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Abstract

The deployment of robots at the World Trade Center (WTC)adtex September 11,
2001, highlighted the potential for robots to aid in search and resasens that pose
great threats and challenges to humans. However, robots that exgpeehted and
tethered for power and communication are restricted in termiseof aperational area.
Thus, rescue robots must be equipped with onboard autonomy that enahlés sedéect

feasible plans on their own, within their physical and computational limitafitvese are

three main characteristics that a rescue robot’s onboard systestposses. First, the
system must be able to generate plans for mobile systemss,tipddins with activities

and paths. Second, in order to operate as efficiently as possibieylpdst in emergency

situations, the system must be globally optimal. Third, the systerst be able to

generate plans quickly.

This thesis introduces a novel autonomous control system that imesrlezethods for
spatial and activity planning, by merging model-based programmith roadmap-based
path planning. The primary contributions are threefold. The first contibig a model
that represents possible mission strategies with activiies have cost and are
constrained to a location. The second is an optimal pre-plannee#sans through the
possible mission strategies in order to quickly find the optimal feasibtegral he third
contribution is a unified, global activity and path planning system.sysm unifies the
optimal pre-planner with a randomized roadmap-based path planner, irtafoe the
optimal feasible strategy to achieve a mission. The impacheaset contributions is
highlighted in the context of an urban search and rescue (USAR) mission.
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Chapter 1

Introduction

Today’s emergencies, such as search and rescues, naturalslisastdires, continue to
pose great challenges and threats to rescuers and emepgesaynel. The deployment
of robots at the World Trade Center site after September 11, 2001ighigd the
potential for robots to aid in rescue missions. Robots can be consttachgerate in
conditions that are hazardous and inaccessible to humans. Since tamt®ept{
event, the Federal Emergency Management Agency (FEMA) and thecsobmimunity
have embarked on a joint effort to identify scenarios for which ratarisbe used to aid
rescuers in certain emergency situatiff®. The focus of this thesis is to equip robots,
used in emergency missions, with greater autonomy.

To quickly determine the set of activities that can be accshmgii, a robot must
employ automated reasoning and decision-making techniques in ordefeta valid
strategies. Strategies are mission plans that encode highglealsl They are comprised
of one or more sets of activities that a robot or team of robotexacute in order to
achieve the mission.

Many autonomous systems use automated reasoning to selectan raissiegy
or plan. Traditionally, activity and path planning exist in a decoufded, as a two-
step, feed forward process. A plan of activities is generaitidonly crude knowledge
of movement. Then path planning is performed for a particular pl#mywticonsidering
other options that could achieve the same objective. Although thatage-4stocess may
find that no solution exists for a particular plan, without a badktnagchanism, such a
system would be incomplete. That is, other valid plans would not be eXpfotiee
activity planner is unable to backtrack to another option. One solutit; aiow the
activity planner to backtrack to the next plan, until it finds asifda strategy. The

difficulty, however, is that without a notion of cost, this decoupled approactd
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produce a plan that is highly sub-optimal. Thus, we propose a unifiednsifsié uses
activity and path costs along with a backtracking mechanism er tmcdyenerate optimal
mission strategies.

This thesis introduces a novel autonomous system that interleatiesdséor
automated reasoning with spatial reasoning, by merging moded-ipasgramming with
roadmap-based path planning. The primary contributions are threefold. ifBhe f
contribution is a model that represents possible mission strategies withiescthat have
cost and are constrained to a location. The second is an optimaapneipthat reasons
through the possible mission strategies in order to quickly find thenalpfieasible
strategy. The third contribution is a unified activity and globah péinning system. The
system unifies the optimal pre-planner with a randomized roadnssul path planner in
order to find the optimal feasible strategy to achieve a mis3iba.impact of these

contributions is highlighted in the context of an urban search and rescue (USARNMissI
1.2 Application

Everyday emergency personnel are required to render aid irh seadtaescues, natural
disasters, crime scenes, and many other dangerous situatemseriity, these situations
are hazardous, fatiguing, and oftentimes life-threatening fahadle involved, with the
most important factor being time. Generally, rescuers needrieveslive victims within
48 hours to increase their chances of surj2J.

