged researchers to look for methods that

take advantage of more information at each time step. Experience replay [Lin, 1993] was

one success of this line of research. It saves trajectories and repeatedly takes TD steps from

the end of the trajectory back to the start state over the past experience. This helps the

algorithm to propagate the TD error faster through the state space. Although the idea is

useful and improves the performance of TD, it can not be applied online since it demands

considerable time to take TD steps over the past experience.

2.3.1 TD with Eligibility Traces

Traditional TD methods adjust V (st) toward r + γV (st+1) (one step backups), but it is

possible to look further ahead. In general, the n-step return, Rnt , can be used to estimate the

learning target:

R
(n)
t =

n∑
i=1

(
γi−1rt+i

)
+ γnVt(st+n)

Now the question is: how should one pick n? One answer to this question is to weight each

of these return values and then sum them all together. Following this idea, the λ-return is

defined:

Rλt = (1− λ)

∞∑
n=1

λn−1R
(n)
t , 0 ≤ λ ≤ 1.

By this definition, R(n)
t will have a weight of (1 − λ)λn. By changing λ we can get

a variety of TD methods, which put different weight on immediate or distant backups as λ

12

changes. If λ = 0 then we obtain the traditional TD(0) method which only uses the one-step

backup, while setting λ = 1 in an episodic task, we get TD(1), also called the Monte Carlo

method, which does not rely on any intermediate value and only backs up the results from

the end of the episode.

This explanation of λ is called the forward view, which is not suitable for implemen-

tation because it requires the agent to wait until the end of the episode to compute all the

returns and back up the values. Another way to consider λ is the backward view, which is

more suitable for implementation. For each state encountered along a trajectory, an eligi-

bility trace named et(s) is maintained and, at each time step, we decay all of the traces by

multiplying them by γλ. Whenever the algorithm experiences a TD error, instead of only

updating the value of the previous state, it will update the values of all states according to

their eligibility traces:

et(s) =

{
γλet−1(s) + 1 if s = st;
γλet−1(s) if s 6= st;

Vt(s) = Vt−1(s) + αδtet(s) for all s ∈ S.

Although the forward and backward views may seem to perform different updates, they

are equivalent in the offline mode [Sutton and Barto, 1998]. With eligibility traces, the

TD error is backed up more quickly through the state space. Eligibility traces can also

be applied to the function approximation case. Instead of each state, each feature has a

trace parameter which we call z(i). At each time step, all traces are decayed and traces

corresponding to active features are increased:

zt(i) =

{
γλzt−1(i) + 1 if z(i) ∈ present features of φ(st);
γλzt−1(i) otherwise;

(2.6)

ut(θt) = ztδt(Vθt) (2.7)

θt = θt−1 + αut(θt−1). (2.8)

In practice, a threshold (ε) can be used to cut small eligibility traces to zero. Let l be

the number of time steps that an eligibility trace is decayed to reach the threshold (i.e.,

l = logελ), then the maximum number of non zero elements of z is lk.

13

Algorithm 2: TD(λ) Complexity
0 s← s0, z← 0
1 Initialize θ arbitrarily
2 repeat
3 Take an action according to π and observe r, s′

4 z← γλz + φ(s) O(lk)

5 θ ← θ + αz
(
r +

[
γφ(s′)− φ(s)

]T
θ
)

O(lk)

6 s← s′

7 end repeat

Algorithm 2 shows the pseudo-code of TD(λ) with the computational complexity of

important lines.2 Line 4 computes the eligibility trace vector (z) based on Equation 2.6

and Line 5 updates the weight vector (θ) following Equations 2.7 and 2.8. We can see that

incorporating eligibility traces into the TD method increases the per-time complexity from

O(k) to O(lk),3 but as shown by Sutton [1988] eligibility traces can considerably improve

the performance of the TD method. It helps the algorithm to propagate the TD error faster,

and as the value of λ is increased, the value function will have less bias and more variance.

Tsitsiklis and Van Roy [1997] proved the convergence of online TD(λ) with linear function

approximation.

2.4 Least-Squares TD

First introduced by Bradtke and Barto [1996], the least-squares TD (LSTD) algorithm was

an attempt to use past experience more efficiently than in traditional TD. The basic idea

behind the LSTD method is to compute the θ vector that minimizes the sum of TD errors

over all past experiences.

2.4.1 Derivation

In this section, we present the derivation of the LSTD method [Bradtke and Barto, 1996].

Let µt(θ) be the sum of TD updates (ut(θ)) up to time t,

µt(θt) =
t∑
i=1

ui(θt).

2As described in Section 2.2.1, we assume that feature vectors are sparse.
3With a very small threshold, z is not going to be sparse which translates intoO(n) per time step complexity

for TD(λ).

14

Applying equations 2.4 and 2.5,

µt(θ) =

t∑
i=1

φiδi(Vθ)

=
t∑
i=1

φi
(
ri+1 + γφTi+1θ − φTi θ

)
=

t∑
i=1

(
φiri+1 − φi(φi − γφi+1)Tθ

)
=

t∑
i=1

φiri+1︸ ︷︷ ︸
bt

−
t∑
i=1

φi(φi − γφi+1)T︸ ︷︷ ︸
At

θ (2.9)

= bt −Atθ.

Setting µ to zero, we get:

θ = A−1
t bt.

As described by Boyan [1999], the A and b matrices model the environment based on

the observed trajectories using maximum likelihood. The A matrix holds the information

about the transition function: given φt, what is the expected φt+1. Thus, we call A the

transition model. The b vector represents a reward model based on all experiences: given

φt, what is the expected reward on the next time step. Hence we call b the reward model..

2.4.2 Alternative Derivation

An alternative view of the LSTD algorithm is a method for minimizing the mean square

error (MSE) of all state values with respect to θ weighted by their probability distribution

following policy π, Pπ(s). Since V π(s) might not be in the space spanned by the feature

vectors, we want to find a set of parameters, θ, that makes V (·) as close as possible to

V π(·). Let C(θ) be the objective function that we seek to minimize.

C(θ) =
∑
s∈S

Pπ(s)(V π(s)− V (s))2

Taking the gradient of the function with respect to θ, we get:

∇θC(θ) =
∑
s∈S

Pπ(s)∇θ(V π(s)− V (s))2

15

Assuming that the visited states are drawn from the same distribution as Pπ(s):

∇θC(θ) =
1

t

t∑
i=1

∇θ(V π(si)− V (si))
2

= −2

t

t∑
i=1

(V π(si)− V (si))∇θV (si)

Since the real value of V π(s) is not available, it is estimated with rt + γV (st+1), which

leads to:

Let at = −2

t
,

∇θC(θ) ≈ at

t∑
i=1

(ri + γV (st+1)− V (si))φi

= at

t∑
i=1

(
ri + γφTi+1θ − φTi θ

)
φi

= at

t∑
i=1

(
riφi −

(
φi − γφi+1

)T
θφi

)

= at

t∑
t=1

riφi︸ ︷︷ ︸
bt

−
t∑
t=1

φi
(
φi − γφi+1

)T
︸ ︷︷ ︸

At

θ

 (2.10)

= at(bt −Atθ)

Setting∇θC(θ) to zero yields:

θ = A−1
t bt. (2.11)

2.4.3 Iterative Matrix Inversion

The matrix inversion in Equation 2.11 is computationally expensive (i.e. O(n3)). Bradtke

and Barto [1996] showed that by updating A,b, and A−1 iteratively, the per time step

computational complexity is reducible to O(n2) per time step.

bt = bt−1 + rtφt︸︷︷︸
∆bt

, (2.12)

At = At−1 + φt(φt − γφt+1)T︸ ︷︷ ︸
∆At

. (2.13)

16

Algorithm 3: LSTD Complexity

0 s← s0, Ã← 1
ω I, b← 0

1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

4 b← b + φ(s)r O(k)
5 y← (φ(s)− γφ(s′))T O(k)

6 Ã← Ã

(
I −

(φ(s)y

1 + yÃφ(s)

)
Ã

)
O(n2)

7 θ ← Ãb O(n2)
8 s← s′

9 end repeat

As mentioned by Xu et al. [2002] and Lagodakis and Parr [2003], the inverse of a matrix

can be computed incrementally:

(A + xy)−1 = A−1

(
I −

(xy

1 + yA−1x

)
A−1

)
, (2.14)

and in our case, x = φt and y = (φt − γφt+1)T .

2.4.4 LSTD Algorithm

Algorithm 3 shows the LSTD method using an iterative matrix inversion as introduced by

Lagodakis and Parr [2003]. It also highlights the computational complexity of the most

expensive lines, assuming the sparsity of the features. Line 4 computes b iteratively using

Equation 2.12, while Lines 5 and 6 update the new estimation of A−1, Ã, according to

Equations 2.13 and 2.14. The algorithm initializes Ã with 1
ω I, (I is the identity matrix)

so that the matrix will be full-rank on every time step. As we reduce the value of ω the

difference between Ã and A−1 can be made arbitrary small. Another approach is to wait

for A to become full-rank, take the inverse once, then use that inverse as a basis for future

iterative computations. However, this approach is not suitable for large problems because it

demands extensive experience to form the first invertible A.

The LSTD method demonstrates promising results over the TD method [Bradtke and

Barto, 1996, Boyan, 1999]. The main advantage is that TD errors are minimized over all

past experience on every time step. Therefore, past interactions are not forgotten when up-

dating the value function. The main downside of the LSTD method is its computational cost

17

per step. As Algorithm 3 shows, even by using iterative matrix inversion, LSTD requires

O(n2) operations per time step to compute the new weight vector. Note that using sparse

feature vectors does not help the algorithm with its most expensive lines (i.e. Lines 6 and

7). This fact prevents LSTD from being applied online in large environments with many

features.