Robots have demonstrated their efficacy when placed in real, unptedjcand
high-risk conditions. Small robot rovers aided the rescue effortheaWorld Trade
Center (WTC) in New York City[32]. The small robots searched for survivors,
investigating ditches where neither dogs nor humans could reable. robots were
controlled by joystick and were equipped with cameras, heat seftsermal cameras),
microphones, and two-way radios for communication between victims raedyency
personnel. The robots found several bodies and a set of human rg6aims addition,
the FBI considered using an autonomous helicopter to map the terrdnia mdgion in
Pennsylvania where one of the planes went down on September 1132001
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Many of the robots used in the rescue efforts at the WTE tedz-operated and
tethered for power and communication. Operators were restrigti iield of view of
the cameras, which created problems with localizg&pn These issues emphasize the
need for “automatic capabilities intrinsic to the rob@] that would relieve tele-
operators from having to control the robots and search for victitie gsame time. In
addition, it is unreasonable to rely on personnel training rescue taeiyaor drive)
robots. Therefore, rescue robots must be equipped with onboard autonomyatiiat e
them to select feasible plans within their physical and computational longat

Autonomous vehicles (AVs) offer a number of benefits. They can comatanic
with each other and with rescue personnel, and can navigate regioasetireccessible
to humans, significantly improving the search and rescue procesiserffuore, AVs can
apply vision, microphone, and other sensing technologies to explore hazareasis ar
including wreckage, burning buildings, and toxic waste sites. Robotbecannstructed

to survive fire, thick smoke and dust, water, and sharp piercing maibtials

1.2.1 Urban Search and Rescue Scenario

In order to prevent harm to humans, our goal is to devise technologieslltha
heterogeneous teams of robots to coordinate and cooperate in urbdnasehrescue
missions. Currently, during the initial phase of an urban search andetea control
center is setup and a preliminary reconnaissance is performinxd fgst-responders—
emergency personnel who initially arrive on the sq@d¢ We envision this as an ideal
opportunity to deploy robots into unknown and potentially hazardous areas e¢hat ar
unsafe for the first responders. The robots would search for victims, deteutcals, and
sense and collect dgi24]. In the spirit of RoboCup Rescue, a number of credible USAR
scenarios have been propo$24][32]. To ground the importance of planning for rescue
robots, an example scenario is described below (Figure 1). The W&&Rrio highlights

the importance of activity planning and AV path planning.
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Figure 1: Example scenario where robots can be taseid rescuers.

Urban Search and Rescue Scenario

It's 4pm, and sirens are roaring through the city as firenesgrace to the scene of a
burning office complex. The first few hours are critical to $hevival of victims, and
pose the greatest threat to rescue workers. After extinguigierige in one area of the
complex, firefighters survey the potential dangers of entehiagbtiilding. At this time,
robots are summoned to explore the scene and begin searchiwmgtios. An agile
autonomous helicopter, called ANW1, is sent to aid the mission. ANV¢ariging a
team of small robots that will aid in the USAR mission. Téant of small robots is
divided by their sensing capabilities. One team ctienbots, is used to detect chemicals
and monitor the environment. The other team, h@bots, is used to bring first aid
packages and a means for communication to the victims.

The location of the fire is provided as input to the helicopter, whieh generate
a plan to get to the scene. ANW1 hasagmiori map of the city that it uses to plan paths
to the office complex. Once it arrives on the scene, it waitdnfgruction from the
control center.

After communicating with the control center, ANW1 uses its onboarteaand
map of the complex to identify structural anomalies. Equipped wiinge of sensors,
ANW1 enters the building through a broken-out window. It flies toog-aff location

where it lands and releases a team of small robots. The mhmtse a room, probing
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and sensing for hazardous substances. ANW1 then navigates to a loctiebuilding
where the control center identified as having trapped victims. O JAnavigates to
the location, it carefully lowerselpbots with two-way radios and minimal first-aid
supplies on the floor, enabling communication between victims and resokersy
Then ANW1 goes back to thahembots and loads them into the helicopter’'s transport
carrier. Finally, ANW1 exits the building and flies to a chaggstation where all the

robots are recharged and their data is uploaded to the control center.