2.5 LSTD(λ)

Boyan introduced LSTD(λ), for which LSTD is the special case of λ = 0 [Boyan, 1999,

Boyan, 2002]. The derivation of LSTD(λ) follows naturally when TD updates take into

account the effect of eligibility traces as shown in Equation 2.7. Having µt(θ) be the sum

of the TD updates through time t, we can add eligibility traces into the LSTD method:

µt(θ) =
t∑
i=1

ui(θ) =
t∑
i=1

zi
(
ri+1 + γVθ(si+1)− Vθ(si)

)
=

t∑
i=1

zi
(
ri+1 + γφTi+1θ − φTi θ

)
=

t∑
i=1

ziri+1︸ ︷︷ ︸
bt

−
t∑
i=1

zi(φi − γφi+1)T︸ ︷︷ ︸
At

θ (2.15)

= bt −Atθ.

Note that At and bt have been updated from their definitions in Equation 2.9 to include

eligibility traces. In Boyan’s experiments, this extension showed slight improvement in a

small synthetic domain [1999].

Algorithm 4 shows the pseudo-code for LSTD(λ) with the computational complexities

of important lines. As with TD(λ), Line 4 updates the eligibility trace vector. Lines 5-7

maintain the values of b and Ã (the approximation of A−1) incrementally according to

Equations 2.15 and 2.14. Using a threshold to cut off small eligibility traces leads the z

vector to have O(lk) non-zero elements. However, adding eligibility traces to the LSTD

algorithm does not increase its per time step computational complexity.

18

Algorithm 4: LSTD(λ) Complexity

0 s← s0, z← 0, Ã← 1
ω I, b← 0

1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

4 z← γλz + φ(s) O(lk)
5 b← b + zr O(lk)
6 y← (φ(s)− γφ(s′)) O(k)

7 Ã← Ã

(
I −

(zyT

1 + yT Ãz

)
Ã

)
O(n2)

8 θ ← Ãb O(n2)
9 s← s′

10 end repeat

2.6 Conclusion

In this chapter, we introduced the reinforcement learning framework and the MDP model.

We also discussed RL methods for solving MDPs, and how they use function approxima-

tors to tackle realistic problems and eligibility traces to propagate the TD error faster. We

showed that traditional TD methods are fast and scale easily to larger environments, al-

though data is used inefficiently. On the other hand, LSTD is a powerful algorithm which

uses all of the experience at each time step to compute the new value function, but its ex-

pensive per time step complexity prevents it from being applied to problems with many

features. In the next chapter, we introduce a novel method which seeks to achieve the best

of both worlds.

19

Chapter 3

Incremental Least-Squares Temporal
Difference Learning

In this chapter, we present the incremental least-squares temporal difference learning algo-

rithm (iLSTD) and study its per time step complexity, convergence analysis, and its per-

formance on a few problems. This method builds upon the merits of TD and LSTD: if a

sparse feature representation is used, the per time step complexity is linear in the number

of features, n, and each update takes into account all of the past experience. The main idea

behind iLSTD is to use the sum of TD updates, µ, over all of the observed trajectories in a

gradient fashion to drive it closer to zero. Since iLSTD makes use of all observed trajecto-

ries, it is more data efficient than TD. It also avoids an O(n2) per time step complexity by

taking steps in a limited number of dimensions.

3.1 Incremental Computation

iLSTD is based on the iterative computation of the sum of TD updates, µt(θ), as new tran-

sitions are observed and the weight vector (θ) changes. As shown in the previous chapter,

A and b can be computed in an incremental fashion given a newly observed reward and

transition as:

bt = bt−1 + rtφt︸︷︷︸
∆bt

,

At = At−1 + φt(φt − γφt+1)T︸ ︷︷ ︸
∆At

. (3.1)

20

Given new updates to A and b, µt(θ) can be computed incrementally as:

µt(θ) = bt −Atθ,

= µt−1(θ) + ∆bt − (∆At)θ.

Finally, given an update to θ, θt+1 = θt + ∆θt, µt(θt+1) is computed as:

µt(θt+1) = µt(θt)−At(∆θt). (3.2)

The time complexity of these computations will be discussed in Section 3.3.

3.2 Parameter Update

As shown in chapter 2, maintaining the exact solution of µt(θt+1) = 0, even with incre-

mental matrix inversion, requires O(n2) complexity per time step. An alternative is to use

µ as a guiding vector in order to reduce the error on every time step. This approach can

be viewed as applying the total change to θ, if batch TD was used over all past transitions.

This has the advantage of using all past experiences which can lead to a lower variance than

TD’s traditional single sample update. Unfortunately, unless ∆θt has many zero elements,

Equation 3.2 demands O(n2) computation (An×n ·∆θn×1).

The need for many zero elements in ∆θt suggests the main idea used by iLSTD. Instead

of updating all of the components of θ in one iteration, iLSTD only considers updating a

small set of components of θ. More specifically, if only the ith component of θ is updated,

µ can be updated as follows:

θt+1 = θt + αtµt(i)ei,

µt(θt+1) = µt(θt)− αtµt(i)Atei,

where µt(i) is the ith component of µt and ei is the column vector with a single 1 in the

ith row, thus Atei selects the ith column of matrix At. On each time step iLSTD updates

multiple components by repeatedly selecting a component and performing the one compo-

nent update above. The algorithm takes a parameter m � n that specifies the number of

updates performed per time step. The algorithm also takes a feature selection mechanism

which determines the choice of i as a function of µt(θt). In Chapter 5, we will address

21

possible feature selection mechanisms in further detail and compare the performance of

various methods. For simplicity, throughout the rest of the thesis, unless specified the fea-

ture selection method will be non-zero random: we discard dimensions with zero sum TD

update and select one uniformly random out of the remaining dimensions.

3.3 Algorithm

Algorithm 5 shows the iLSTD algorithm together with the computational complexity of

important lines. After setting the initial values, the agent begins interacting with the envi-

ronment. A and µ are computed incrementally in Lines 5–8 according to Equations 3.1

and 3.21. It is followed by updating m selected features in Lines 9–13. For each of the

m updates, one feature is selected through a component selection mechanism. After the

update, µ is recomputed accordingly. This recomputation can affect the next component

chosen.

Algorithm 5: iLSTD Complexity
0 s← s0, A← 0, µ← 0, t← 0
1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

4 t← t+ 1
5 ∆b← φ(s)r O(k)
6 ∆A← φ(s)(φ(s)− γφ(s′))T O(k2)
7 A← A + ∆A O(k2)
8 µ← µ+ ∆b− (∆A)θ O(k2)
9 for i from 1 to m do
10 j ← choose an index of µ using a dimension selection mechanism
11 θj ← θj + αµj O(1)
12 µ← µ− αµjAej O(n)
13 end for
14 s← s′

15 end repeat

3.3.1 Time Analysis of iLSTD

We now examine the time complexity of the iLSTD algorithm.
1b is not computed because it is implicitly included in µ.

22

Theorem 1. If there are n features and for any given state s, φ(s) has at most k non-zero

elements, then the iLSTD algorithm is O(mn+ k2) per time step.

Proof. Lines 6–8 are the most computationally expensive parts of iLSTD outside the inner

loop. Because each feature vector does not have more than k non-zero elements, φ(s)r has

only k non-zero elements and the matrix φ(s)(φ(s) − γφ(s′))T has at most 2k2 non-zero

elements. Therefore lines 6–8 are computable in O(k2) with a sparse representation of

matrices and vectors. Inside the parameter update loop (Line 9), if a feature selection rule

with O(n) complexity is applied, then the most expensive line is 12. Because Aej is the

jth column of A, the parameter update is also O(n). This leads to O(mn+ k2) as the final

bound for the algorithm per time step.

3.4 Convergence Analysis

In this section, we analyze the convergence properties of the iLSTD method. The proof is

based on a key lemma proved by Martin Zinkevich [2006]. Here, we present the lemma and

show its application to prove the convergence of iLSTD. The proof is similar to Bertsekas

and Tsitsiklis’ proof for TD(λ) [1996]. We begin by defining an abstract theoretical model.

∀t ∈ N, yt,dt ∈ Rn, Rt,Ct ∈ Rn×n, βt ∈ R, and:

yt+1 = yt + βt(Rt)(Ctyt + dt),

where Ct,dt, and Rt are random variables. On every time step, Ct and dt are selected

first, followed by Rt. Define Ft to be the state of the algorithm on time step t before Rt is

selected. Ct and dt are sequences of random variables.

Lemma 2. Given assumptions A1 through A6, yt converges to−(C∗)−1d∗ with probability

one.

In order to prove convergence of yt, we assume that there is a C∗, d∗, v, µ > 0, and M

such that:

A1. C∗ is negative definite,

A2. Ct converges to C∗ with probability 1,

23

A3. dt converges to d∗ with probability 1,

A4. (a) E[Rt|Ft] = I , and (b) ‖Rt‖ ≤M ,

A5. limT→∞
∑T

t=1 βt =∞, and

A6. βt < vt−µ.

The complete proof can be found in Zinkevich’s original work [2006]. The assumptions

deviate from those used by Bertsekas and Tsitsiklis, since they considered Ct and dt that

converged in expectation quickly, while we consider Ct and dt that may converge more

slowly, but they converge in value not just in expectation. We can now state our main result.

Theorem 3. If the Markov decision process is finite and an appropriate α decay schedule

is used, then iLSTD with a uniform random feature selection mechanism converges to the

same result as TD.

Proof. First, we explain how to map iLSTD on to the mathematical model, and then show

how iLSTD meets the assumptions of Lemma 2:

1. yt = θt,

2. βt = tα/n,

3. Ct = −At/t,

4. dt = bt/t, and

5. Rt is a matrix, where there is an n on the diagonal in position (kt, kt) (where kt is

uniform random over the set {1,. . . , n} and i.i.d.) and zeroes everywhere else.

As shown by Bertsekas and Tsitsiklis [1996], E[Ct] = C∗ is a negative definite matrix

which coincides with Assumption 1. The proof for satisfying Assumptions 2 and 3 are

24

available in Zinkevich’s work [2006]. Considering the definition of Rt above,

∀t ∈ N, ∀i, j ∈ {1, . . . , n},

i 6= j ⇒ E[Rij
t |Ft] = 0,

i = j ⇒ E[Rij
t |Ft] =

1

n
× n = 1,

∴ E[Rt|Ft] = I,

and since ||Rt|| ≤ n, Assumption 4 is satisfied. We only need to introduce an example

learning rate that meets Assumptions 5 and 6. We show that having αt = t−(k+1), 0 < k ≤

1 satisfies Assumptions 5 and 6.