» a
chembots

helpbots

Figure 2: Example of the activities in the Searahilng mission

Figure 2 illustrates some of the major activities involved inntiigsion. We refer
to the above mission as the Search-Building mission. The SearchABuitdssion is
composed of a series of strategies, in this case threegstatThe first strategy, called
Enter-Building, requires the AV to enter the building and deploy thet i@ams, while
gathering data. The second strategy, called Exit BuildingiinesjANW1 to deploy the
helpbots and recover thehembot team, and then exit the building. The third strategy,
called AtHome, requires ANW1 to upload data while recharging. Sdeerch-Building
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mission and the three strategies that comprise the missionasermsamples throughout

this thesis. In the following section, we highlight the key characteristieaaf strategy.

1.2.2 USAR Characteristics

There are two key characteristics of the Search-Buildingiams First, a number of the
activities in the mission require the autonomous vehicle, ANW1, to kze particular
location in the office complex, in order to execute an activity.éxample, when ANW1
navigates and explores the building, it captures images and stocé& spaa gathered
from its sensors. While capturing images might require the AN§Vlie in a specific
region of the building, collecting data from its sensors can be doseyimegion of the
building. Second, the set of activities chosen to accomplish the misgish make
efficient use of AV resources such as, energy, fuel, and timeeXample, during the
Exit-Building strategy, it is more efficient for ANW1 to deplthe helpbots and then
recover thechembots. In this case, ANW1 saves energy, but avoids carrying both teams
of robots at the same time.

In order to encode the high-level goals that comprise a missich, as USAR,
the activities must be specified in a language that the AV staels. A class of
languages called execution languages enables a mission designeite complex
procedures for a robot or team of robots to execute. Such languad®sRsELO], ESL
[12], and TDL[34]. In addition, the language must be able to describe the progression of
the mission. That is, using a model of the AV, the mission shouldilbedtre steps
which the AV should execute.

In order to select a feasible strategy, an activity planae be used. The planner
must be able to reason through the space of possibly feasibégigtsan order to select
the best strategy. A strategy is composed of activities ams,pdwerefore, the planner
must not only plan activities, but generate paths as well. ForVawith complicated
kinematics and dynamics, such as a helicopter, randomized roadriaplaaning
techniques have been appligl][22][11]. These path planners construct a roadmap in
the state space and connect roadmap nodes to each, in order to filglan-dode path.

This is depicted in Figure 3.
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Figure 3: Example of a randomized roadmap basedud glahner exploring the robot’s state space and the
world in order to find a collision free path.

1.3 Problem

There are a number of issues that this thesis must addressriicodgeelop algorithms
for selecting an AV’s plan of action, from a large spacerategies. Alternative mission
strategies are encoded in an execution language. This languestide able to support
activities with duration, activity costs, and location constraintsttiose activities that
require the AV to be in a specific spatial region. The lagg must also be able to
encode choice between functionally redundant methods in order to exleesatiae
strategies. Given a description of a mission objective andegieat an execution
language, fast planning techniques need to be developed to genernatestheffective
mission plan. The planning system must be able to perform both tha&l spasioning and
reasoning about discrete actions. Spatial reasoning is requirdthb$er activities that are
constrained to a specific region. Reasoning about action is requioedeinto determine
the set of feasible activities.

The first objective of this thesis is to develop an optimal plarirerdelects the
best strategy given a mission description. The second objectivedisvelop a unified
optimal activity and path planning system that selects the tvattgy for a mission that
contains activities with location constraints. These algorithrasdaveloped for single
vehicle missions. However, these algorithms can be generatizadltiple AV missions
(see Chapter 7).
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1.3.1 Technical Approach

Mission -
Strategies » Optimal Strategy
Selection
A
Robot
Model
Global Path
" Planning
World Model

Optimal
Feasible
Strategy

Figure 4: Overall unified activity and path plangisystem.