(Assumption 5)

lim
T→∞

T∑
t=1

βt = lim
T→∞

T∑
t=1

tαt
n
,

=
1

n
lim
T→∞

T∑
t=1

t−k,

= ∞.

(Assumption 6)

Let υ =
2

n
and µ = k,

βt =
tαt
n
,

=
t−k

n
,

< υt−µ.

Notice that one can come up with various dimension selection rules which satisfy the

requirements of Lemma 2, of which uniform random selection is the most trivial. In our

experimental results, only dimensions with non-zero values are selected. In Chapter 5, we

will focus on a few alternatives for dimension selection methods, and investigate their per-

formance and convergence properties using the following lemma.

25

Theorem 4. If the Markov decision process is finite and an appropriate α decay schedule is

used, iLSTD with any feature selection mechanism which satisfies the following assumption

converges to the same result as TD.

A1. Let Pt(i) be the probability of selecting the ith dimension of µt at time t, then

∃ξ ∈ R, ∀t ∈ N, such that ∀i ∈ {1, . . . , n} if (µt(i) 6= 0)⇒ 0 < ξ ≤ Pt(i) ≤ 1.

Proof. We introduce a new mapping from iLSTD to the theoretical model which differs

from our previous mapping by having new definitions for Rt and β. Thus we merely need

to verify the satisfaction of Assumptions 4–6 of Lemma 2, because the rest of the model

remains unchanged from the proof of Theorem 3. Let qt = 1
Pt(i)n

. Define Rt to be the

matrix with an nqt in position (kt, kt) where kt is the dimension selected at time t, a 1 in

position (j, j) for all j such that µ(j) = 0 and zeros everywhere else. Define βt =
tαt
nqt

and

assume αt = qtt
−(k+1), 0 < k ≤ 1.

26

(Assumption 4)

∀t ∈ N, ∀i, j ∈ {1, . . . , n},

i 6= j ⇒ E[Rij
t |Ft] = 0,

µt(i) 6= 0, i = j ⇒ E[Rij
t |Ft] =

1

Pt(i)n
× Pt(i)× n = 1,

µt(i) = 0, i = j ⇒ E[Rij
t |Ft] = 1,

∴ E[Rt|Ft] = I.

∀t ∈ N, 0 < ξ ≤ Pt(i) ≤ 1 ⇒ qt ≤
1

nξ

⇒ ||Rt||∞ ≤
1

ξ

(Assumption 5)

lim
T→∞

T∑
t=1

βt = lim
T→∞

T∑
t=1

tαt
nqt

,

=
1

n
lim
T→∞

T∑
t=1

t−k,

= ∞.

(Assumption 6)

Let υ =
2

n
and µ = k,

βt =
tαt
nqt

,

=
t−k

n
,

< υt−µ.

Notice that, in the analysis dimensions with zero sum TD update are updated on every

time step. Since these updates do not change the weight vector, it is equivalent to completely

ignore them as originally described in iLSTD.

Corollary 5. If the Markov decision process is finite and an appropriate α decay schedule

27

is used, then iLSTD with a non-zero random feature selection mechanism converges to the

same result as TD.

Proof. We show that non-zero random selection mechanism satisfies Assumption 1 of The-

orem 4. Letmt be the number of non-zero features at time t, then the probability of selecting

a feature is:

∀t ∈ N, i ∈ 1, . . . , n,

Pt(i) =

{ 1
mt

µt(i) 6= 0,

0 Otherwise.
,

max
t∈N
{mt} ≤ n ⇒ 0 <

1

n
≤ Pt(i) ≤ 1.

An interesting corollary to Lemma 2, shown by Zinkevich [2006], is that if we take

a step in all of the dimensions at the same time, we can consider the algorithm’s rate of

convergence.

Corollary 6. If assumptions A1 through A6 of Lemma 2 hold and Rt = I, then there exists

an ζ ∈ (0, 1) such that for all yt,
∥∥yt+1 + (Ct)

−1dt
∥∥ < ζ

∥∥yt + (Ct)
−1dt

∥∥.

This means that if on each iteration iLSTD takes a step in all dimensions, it reduces

the error with respect to the LSTD’s solution exponentially fast. However, updating all

dimensions requires O(n2) computation, and so is not linear in the number of features.

In all of the experimental results in this thesis, we used the iLSTD method as originally

defined. However, we still observed that the performance of iLSTD converges quickly to

the performance of LSTD.

3.5 Experimental Results

In this section, we study the performance of TD, iLSTD and LSTD methods in two domains:

Boyan chain and mountain car. After explaining each domain, we present the performance

of these algorithms and compare their experimental running time per step in each domain.

αt = α0
N0 + 1

N0 + episode#1.1

28

1 0234N 5

-3

-3

-3 -3 -3-3

-3 -3 -3 -3 -2 0

0.75

.

.

.

0

0.25
1

.

.

.

0

0
0

.

.

.

0

0
0.5

.

.

.

0

0.5
0.25

.

.

.

0

0.75
0

.

.

.

0

1
0

.

.

.

1

0

Figure 3.1: Generalized Boyan chain problem

For all of the experiments, the step size α takes a similar form as that used in Boyan’s

original experiments [Boyan, 1999]. The addition of the exponent on episode# was to make

it consistent with the Assumption 6 of Lemma 2. 2

The choice of α0 and N0 for TD and iLSTD was based on experimentally finding the

best α0 ∈ {0.01, 0.1, 1} and N0 ∈ {100, 1000, 106} for each algorithm separately. The

parameters used in all experiments are available in the Appendix A. The m parameter for

iLSTD was set to one, so on each time step only one non-zero random component was

updated. The ω factor for the LSTD method (Algorithm 3) was set to 10−6. The same

random seed was used for each method, thus all of the algorithms saw the same set of

trajectories.

3.5.1 Boyan Chain Problem

We first considered an extension of the Boyan chain problem [Boyan, 1999]. Figure 3.1 de-

picts this environment in its general form. The episodic task starts at stateN and terminates

at state zero. For all states s > 2, there is an equal probability of ending up in states (s− 1)

or (s− 2), and the reward for all transitions is −3, except for transitions from states 2 to 1

and 1 to 0 that have rewards −2 and 0, respectively.3 Vectors on the bottom of the figure

illustrate the feature vector corresponding to each state.
2In the original work of Boyan, the power of episode# is 1.
3In order to have a single solution to the problem, state zero was added to the original problem.

29

In order to probe the effect of the number of features (n) on the computational com-

plexity of iLSTD, results were conducted with three different problem sizes: 4 (original

problem), 25, and 100 features. These will be called the small, medium, and large prob-

lems, respectively.

Figure 3.2 depicts the performance of the TD, iLSTD, and LSTD algorithms on the

small, medium, and large problems. Results are averaged over 30 runs and the vertical axis

shows the average root mean square (RMS) error value of all states in the logarithmic scale.

Note that in this domain, the optimal solutions are in the space spanned by the feature vec-

tors: θ∗ = (8− 8n, ...,−24,−16,−8, 0)T .

In the left column, the horizontal axis shows the number of episodes completed by the

algorithms, thus measuring each algorithm’s data efficiency. Each point represents the RMS

error and its confidence interval every 100 episodes. The confidence bars are shifted slightly

to make them more visible. As the complexity of the problem increased the gap between

the two least square algorithms and TD got considerably wider. The relative difference was

most dramatic in the large problem, highlighting the advantage of least-square methods

over TD. In addition, in all cases, iLSTD’s performance got close to LSTD’s performance

fast and then follows it very closely.

In many circumstances, data is free but computation takes time. In such cases, the agent

seeks to learn as much as possible in the time allocated while there is no limit on the amount

of data. In the right column, the horizontal line is clock time, each point on the graph

represents the RMS error, while each cross point shows the completion of 100 episodes. As

the size of the problem increases, the least-square methods need more time to complete the

same number of episodes computed by TD. Because the run-time complexity of iLSTD is

asymptotically faster than LSTD, when the problem got large enough, iLSTD performed

better than LSTD based on clock time. Figure 3.2 (bottom-right) shows that before LSTD

finished the first 100 episodes in the large environment, iLSTD finished 500 episodes and

reached a lower error. By that time, TD finished 900 episodes but could not par with iLSTD,

because it does not take into account all of the past experience. Thus in comparison, its

30

Small
Medium
Large
Easy
Hard0 200 400 600 800 1000

10
−2

10
−1

10
0

Episodes

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TD

iLSTD LSTD

0 0.5 1 1.5 2 2.5 3
10

−2

10
−1

10
0

10
1

10
2

Time(s)

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TD

iLSTD

LSTD

Small
Medium
Large
Easy
Hard

0 200 400 600 800 1000
10

−1

10
0

10
1

10
2

Episodes

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TDiLSTD

LSTD

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

Time(s)

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TD

iLSTD

LSTD

Small
Medium
Large
Easy
Hard

0 200 400 600 800 1000
10

−1

10
0

10
1

10
2

10
3

Episodes

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TD

iLSTD

LSTD

TD

iLSTD

LSTD

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

Time(s)

R
M

S
 o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

Figure 3.2: Performance of TD, iLSTD, and LSTD algorithms in generalized Boyan chain
problem with three different sizes. Results are averaged over 30 trials. From left to right, it
shows results based on episode and clock time respectively.

31

Goal

Figure 3.3: Mountain car problem

inefficient use of data was not compensated for by the improved computational efficiency.