We approach the problem of finding the optimal mission strateggnénging

model-based programming with roadmap-based path planning (Figure 4)|-ibAsdd

programming enables the mission designer to encode a set obmimisigjectives,

alternate strategies for achieving the objectives, and encodessnoddieé vehicles that

perform the mission. Our first contribution is a language for ptanoptimal, mobile

vehicle missions. This language is an extended subset of th¢ivReltodel-based

Programming Language (RMPIL38].

The extended RMPL subset includes activity

costs and location constraints (ACLC). An example of an RMPL anegs shown in

Figure 5.

(sequence

( choose

©o Nous WN =

e
= o

)

=
w N

)y ;;end choose
) ;;end sequence

;;Choose type of vision sensing

(( sequence ;;choicel

( ANW1.Monocular-Vision(20) [10,20] )

( ANW1.Set-Compression(10, {low}) [5,10
) (HallwayA) [35,50])

( sequence

( ANW1.Stereo-Vision(40, HallwayB) [10,
( ANW1.Set-Compression(20, {high}) [8,1

;:choice 2

20])
3D

Figure 5: Fragment of the Enter-Building programeleped with the ACLC subset of RMPL.

Mission strategies encoded in RMPL are called control progriest, we

describe a mission environment model, which has two components: 1)s&gbhy
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description of the AV involved in the mission and 2) a model of the world in which it will
navigate (Figure 4).

Monccular-Vision() Se-Compression(low

Loc(RegionA)

Y
\¥ 10, 20 [8, 13
©®

20
Loc(RegionW)  Se-Compressio(high)
StererVision()

Figure 6: TPN representation of the program in Fégb. There are two strategies for the AV to execut
The AV can either execute the Stereo-Vision agtigitd the Set-Compression activity, or the Monaeula
Vision and the Set-Compression activity.

Given an RMPL control program, our planner maps the program to a compact
graphical representation, called a Temporal Plan Network (TPhg TPN encoding
enables the planner to perform fast, online planning. The TPN moddékstastroduced
in [40][39], and is extended here to support reasoning for missions witholegatind
activity costs. An example of the equivalent TPN representatitreafontrol program in
Figure 5 is shown in Figure 6.

For missions that require the vehicle to move from region to region, we extend the
search space of our planner to the combined TPN and path planning spa@atirhe
planner uses the mission environment model in order to search f@icroliiee paths
through which an AV can safely move from region to region. Thidustibted in path
planning space shown below the TPN in Figure 7. We define this neth@PN and
roadmap model as the Roadmap TPN (RMPTPN).

Monccular-Vision() Set-Compression(lov
5, 10]

Loc(RegionA)

N 10, 20 [8, 13

20
Loc(RegionW)  Se-Compressio(high)
Sterer-Vision()

N L
RegionW -

Figure 7: Unified activity and path planning spatke RMPTPN model is used to reason on the combined
search spaces.
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The best plan for vehicle activity and movement is then gemeatex unified,
globally optimal, activity and path planning system (UAPP). Thisesyoperates on the
RMTPN model in order to select the best set of actions aratibyslocation constraints
by planning collision-free paths in the space where the vehicle will carth@uatission.

1.4 Thesis Layout

This thesis is organized as follows. Chapter 2 provides background em dheas:
execution languages and model-based programming, temporal reasoning, and randomized
roadmap based path planning. Chapter 3 presents a subset of RMRia¢tiveermodel-

based programming languad83] that is extended to specify activity costs and location
constraints (ACLC), this is referred to in this thesis les ACLC subset of RMPL.
Chapter 5 introduces a novel optimal pre-planner that operates on maddN in order

to select the least cost strategy, according to the TRNtyaaosts. Chapter 6 combines

this optimal pre-planner with roadmap based path planner, producingeduglbbally
optimal, activity and path planning system (UAPP). Finally, Chapteoncludes this

thesis with an empirical validation of our research and makes dioyges$or future

work.
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Chapter 2

Background

The unified optimal activity and path planning system combinestlmanving three areas

of related work. The three areas are 1) model-based prognanj@y], 2) temporal
planning[25], and 3) randomized kinodynamic path plannjgg]. The first two have
been combined to effectively encode coordinated air vehicle mig§i8}j33]. The third
has been used to plan collision-free paths for robots with kinearadiclynamic (called
“kinodynamic”) constraints[22][23]. Drawing on these three areas, we develop
algorithms that combine model-based programming and temporal regsuitin
randomized roadmap path planning. This thesis builds on these threefaresssarch in

order to create the unified optimal activity and path planning system.
2.1 M odel-based Programming