3.5.2 Mountain Car Problem

The second test-bed is the mountain car domain [e.g., see Sutton and Barto, 1998]. Il-

lustrated in Figure 3.3, the episodic task for the car is to reach the goal state. Possible

actions are accelerate forward, accelerate backward, and coast. The observation is a pair of

continuous values: position and velocity. We placed the car in two positions with zero ve-

locity: -1.0 and -0.5, which we call the easy and hard problems, respectively. Although the

hard problem is the one that most researchers test their control algorithms based on [Sutton,

1996], we set up the cars in two positions to study the effect of more active features on the

speed of different algorithms. Further details about the mountain car problem are available

online [RL Library, 2006]. As we are focusing on policy evaluation, the policy was fixed for

the car to accelerate in the direction of its current velocity with 90% probability or choose a

random action with 10% probability. Tile Coding [e.g., see Sutton, 1996] was selected as

the linear function approximator. Ten tilings (k = 10) were used over the combination of

the two parameter sets and the tilings were hashed into 10,000 features (n = 10, 000). The

rest of the settings were identical to those used for the Generalized Boyan chain problem.

Figure 3.4 depicts the results of the TD, iLSTD, and LSTD methods on the mountain

car easy problem (top) and hard problem (bottom). The vertical axis represents the loss

function in logarithmic scale. The loss we chose was ||b∗ −A∗θ||2, and to have an unbi-

ased estimation, A∗ and b∗ were computed based on 200,000 episodes of interaction with

32

Small
Medium
Large
Easy
Hard

TD

iLSTD

LSTD

0 200 400 600 800 1000
10

2

10
3

10
4

Episodes

L
o

ss
 F

u
n

ct
io

n

TD

iLSTD

LSTD0 200 400 600 800 1000
10

4

10
5

10
6

Episode

L
o

ss

0 50 100 150 200 250 300 350
10

4

10
5

10
6

10
7

Time (s)

L
o

ss TD

iLSTD

LSTD

Small
Medium
Large
Easy
Hard

0 200 400 600 800 1000
10

5

10
6

10
7

Episode

L
o

ss

TD

iLSTD

LSTD

0 200 400 600 800 1000 1200
10

5

10
6

10
7

10
8

Time (s)

L
o

ss

TD

iLSTD

LSTD

Figure 3.4: Performance of TD, LSTD and iLSTD methods in easy and hard mountain car
problems averaged over 30 trials based on episode (left) and clock time (right).

33

the environment for each problem with λ = 1. On the left side, the horizontal axis shows

the number of episodes, and each point on the graphs shows the loss function after 100

episodes averaged over 30 trials. On the right side, the horizontal axis represents the clock

time, and each point on the graph represents the average loss function over 30 trials, while

cross points indicate the completion of 100 episodes.

On the easy problem, based on episodes (Figure 3.4, top-left graph), least-squares meth-

ods performed considerably better than TD in terms of data efficiency. iLSTD even reached

a level competitive with LSTD after 600 episodes. On the other hand, the top-right graph

depicts the performance of the same set of methods, based on clock time. On the easy prob-

lem, after 100 seconds, iLSTD starts to perform better than LSTD, because it is able to look

through more data. By the time that LSTD finished 100 episodes, iLSTD could process

about 500 episodes and reach a lower loss. Like before, TD looked through even more data

(about 700 episodes), but it could not perform as well.

The bottom part of Figure 3.4 shows the same set of results on the hard problem. Based

on episodes, least-squares methods again outperformed TD (bottom-left), although the gap

between iLSTD and LSTD is larger. Based on clock time (bottom-right), iLSTD outper-

formed all other methods, while interestingly LSTD could not outperform TD, and by the

time that even iLSTD finished all of the 1000 episodes, LSTD failed to finish the first 100

episodes.

In order to compare the difficulty of these two problems, we examined the number of

non-zero elements of the A and b matrices at the end of the 1000 episodes, which were

(8803, 374) for the easy problem and (19038, 575) for the hard one. iLSTD picks one of

the active features at each time step and descends in that dimension. Because the number

of active features was larger in the hard problem, the effectiveness of each descent (iLSTD)

compared to the matrix inversion (LSTD) was reduced, which explains the increased gap

between the performances of the iLSTD and LSTD methods based on episodes (Figure 3.4,

left graphs). However, at the end of 1000 episodes, iLSTD still reached a performance close

to LSTD.

34

clock time/step (msec)
Boyan chain Mountain car

Algorithm Small Medium Large Easy Hard
TD 0.22±6.0e-4 0.21±1.0e-4 0.21±1.0e-4 4.96±3.0e-3 5.02±3.0e-3
iLSTD 0.27±4.0e-4 0.27±1.0e-4 0.37±1.0e-4 7.01±3.0e-2 8.68±1.2e-2
LSTD 0.28±3.0e-4 0.33±1.0e-4 1.88±3.0e-4 34.01±2.95 153.80±8.0e-1

Table 3.1: The averaged clock time per step of the algorithms with eligilibity traces used in the
Boyan chain and mountain car problems.

Table 3.1 shows the clock time per step results for all of the Boyan chain and mountain

car problems. All of the experiment were conducted on an AMD Opteron 250 processor

(64 bit, 2.4GHz) with 8 GByte of RAM. As the problem size increased, methods performed

slower accordingly. In all cased TD was the fastest method followed by iLSTD, while

LSTD could only keep up with the speed of the other methods till the medium Boyan chain

problem.

3.6 Alternative Solvers

There are many iterative linear system solvers which might be employed to incrementally

solve b − Aθ = 0. Does the iLSTD method simply take advantage of just one possible

method? Might other methods perform better?

When devising the iLSTD update, we considered two facts:

• The algorithm must focus on real-time policy evaluation, thus it must be computa-

tionally efficient. In particular, we are interested in methods with linear running time

in the number of features4. This constraint immediately rules out many methods like:

gradient descent [e.g. See Avriel, 2003], steepest descent [e.g. See Eric W. Weisstein,

2002], conjugate gradient [e.g. See Noel et al., 2006], biconjugate gradient [Barrett

et al., 1994], Minimal Residual (MINRES) [Paige and Saunders, 1975], Generalized

Minimal Residual (GMRES) [Saad and Schultz, 1986], and Quasi-Minimal Resid-

ual (QMR) [Freund and Nachtigal, 1991]. Nevertheless, if updating a limited set
4Notice that solving the problem in one step through iterative matrix inversion costs O(n2).

35

Small Medium Large Easy Hard
10

−2

10
0

10
2

10
4

10
6

 Boyan Chain Mountain Car

E
rr

o
r

M
ea

su
re

Random
Steepest Descent

Figure 3.5: Performance of iLSTD using gradient descent in the original problem and steep-
est descent in the conditioned problem on small, medium, and large Boyan chain and easy
and hard cases of mountain car. Both methods picked a dimension with non-zero value of
µ randomly. Each point represents the error averaged over the last 100 episodes after 100
(top) and 1000 (bottom) episodes based on 30 trials.

of components is considered, gradient descent and steepest descent can satisfy this

condition.

• As mentioned by Boyan [1999], A is an asymmetric matrix, while methods like steep-

est descent, MINRES, and conjugate gradient requires the matrix to be symmetric.

In order to make them applicable, the original problem must be conditioned by AT :

ATAθ −ATb = 0

Among all of the available options only two methods satisfy both of these constraints:

(1) gradient descent in a limited number of components of the original linear problem (i.e.

the iLSTD algorithm), and (2) steepest descent in a limited number of components of the

conditioned problem. We also would like to highlight this fact that finding the dimension

which minimizes the error the most for the conditional steepest descent requires O(n2)

complexity, where as for gradient descent this can be accomplished in O(n).

In order to see whether the disadvantage of conditioning the problem can be compen-

sated by the fact that steepest descent does not require the step size parameter, we put both

36

clock time/step (msec)
Boyan chain Mountain car

Algorithm Small Medium Large Easy Hard
Gradient Descent 0.302±5.0e-4 0.304±1.0e-4 0.409±6.0e-4 7.25±3.0e-3 8.97±2.0e-3
Steepest Descent 0.312±5.0e-4 0.311±2.0e-4 0.404±3.0e-4 7.52±3.0e-3 9.97±3.0e-3

Table 3.2: The averaged clock time per step of the iLSTD methods using gradient descent for
original problem and steepest descent for conditioned problem in the Boyan chain and mountain car
problems.

methods in various environments and compared their performance and running time per

step. Figure 3.5 depicts the performance of iLSTD using gradient descent in the original

problem and steepest descent in the conditioned problem used in small, medium, and large

Boyan chain and easy and hard cases of mountain car. The horizontal axis specifies the en-

vironment, while the vertical axis shows the loss measure. The measure was the root mean

square error (RMS) of all state values for the Boyan chain problems and ||b∗ −A∗θ||2 for

the mountain car problems as described in Section 3.5. Recall that for the Boyan chain do-

main, there exists a unique solution for each problem, which was the base for computing the

RMS error. After each interaction with the environment, θ was updated only once (m = 1),

and for gradient descent the best α0 and N0 were found empirically according to Section

3.5. Also, dimensions were picked randomly among the non-zero indices of µ for both

methods. Each point on the graph shows the error averaged over the last 100 episodes after

100 (top) and 1000 (bottom) episodes based on 30 trials. Table 3.2 shows the corresponding

per time step running time of all of these experiments.

Although on the small and medium Boyan chain problems, steepest descent showed

promising results, as the size of the problem increased, it started to suffer from the condi-

tioning, and did not perform as well as the gradient descent method. Also, because con-

ditioning the problem reduces the sparsity of the matrix, time-wise, the steepest descent

method was also more computationally expensive in general.

37

3.7 Conclusion

The computational demands of LSTD make it inapplicable to domains with a large number

of features. On the other hand, when the feature representation is sparse, iLSTD can achieve

results competitive with LSTD with computational demands that rival the time efficient TD

method (O(n) vs. O(k)). Based on clock time, when the problem gets large enough, iLSTD

can achieve better results than LSTD, because it can look though more data. Although TD

is faster than iLSTD, it uses data inefficiently and so does not fully take the advantage of

looking through more data. Thus, even based on clock time it does not outperform iLSTD

or LSTD. We studied the convergence analysis of the iLSTD method with the uniform ran-

dom and non-zero random selection mechanisms and proved their convergence to the fixed

point solution of TD. We also looked through different alternative methods that can be fused

with iLSTD for reducing the error. The steepest descent method on the conditioned prob-

lem was the only possible alternative which satisfies our desired properties, and it has the

additional advantage of not needing a step size parameter. In our experiments conditioning

the problem hurt the performance enough to make the gradient descent method a superior

choice.

38

Chapter 4

iLSTD with Eligibility Traces

One natural extension of iLSTD is to take advantage of eligibility traces. This chapter

introduces the iLSTD(λ) algorithm for which iLSTD is the special case where λ = 0.

This extension can potentially harm the per time step complexity, but as we will see, the

additive cost is minor and iLSTD(λ)’s running time is still linear in the number of features.

We also present a convergence analysis of the algorithm in the general case. Finally we

investigate the effect of λ in the small Boyan chain and the hard mountain car problems.

Also, we show that the running time of TD(λ), iLSTD(λ), and LSTD(λ) coincide with our

theoretical analysis.

4.1 Algorithm

In Chapter 2, we discussed how Boyan added the idea of eligibility traces to the LSTD al-

gorithm. Following that, in Chapter 3, we introduced iLSTD which uses the same matrices

as LSTD (A and b), but instead of computing A−1, iLSTD takes steps to reduce the error

gradually. As expected, the same matrices used for LSTD(λ) can be used for the iLSTD(λ)

39

algorithm:

µt(θ) =
t∑
i=1

ui(θ) =
t∑
i=1

zi
(
ri+1 + γVθ(si+1)− Vθ(si)

)
=

t∑
i=1

zi
(
ri+1 + γφTi+1θ − φTi θ

)
=

t∑
i=1

ziri+1︸ ︷︷ ︸
bt

−
t∑
i=1

zi(φi − γφi+1)T︸ ︷︷ ︸
At

= bt −Atθ.

Following the derivations of LSTD(λ) by Boyan [2002], given a newly observed reward

and transition, A and b can be computed iteratively as:

bt = bt−1 + rtzt︸︷︷︸
∆bt

,

At = At−1 + zt(φt − γφt+1)T︸ ︷︷ ︸
∆At

, (4.1)

in which zt is the eligibility trace vector, and is computed incrementally as:

zt = γλzt−1 + φt. (4.2)

With the new definitions of ∆At and ∆bt, the equations for the iterative computation of

µt remains the same as in iLSTD:

µt(θt) = µt−1(θt) + ∆bt − (∆At)θt,

µt(θt+1) = µt(θt)−At(∆θt), (4.3)

and the same method for updating θ can be used.

Algorithm 6 contains the pseudo-code for iLSTD(λ) and highlights the computational

complexity of certain lines of the algorithm. Line 5 updates z according to Equation 4.2,

and Lines 6–9 incrementally compute the At and µt as described in Equations 4.1 and

4.3. As with iLSTD, any feature selection mechanism can be employed in Line 11 to

select a dimension of the sum TD update vector (µ). Line 12 then takes a step in the

selected dimension, and Line 13 updates the µ vector accordingly. The iLSTD algorithm

(Algorithm 5) can be recovered by simply setting λ to zero. In the next section, we show

40

Algorithm 6: iLSTD(λ) Complexity
0 s← s0, z← 0, A← 0, µ← 0, t← 0
1 Initialize θ arbitrarily
2 repeat
3 Take action according to π and observe r, s′

4 t← t+ 1
5 z← γλz + φ(s) O(lk)
6 ∆b← zr O(lk)
7 ∆A← z(φ(s)− γφ(s′))T O(lk2)
8 A← A + ∆A O(lk2)
9 µ← µ+ ∆b− (∆A)θ O(lk2)
10 for i from 1 to m do
11 j ← choose an index of µ using some feature selection mechanism
12 θj ← θj + αµj O(1)
13 µ← µ− αµjAej O(n)
14 end for
15 s← s′

16 end repeat

that adding eligibility traces does not dramatically increase the per time step complexity

of the algorithm. The algorithm still requires only linear computation in the number of

features per time step.

4.2 Time Analysis

We now examine the time complexity of the iLSTD(λ) algorithm.

Theorem 7. Assume that the feature selection mechanism takesO(n) computation. If there

are n features, and for any given state s, φ(s) has at most k non-zero elements, then the

iLSTD(λ) algorithm requires O(mn+ lk2) computation per time step.

Proof. Outside of the inner loop, Lines 7–9 are the most computationally expensive steps

of iLSTD(λ). Since we assumed that each feature vector has at most k non-zero elements,

and the z vector can have up to lk non-zero elements, the z (φ(s)− γφ(s′))T matrix (Line

7) has at most 2lk2 non-zero elements. This leads to O(lk2) complexity for Lines 4–9.

Inside the inner loop, the complexity remains unchanged from iLSTD to iLSTD(λ) with

Line 13 as the most expensive line. Because µ and A do not have any specific structure,

the complexity of this line is O(n).1 Thus, the final bound for the per time step complexity

1Note that Aej selects the jth column of A and so does not require the usual quadratic time for multiplying

41

of the iLSTD(λ) algorithm is O(mn+ lk2).2

4.3 Convergence Analysis

We studied the iLSTD(λ) algorithm’s proof of convergence with λ = 0 in Chapter 3. This

section extends the previous analysis in case of λ 6= 0.

Theorem 8. If the Markov decision process is finite, and an appropriate α decay sched-

ule is used, iLSTD(λ) with any feature selection mechanism which satisfies the following

assumption converges to the same result as TD(λ).

A1. Let Pt(i) be the probability of selecting the ith dimension of µt at time t, then

∃ξ ∈ R, ∀t ∈ N, such that ∀i ∈ {1, . . . , n} if (µt(i) 6= 0)⇒ 0 < ξ ≤ Pt(i) ≤ 1.

Proof. Incorporating eligibility traces to iLSTD only affects the definitions of A and b.

This means that Lemma 2 still holds regardless of the value of λ. We incorporate the same

mapping used for Theorem 4. In Zinkevich’s original work [2006], it was shown that iLSTD

satisfies Assumptions 2 and 3 of Lemma 2 regardless of the value of λ. The proof for the

rest of the assumptions remains unchanged.

4.4 Experimental Results

In this section, we examine the effect of λ on the performance of TD(λ) LSTD(λ), and

iLSTD(λ) in two problems: the small Boyan chain and hard mountain car. We also discuss

the effect of λ on the running time of the methods.

For all of the experiments, the step size α, takes the same form as the set of experiments

in Chapter 3. The choice of N0 and α0 for TD(λ) and iLSTD(λ) was based on experimen-

tally finding the best α0 ∈ {0.01, 0.1, 1} and N0 ∈ {100, 1000, 106} for each algorithm

and λ value separately. For better use of sparse matrices, traces less than 10−4 were set to

zero. The rest of the settings remained unchanged.

a vector by a square matrix.
2With a very small threshold, z is not going to be sparse which translates into O

(
(m + k)n

)
per time step

complexity for iLSTD(λ).

42

0 0.5 0.7 0.8 0.9 1
10

−2

10
−1

10
0

!

R
M

S
 e

rr
o

r
o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

TD
iLSTD
LSTD

Figure 4.1: Performance of TD(λ), iLSTD(λ), and LSTD(λ) algorithms in the small Boyan
chain problem with 6 different lambda values. Each point represents the RMS error af-
ter 100 (top), 200 (middle), and 1000 (bottom) episodes averaged over last 100 episodes
respectively. Results are also averaged over 30 trials.

4.4.1 Small Boyan Chain Problem

We first examine the small Boyan chain problem. Each of the methods were tested with λ

∈ {0, 0.5, 0.7, 0.8, .9, 1}. Figure 4.1 shows their performance. The vertical axes represents

the root mean square (RMS) error of the values over all states compared to the true values

in logarithmic scale,3 while the horizontal line indicates the λ values. Each point represents

the average of performance over the last 100 episodes after 100 (top), 200 (middle), and

1000 (bottom) episodes averaged over 30 trials.

As expected, LSTD(λ) required the least amount of data, obtaining a low error af-

ter only 100 episodes. With only 200 episodes, though, iLSTD(λ) performed as well as

LSTD(λ), and dramatically outperformed TD(λ). Although, λ did not play a significant

role for LSTD(λ), which matches the observation of Boyan [1999], λ > 0 showed slight

improvement in the performance of iLSTD(λ).
3As mentioned in Chapter 3, unique solutions are in the space spanned by feature vectors.

43

0 200 400 600 800 1000

10
6.3

10
6.4

10
6.5

Episode

L
o

ss

TD!.9"

iLSTD!.9"

LSTD!.9"

0 1000 2000 3000 4000 5000
10

6

10
7

10
8

Time (s)

L
o

ss

TD!.9"
iLSTD!.9"

LSTD!.9"

Figure 4.2: Performance of the TD(.9), iLSTD(.9), and LSTD(.9) algorithms in hard moun-
tain car. Results are averaged over 30 trials. From left to right, graphs show results based
on episode and clock time, respectively.

4.4.2 Hard Mountain Car Problem

Our second test case is the hard mountain car problem explained in Chapter 3 with the same

parameter settings. Figure 4.2 shows the results of the TD(λ), iLSTD(λ), and LSTD(λ)

methods with λ = .9 in this problem. The horizontal axis shows the number of episodes

(left) and clock-time (right), while the vertical axis represents our loss function in logarith-

mic scale. The loss was ||b∗ − A∗θ||2, where A∗ and b∗ were computed from 200,000

episodes of interaction with the environment. In computing the loss function, we set λ = 1

in order to get unbiased estimates of A and b matrices and made it possible to compare the

results of algorithms with different λ values. In this problem, with λ = .9, LSTD performed

worse than iLSTD in terms of data efficiency (Figure 4.2-left), although after 1000 episodes

their results are close. Clock-wise, LSTD could not beat either TD or iLSTD (Figure 4.2-

right).

Figure 4.3 depicts the results for all of the methods in the hard mountain car problem

with two different λ values. Each line represents the loss averaged over the last 100 episodes

after 100 (top) and 1000 (bottom) episodes. Based on our loss function, by changing λ

from 0 to .9, TD performed better, while iLSTD and LSTD performed worse. iLSTD is still

superior to TD in both cases, but its advantage narrowed with the large λ. For TD, having

44

10
5

10
6

10
7

L
o

ss

Hard mountain car

T
D
!0
"

iL
ST
D
!0
"

L
ST
D
!0
"

T
D
!.
9
"

iL
ST
D
!.
9
"

L
ST
D
!.
9
"

Figure 4.3: Performance of TD(λ), iLSTD(λ), and LSTD(λ) algorithms in hard mountain
car problem with λ ∈ {0, .9}. Each point represents the loss averaged over last 100 episodes
and 30 trials after 100 (top) and 1000 (bottom) episodes.

λ = .9 improved the algorithm by updating weights corresponding to more than one state at

each time step, which propagates the TD error faster. However, least-square methods look

through the whole experience even with λ = 0 and so they dont benefit from this feature

of eligibility traces. On the other hand, eligibility traces reduces the bias and increase the

variance at the same time, which can explain the worse results of least-square methods with

λ = .9.

Table 4.1 shows the averaged running time of the last two experiments. We did not ob-

serve any significant difference between the running time of the algorithms with different

λ values in small Boyan chain, so we report the average of all runs. However, in the hard

mountain car problem the gap is wide, so we report the running times for each λ value sep-

arately. In the large problem, the difference between running times became more apparent.

By adding eligibility traces, TD’s running time increased slightly, although for least-square

methods the jump was more noticeable. The slower speed of the algorithms with λ = .9 can

be explained with the fact that adding eligibility traces reduces the sparsity of the update

matrices which translates into higher computational cost. In the mountain car environment

the n
k is relatively large (∼500

10 =∼ 50), which translates into a significant time improvement

of iLSTD(λ) over LSTD(λ).

45

clock time/step (msec)
Small Boyan chain Hard mountain car

Algorithm λ λ= 0 λ= .9

TD(λ) 0.305±7.0e-4 5.02±2.0e-3 6.20±2.0e-3
iLSTD(λ) 0.370±7.0e-4 8.68±1.0e-2 40.35±2.0e-1
LSTD(λ) 0.367±7.0e-4 153.77±9.0e-1 1608.40±9.8

Table 4.1: The averaged clock time per step of TD(λ), iLSTD(λ), and LSTD(λ) algorithms used in
Small Boyan chain and hard mountain car problems. All results are based on 30 trials.

Environment
Boyan chain Mountain car

Parameter Small Medium Large Easy Hard

Active features per step (k) 2 2 2 10 10
Total active features (n) 4 25 100 ∼400 ∼600
Total features 4 25 100 10000 10000

Table 4.2: Feature specification of the environments.

4.4.3 Comparison of Theoretical and Empirical Ratios

So far, we investigated the per time step computational complexities of the iLSTD(λ) and

LSTD(λ) methods through theoretical analysis and empirical results. In this section, we

show that these results coincide with each other.

Table 4.2 presents the feature specification of all tested environments. To compare the

experimental results with our theoretical results, we examined the running time ratios of

LSTD and iLSTD algorithms in Figure 4.4. The horizontal axis represents the problem,

while the vertical axis shows the ratio value. The ratios indicated by circles show the em-

pirical timing ratios based on Tables 3.1 and 4.1, while those being represented by triangles

stand for the theoretical timing ratios, O(n2)
O(nk) ≈

n
k ,4 based on Table 4.2 for all environ-

ments. The theoretical and empirical results are consistent and they follow the same pattern

through all environments.

4.5 Conclusion

This chapter incorporated the idea of eligibility traces with iLSTD and showed that the

iLSTD(λ) algorithm still has a linear per time step complexity in the number of features.
4Since the cut-off threshold used for the experiments was so small, we considered O

(
(k+m)n

)
as the per

time step complexity of iLSTD(λ).

46

15

30

45

60

Sm
al

l

M
ed

iu
m

Lar
ge

Eas
y

H
ar

d

Boyan chain Mountain car

Empirical
Theoretical

R
a
ti

o

Figure 4.4: The comparison of the n
k ratios and the experimental running time ratios of

LSTD and iLSTD in the Boyan chain and mountain car domains. In general, both ratios are
coherent with each other.

We showed that theoretical results for iLSTD is valid for iLSTD(λ). We also investigated

the effect of λ through empirical experiments with TD(λ), iLSTD(λ), and LSTD(λ) in the

small Boyan chain and hard mountain car problems. Setting λ > 0 slightly improved the

performance of iLSTD(λ) in the Boyan chain environment, yet based on our loss function,

λ = .9 hurt the performance of least-square methods in the mountain car compared to

λ = 0. On the other hand, adding the eligibility traces reduces the sparsity of matrices,

which increases the running time of all methods. This extra cost mostly affected the LSTD

methods.

47

Chapter 5

Dimension Selection Alternatives

In Chapters 3 and 4, we used non-zero random selection as the feature selection mechanism

for the iLSTD algorithm in all experiments. Although, this method is easy to implement,

other mechanisms may perform better. In this chapter, we investigate three more feature se-

lection mechanisms: greedy, ε-greedy, and Boltzmann. After discussing about the conver-

gence property of each method, we compare the performance and computational demands

of the methods in the Boyan chain and the mountain car environments.

5.1 Greedy

One alternative for picking dimensions is to act greedily with respect to the absolute value

of each component and break ties randomly. Hence, on each iteration, the element with

the highest absolute value of the sum TD update is chosen (i.e., argmaxj |µt(j)|). This

approach has a resemblance to prioritized sweeping [Moore and Atkeson, 1993], but rather

than updating the state with the largest TD update, we choose to update the parameter

component with the largest TD update. Like prioritized sweeping, iLSTD can tradeoff

data efficiency and computational efficiency by increasing m, the number of components

updated per time step. In terms of convergence, though, greedy selection does not meet

the assumption of Theorem 4,1 so has no guarantee of convergence. As we will see in the

next section, though, greedy selection performs quite well in some cases, despite this lack

of asymptotic guarantee.
1In the greedy mechanism, a non-zero probability of selecting each dimension with non-zero TD update

does not exist. Thus normalizing α can not make it satisfy Assumption 1 of Theorem 4.

48

5.2 Non-zero ε-greedy

By adding an ε parameter to the greedy selection rule, both random and greedy methods

can be merged into an ε-greedy selection mechanism:

i←
{

argmaxj |µt(j)| with 1− ε probability
random(1, n) with ε probability

Setting ε to zero and one, one can obtain random and greedy selection methods, respectively.

We also restrict our random selection to non-zero elements of µt. Suppose that µt has mt

non-zero elements, of which vt elements are maximal. Given that ties are broken randomly

between maximal components, the probability of selecting the ith element of µt is:

Pt(i) =

{ 1−ε
vt

+ ε
mt

i = maxi |µt(i)|
ε
mt

Otherwise

If ε 6= 0 and αt is normalized by qt = 1
Pt(i)n

, then iLSTD(λ) with the non-zero ε-greedy

mechanish satisfies the assumption of Theorem 4, therefore it converge to the fixed point

solution of TD(λ).

5.3 Boltzman Distribution

Another way of adding stochasticity to the dimension selection rule is to use the Boltzmann

distribution function [e.g., see Sutton and Barto, 1998] for selecting non-zero indices of

µt. In this method, dimensions with higher sum TD updates have more chance of getting

selected, but still the selection involves stochasticity. The probability of selecting each

dimension is computed by:

Pt(i) =

e
|µt(i)|

τ∑n
j=1,µ(j)6=0 e

|µt(j)|
τ

µ(i) 6= 0

0 µ(i) = 0

,

in which the τ parameter behaves as the temperature. If τ → ∞, the selection mechanism

behaves like non-zero random selection; if τ → 0, it acts greedily. Compared to previous

methods this method is more complicated, thus it is expected to run slower than the other

selection rules. Because there exist no lower bound for Pt(i), this mechanism does not meet

the assumption of Theorem 4 and therefore has no proof of convergence.

49

One solution is to mix the Boltzmann and non-zero random selection methods together.

Given a parameter 0 < ψ ≤ 1
n and mt as the number of non-zero elements of µt, then

each non-zero element has a ψ probability of getting selected, and the rest of (1 − mtψ)

probability is distributed among non-zero dimensions following Boltzmann distribution.

The new mechanism has ψ as a lower bound of Pt(i),2 thus it is guaranteed to converge

to the solution of TD(λ) by using the normalization term 1
Pt(i)n

. The probability function

takes the following form:

Pt(i) =

 ψ + (1−mtψ) e
|µt(i)|

τ∑n
j=1,µ(j)6=0 e

|µt(j)|
τ

µ(i) 6= 0

0 Otherwise
.

For the empirical results, we used the new defined probability function as the Boltzmann

feature selection mechanism.

5.4 Empirical Results

In this section, we study the performance of iLSTD(λ) with the random, greedy, ε-greedy,

and Boltzmann feature selection mechanisms. For ε-greedy, ε was set to .1 and for Boltz-

mann, τ = 1 and ψ = 10−6. Experiments were conducted in the small, medium and large

Boyan chain domain and easy and hard cases of the mountain car environment. All of

the parameter settings remained the same from the previous chapters. For each method α0

andN0 were set to the best combination of α0 ∈ {0.01, 0.1, 1} andN0 ∈ {100, 1000, 106}.

Figure 5.1 shows the empirical results. The horizontal axis identifies the problem, while

the vertical axis shows the error measure in logarithmic scale as described in Section 3.5.2

of Chapter 3. Each graph shows the averaged performance of each method over last 100

episodes, after 100 (top) and 1000 (bottom) episodes respectively. Results are also averaged

over 30 trials, and all of the methods experienced the same set of trajectories.

Aside from the hard mountain car probelm, the greedy mechanism outperformed all

of the other methods. This is interesting, as this is the only method which lacks a proof
2i.e., ∀t ∈ N, ∀i ∈ {1..n}, 0 < ψ ≤ Pt(i).

50

Small Medium Large Easy Hard
10

−2

10
0

10
2

10
4

10
6

10
8

 Boyan Chain Mountain Car

E
rr

o
r

M
ea

su
re

Random
Greedy
!−Greedy
Boltzmann

Figure 5.1: Performance of iLSTD with random, greedy, ε-greedy, and Boltzmann feature
selection methods in small, medium and large Boyan chain and easy and hard cases of
mountain car averaged over 30 trials. Each point represents the averaged performance over
the last 100 episodes after 100 (top) and 1000 (bottom) episodes respectively.

of convergence, although intuitively, descending in the steepest dimension seems to be a

good idea. For the hard mountain car problem, we found a set of parameters, with which

the greedy method performed better than random, but that parameter setting was unstable

and in rare cases the error would diverge quickly. So, the results of the greedy method on

this specific problem are based on the second best parameter setting which was stable on

all runs. This instability of the greedy method maybe related to its lack of a convergence

guarantee.

The ε-greedy and Boltzmann mechanisms, on the other hand, performed worse than

the random method in all cases. We suspect that this is due to the normalization factors.

Although they are necessary to satisfy the convergence property, they can force large jumps

on rarely selected features (i.e., when Pt(i) is close to zero), which is risky at the same

time. We observed that in some runs, these methods reached higher error after 200 episodes

compared to their performance after 100 episodes. In order to make sure that this phe-

nomenon was because of the normalization factors, we ran the same experiments without

51

the use of these coefficients and in all cases the algorithms reduced the error in a steady

fashion, although they were not stable on all runs. The poor performance after 200 episodes

is also logical as the µt vector is quite noisy in the beginning and the normalization factors

can cause large changes in rarely selected dimensions, but as µt becomes more and more

accurate, these jumps become less risky.

By increasing the ε and τ parameters, both methods involve more stochasticity and be-

come more similar to the random method. Therefore, it is expected that they can at least

perform as well as the random method and maybe better. In order to investigate this issue,

we ran all of random, greedy, ε-greedy, and Boltzmann mechanisms in the large Boyan

chain problem, in which we observed noticeable differences. Also the ε and τ parameters

were varied according to {0.1, 0.3, 0.5, 0.9} and {1, 10, 100, 1000} sets, respectively. Fig-

ure 5.2 depicts the empirical results averaged over 30 trials. Each point represents the RMS

of all values averaged over the last 100 episodes after 100 (top) and 1000 (bottom) episodes.

Like before, the best combination of α0 and N0 were found throughout the empirical tests

individually. As we expected, both ε-greedy and Boltzmann mechanisms could eventually

reach the performance of the random method, although they did not outperform it. As ε

increased, ε-greedy mechanism behaved more like the random method, but we could not

see the same effect for the Boltzmann method. After looking at the results in more detail,

we noticed that only after setting τ to 1000, could Boltzmann reach noticeable results with

aggressive parameter settings (α0 = 1, N0 = 100), while with τ < 1000, the best results

were obtained with less aggressive parameters (α0 = .1, N0 = 106). Albeit the normaliza-

tion factor guarantees the convergence of these methods, it also triggers large jumps which

potentially can hurt the performance at the same time.

Table 5.1 together with Figure 5.3 show the running time for the experiments described

above. All of the numbers for the Boyan chain environment are statistically significant and

they match the theoretical complexity of each mechanism, with random having the lowest

running time and Boltzmann having the highest one. As the algorithms switched to more

complicated environments the extra cost of the Boltzmann method became more apparent.

52

10
−1

10
0

10
1

10
2

10
3

10
4

R
M

S
 e

rr
o

r
o

f
V

(s
)

o
ve

r
al

l s
ta

te
s

Random
Greedy
!−Greedy
Boltzmann

!
 =

 0
.1

!
 =

 0
.3

!
 =

 0
.5

!
 =

 0
.9

"
 =

 1 "
 =

 1
0 "
 =

 1
0

0

"
 =

 1
0

0
0

Large Boyan chain

Figure 5.2: Performance of iLSTD with random, greedy, ε-greedy, and Boltzmann fea-
ture selection methods in the large Boyan chain problem averaged over 30 trials. Each
point represents the averaged performance over the last 100 episodes after 100 (top) and
1000 (bottom) episodes respectively. The ε and τ parameters for ε-greedy and Boltzmann
mechanisms were varied according to {0.1, 0.3, 0.5, 0.9} and {1, 10, 100, 1000} sets, re-
spectively.

Although, in all cases the extra running times are small, but more complicated methods like

ε-greedy and Boltzmann did not benefit from their extra running time in our experiments.

5.5 Conclusion

In this chapter, we investigated the use of various feature selection mechanisms. The greedy

method, despite the lack of a convergence proof, demonstrated promising results. Although

in our problems we observed some instability. The ε-greedy and Boltzmann mechanisms

have convergence proofs using normalization, but based on our experiments, they did not

perform as well as the random mechanism, only approaching it as stochasticity in the selec-

tion was increased.

53

clock time/step (msec)
Boyan chain Mountain car

iLSTD Small Medium Large Easy Hard
Random 0.296±6e-4 0.293±3e-4 0.382±1e-4 7.41±3e-2 8.79±2e-2
Greedy 0.307±5e-4 0.306±2e-4 0.405±1e-4 7.50±4e-2 8.88±2e-2
ε-greedy 0.309±3e-4 0.308±2e-4 0.410±2e-4 7.51±4e-2 8.90±2e-2
Boltzmann 0.358±6e-4 0.351±3e-4 0.460±5e-4 8.22±3e-2 9.50±2e-2

Table 5.1: The averaged clock time per step of the iLSTD algorithms with random, greedy, ε-
greedy, and Boltzmann feature selection rules used in small, medium, and hard Boyan chain and
easy and hard cases of mountain car problems.

0

2.2

4.4

6.6

8.8

11.0

Sm
al

l

M
ed

iu
m

Lar
ge

Eas
y

H
ar

d

Random Greedy !-greedy Boltzmann

Boyan chain Mountain car

C
lo

c
k

ti
m

e
/
st

e
p

 (
m

s)

Figure 5.3: The averaged CPU time per step of the iLSTD algorithms with random, greedy, ε-
greedy, and Boltzmann feature selection rules used in small, medium, and hard Boyan chain and
easy and hard cases of mountain car problems.

54

Chapter 6

Conclusions and Future Work

In this chapter, we highlight the contributions and limitations of this research and finally,

we conclude by discussing possible threads for future works.

6.1 Contributions

This dissertation introduced a novel algorithm, called iLSTD, for online policy evaluation.

With the use of eligibility traces, this method was extended to iLSTD(λ), which holds the

linear running time property. We investigated the running time, convergence, and empirical

performance of iLSTD compared to the TD and LSTD methods. Finally, we studied the

effect of using different dimension selection mechanisms with iLSTD and their convergence

properties.

6.1.1 iLSTD Algorithm

In Chapter 3, we introduced incremental least-squares temporal difference learning (iLSTD)

method as a solution to online policy evaluation in large problems when using a sparse fea-

ture representation. It has the combined advantages of TD and LSTD: its per time step

complexity is linear in the number of features, and it makes use of all experiences. These

two properties lead to a fast algorithm which can be applied to large problems with sparse

feature representations and achieve comparable results with the LSTD method which is

computationally impractical. Although, unlike the LSTD algorithm, iLSTD requires a step

size parameter selection, which suggests a thorough search or prior knowledge for optimal

performance. Recall that iLSTD can also use steepest descent in the conditioned problem

55

to get rid of the step size parameter, although, based on our experiments, it would not per-

form as well as the proposed iLSTD method. We also studied the convergence property

of iLSTD to the limit point of TD. iLSTD is categorized as model-based reinforcement

learning methods, because it builds up a transition and reward model as it interacts with the

environment.

6.1.2 iLSTD with Eligibility Traces

In Chapter 4, we integrated eligibility traces with the iLSTD method and proved that this

extension will not dramatically harm the per time step computational complexity of the

algorithm. We also showed that all convergence analysis results for iLSTD is extendable

to the general case of iLSTD(λ). Based on our empirical results, adding eligibility traces

showed positive and negative effects to the performance of iLSTD. Although, the loss mea-

sure used for the mountain car problem was not accurate, which makes it hard to compare

the results. In general, we think that setting λ 6= 0 for least-squares methods might be

harmful, as it adds more variance to the results, while it can improve the performance in

less Markovian problems by reducing the bias.

6.1.3 Empirical Results

Through Chapters 3 and 4, results demonstrated the performance of TD, iLSTD and LSTD

methods in the Boyan chain and mountain car domains. Both in terms of clock time and

data, iLSTD with only a small number of iterations per interaction (m = 1) was superior

to TD. While based on clock time, TD can look through more data, its inefficient use of the

data hinders its speed advantage. As problems got large enough, iLSTD also overtook the

performance lead from LSTD based on clock time, because its linear per-time step com-

plexity allows it to look through more data and achieve a lower error than LSTD in the same

amount of time. However, LSTD is still superior if the amount of data is the only restriction.

56

6.1.4 iLSTD and Dimension Selection Mechanisms

Finally, in Chapter 5, we studied three other dimension selection mechanisms: greedy, ε-

greedy, and Boltzmann. It was shown that the last two methods have proofs of convergence

using normalization factor for the step size parameter. Although, based on our search, their

performance could not surpass the random selection method. On the other hand, the greedy

method which lacks the proof of convergence, outperformed all of the other methods in

most cases. It remains open as to which selection mechanisms satisfy the convergence

assumptions and yet perform better than the random method.

6.2 Batch LSTD vs. iLSTD

While this thesis focused on online policy evaluation methods, one might wonder about the

performance of iLSTD methods with respect to batch LSTD 1. This means that LSTD can

maintain the A and b matrices using incremental updates with O(k2) complexity and then,

once in a while, it computes A−1b to obtain the weight vector. If the total number of steps

between each inverse is t, then the total complexity of LSTD after T steps isO(Tk2+ T
t n

3),

while for iLSTD this complexity is O(Tk2 +Tmn). If t = O(n
2

m), then they both have the

same asymptotic complexity. This means that if LSTD takes the inverse after each O(n
2

m)

steps, then it can par with iLSTD in terms of asymptotic running time. Notice that this value

is relative to n2, which means if we double the number of features while LSTD and iLSTD

have the same total running time, LSTD must compute the weight vector 4 times less often

than before. This is potentially harmful for the LSTD method as it tackles larger problems.

6.3 Future Work

6.3.1 Advances in Theoretical Analysis

For iLSTD, the greedy mechanism performed better than all other methods in most cases

of our research, yet we could not find any proof of convergence for this specific algorithm.

On the other hand, the other similar methods like ε-greedy, and Boltzmann could not out-
1Here, we analyze the iLSTD and LSTD methods without eligibility traces. The case with eligibility traces

is similar.

57

perform the random method because of the normalization factors. The question is whether

Assumption 4 of Lemma 2 can be relaxed, or changed to a more general assumption, such

that the use of normalization factors becomes optional or less influential. In that case we

might achieve methods with better performance while maintaining a guarantee of conver-

gence.

6.3.2 More Realistic Problems

Domains used for our empirical results are interesting, yet they are still far from realistic

domains. It would be appealing to examine the iLSTD method in yet more challenging

tasks such as the keepaway soccer [Stone et al., 2005].

6.3.3 Control

Although policy evaluation is an interesting research domain, ultimately, it is desirable to

be combined with policy improvement methods to do control. We think that this extension

step is straightforward as several works extended LSTD to the control problems such as

RLSTD [Xu et al., 2002], and LSPI [Lagoudakis and Parr, 2003], yet it needs some cau-

tion. One concern is that as the policy changes, the distribution of the visited state-action

pairs can change dramatically. If the A and b matrices do not accommodate themselves with

these changes, one can end up with a biased policy which might maximize the expected re-

turn in irrelevant parts of the state-action space. We suggest two alternatives for solving

this issue. The policy improvement could happen only after certain number of time steps,

and right after, the matrices should be zeroed. Another option is that the matrices which

hold the model of the environment (i.e., A and b), should decay over time to compensate

for the change to the distribution of state-action pairs as done by Xu et al. [2002]. We are

interested in trying these alternatives as we switch from policy evaluation to control, and

see how they can be compared with the LSPI and RLSTD methods.

58

Bibliography

[Albus, 1971] James S. Albus. A theory of cerebellar function. Mathematical Biosciences,
10:25–61, 1971.

[Alpaydin, 2004] Ethem Alpaydin. Introduction to Machine Learning (Adaptive Compu-
tation and Machine Learning). The MIT Press, 2004.

[Avriel, 2003] Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Dover
Publishing, 2003.

[Barrett et al., 1994] R. Barrett, M. Berry, Tony F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadel-
phia, PA, 1994.

[Bertsekas and Tsitsiklis, 1995] D. Bertsekas and J. Tsitsiklis. Neuro-dynamic program-
ming: an overview, 1995.

[Bertsekas and Tsitsiklis, 1996] Dmitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, 1996.

[Bowling and Veloso, 2002] M. Bowling and M. Veloso. Scalable learning in stochastic
games, 2002.

[Bowling and Veloso, 2003] M. Bowling and M. Veloso. Simultaneous adversarial multi-
robot learning, 2003.

[Boyan, 1999] Justin A. Boyan. Least-squares temporal difference learning. In Proceed-
ings of the Sixteenth International Conference on Machine Learning, pages 49–56. Mor-
gan Kaufmann, San Francisco, CA, 1999.

[Boyan, 2002] Justin A. Boyan. Technical update: Least-squares temporal difference
learning. Machine Learning, 49:233–246, 2002.

[Bradtke and Barto, 1996] S. Bradtke and A. Barto. Linear least-squares algorithms for
temporal difference learning. Machine Learning, 22:33–57, 1996.

[Eric W. Weisstein, 2002] Eric W. Weisstein. Method of Steepest Descent. From
MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/
MethodofSteepestDescent.html, 2002.

[Freund and Nachtigal, 1991] Ronald W. Freund and Noël M. Nachtigal. QMR: a quasi-
minimal residual method for non-Hermitian linear systems. Numerische Mathematik,
60:315–339, 1991.

[Geramifard et al., 2006] Alborz Geramifard, Michael Bowling, and Richard S. Sutton. In-
cremental least-square temporal difference learning. In The Twenty-first National Con-
ference on Artificial Intelligence (AAAI), pages 356–361, 2006.

59

[Geramifard et al., 2007] Alborz Geramifard, Michael Bowling, Martin Zinkevich, and
Richard Sutton. iLSTD: Eligibility traces and convergence analysis. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems
19. MIT Press, Cambridge, MA, 2007.

[Jaakkola et al., 1995] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Rein-
forcement learning algorithm for partially observable Markov decision problems. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Pro-
cessing Systems, volume 7, pages 345–352. The MIT Press, 1995.

[Jain et al., 1999] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, 1999.

[Kohonen, 1988] Teuvo Kohonen. An introduction to neural computing. Neural Networks,
1(1):3–16, 1988.

[Kohonen, 2001] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2001.

[Lagoudakis and Parr, 2003] Michail G. Lagoudakis and Ronald Parr. Least-squares policy
iteration. Journal of Machine Learning Research, 4:1107–1149, 2003.

[Lin, 1993] L. J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Carnegie Mellon University, 1993.

[Moore and Atkeson, 1993] Andrew W. Moore and Christopher G. Atkeson. Prioritized
sweeping: Reinforcement learning with less data and less time. Machine Learning,
13:103–130, 1993.

[Noel et al., 2006] Black Noel, Shirley Moore, and Eric W. Weisstein. Conjugate gra-
dient method. from mathworld–a wolfram web resource. http://mathworld.
wolfram.com/ConjugateGradientMethod.html, 2006.

[Paige and Saunders, 1975] Chris C. Paige and Michael A. Saunders. Solution of sparse
indefinite systems of linear equations. SIAM J. Numerical Analysis, 12:617–629, 1975.

[RL Library, 2006] RL Library. The University of Alberta reinforcement learning library.
http://rlai.cs.ualberta.ca/RLR/environment.html, 2006.

[Saad and Schultz, 1986] Y. Saad and Martin H. Schultz. GMRES: A generalized minimal
residual method for solving nonsymmetric linear systems. SIAM, 1986.

[Sherstov and Stone, 2005] Alexander A. Sherstov and Peter Stone. Function approxima-
tion via tile coding: Automating parameter choice. In J.-D. Zucker and I. Saitta, editors,
SARA 2005, volume 3607 of Lecture Notes in Artificial Intelligence, pages 194–205.
Springer Verlag, Berlin, 2005.

[Stone et al., 2005] Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforce-
ment learning for robocup soccer keepaway. International Society for Adaptive Behav-
ior, 13(3):165–188, 2005.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

[Sutton, 1988] Richard S. Sutton. Learning to predict by the methods of temporal differ-
ences. Machine Learning, 3:9–44, 1988.

[Sutton, 1996] Richard S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in Neural Information Processing
Systems 8, pages 1038–1044. The MIT Press, 1996.

[Tham, 1995] Chen K. Tham. Reinforcement learning of multiple tasks using a hierarchi-
cal cmac architecture. Robotics and Autonomous Systems, 15(4):247–274, 1995.

60

[Tsitsiklis and Van Roy, 1997] John N. Tsitsiklis and Benjamin Van Roy. An analysis of
temporal-difference learning with function approximation. IEEE Transactions on Auto-
matic Control, 42(5):674–690, 1997.

[Xu et al., 2002] Xin Xu, Han-gen He, and Dewen Hu. Efficient reinforcement learning us-
ing recursive least-squares methods. Journal of Artificial Intelligence Research, 16:259–
292, 2002.

[Zinkevich, 2006] Martin Zinkevich. The theoretical foundation for incremental least-
squares temporal difference learning. Technical Report TR 06-25, University of Alberta,
2006.

61

Appendix A

Parameter Settings

62

Parameter Value
m 1
γ 1
Trace cut-off 10−4
ω 10−6
ψ 10−9
Random seed 1010 − 1

Table A.1: General parameter settings used for all experiments if applicable.

Environment
Boyan chain Mountain car

Algorithm Small Medium Large Easy Hard
TD(0) {1000,.1} {1000,1} {106,1} {1000,.1} {106,.01}
TD(.5) {100,1} N/A N/A N/A N/A
TD(.7) {100,1} N/A N/A N/A N/A
TD(.8) {100,1} N/A N/A N/A N/A
TD(.9) {100,1} N/A N/A N/A {106,.01}
TD(1) {100,1} N/A N/A N/A N/A
iLSTD(0) {100,.1} {100,1} {100,1} {1000,1} {1000,1}
iLSTD(.5) {100,.1} N/A N/A N/A N/A
iLSTD(.7) {100,.1} N/A N/A N/A N/A
iLSTD(.8) {100,.1} N/A N/A N/A N/A
iLSTD(.9) {100,.1} N/A N/A N/A {1000,1}
iLSTD(1) {100,.1} N/A N/A N/A N/A

Table A.2: The {N0, α0} parameter settings used in the experince for TD(λ) and iLSTD(λ) algo-
rithms.

Environment
Boyan chain Mountain car

Mechanism Small Medium Large Easy Hard
Random {1000,.1} {1000,1} {106,1} {1000,.1} {106,.01}
Greedy {100,.01} {100,1} {1000,1} {100,.1} {100,.1}
ε-greedy(.1) {100,1} {100,.1} {1000,.1} {100,1} {1000,.1}
ε-greedy(.3) N/A N/A {100,1} N/A N/A
ε-greedy(.5) N/A N/A {100,1} N/A N/A
ε-greedy(.9) N/A N/A {100,1} N/A N/A
Boltzmann(1) {100,.1} {1000,.1} {106,.1} {106,1} {106,1}
Boltzmann(10) N/A N/A {106,.1} N/A N/A
Boltzmann(100) N/A N/A {106,.1} N/A N/A
Boltzmann(1000) N/A N/A {100,1} N/A N/A

Table A.3: The {N0, α0} parameter settings used for iLSTD algorithm with Random, Greedy,
ε-Greedy(ε), and Boltzmann(τ) dimension selection mechaisms.

63