A model-based program is a specification of the evolution of a&mysising a set of
constructs for describing concurrent behavior. The constructs dessyifb@sonous and
constraint-based execution of the system. In this thesis, we focusa mobile,
autonomous vehicle (AV) system. The model-based program desdnbdsgh-level
goals that the AV should execute during a mission.

To enable encoding of missions for autonomous and embedded systems, an
execution language, called the Reactive Model-based Programmmggdge (RMPL),
was introduced37]. Its features include straightforward programming constithetiscan
be combined to describe the desired evolution of embedded and reactéra siates.
Additionally, RMPL has successfully been used to encode stratBgiesoordinated
teams of autonomous vehiclg&8]. Further, the language allows mission designers to
express redundant methods for achieving a goal, by providing a sebnefructs
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necessary to describe flexible missions. The programs are lednipto a compact
graphical representation to which automated reasoning techniqugspheel & order to
quickly select feasible threads of execution (sequences oft@&stithat achieve the

mission objectives).
2.2 Kirk Temporal Planner

This thesis uses the Kirk temporal planning framework in order toedefpartial order
on the activities encoded in a mission. The optimal pre-plannetopedein this thesis
extends Kirk by replacing the feasible search strategy with an optaralsstrategy.

A temporal planner, called Kirk, was introduced30] and enables pre-planning
of temporally flexible activities. Kirk uses RMPL construtitiat express contingencies
(nondeterministic choice) and temporal constraints. To perform temmeasdning, Kirk
operates on a temporal plan network (TPN) encoding of an RMPL control program.

Temporal Plan Networks express concurrent activities, decisiohsedre
activities, temporal constraints. An activity has both a start node and end node anthe pl
network that represents the duration of the activity. Nodes in arépfdsent an instance
in time and are referred to as events. The arcs in a DRAtdin temporal and symbolic
constraints. The temporal constraints are given as an interi@hdethe lower bound L
(the minimum duration of an activity) and upper bound U, denoted as [LfoiJihe
duration of an activity. These are expressed in the Simple Temptvork
representation summarized in Chapter 4. The symbolic constrainfBHN @re given in
the form of Ask(C) and Tell(C), where C is a condition. An Askf{€juires that a
condition C be true, while a Tell(C) asserts the condition C. Symbohstraints are
specified on an arc in a TPN, and hold for the duration of that arc.

During planning, Kirk attempts to resolve temporal and symbolic @nt,
while making decisions as needed. If no valid plan is found, Kirktkezks and makes a
new set of decisions that ignore the previously invalid portions opldre space. The
search process is repeated until a complete and consistens éamdl, or all candidate
plans have been examined and no valid solution €88is If Kirk finds a complete and
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consistent plan then the plan is sent to a plan runner, which perfatereaved

scheduling and execution, while adapting to execution uncertainties.
2.3 Path Planning

The unified activity and path planning system described in thissthresjuires a roadmap
based path planner in order to find paths for an AV that is rejtiranavigate from
location to location. In this section, we review the general appegato finding a
collision-free path for robots.

2.3.1 Overview

The general path-planning problem asks how a mobile robot can sabely from
location A to location B, while avoiding obstacles. This solution carfobed by
asserting the start location and the goal location, and by emglaypath planner that
generates an obstacle-free trajectory from start to gdalko key features of path
planning algorithms are completeness and optimality. A path plammamplete if it
finds a collision- free path when one exists; otherwise, it retnonsolution. A path
planner is optimal if it returns the shortest, or best, path friiam & goal stat¢28].
There are several deterministic and non-deterministic (randomégapaches to the
path-planning problem, including mixed integer linear programnfizjgconvex cells
[21], approximate cell decompositidg2l], potential field method$21], the freeway
method[21], and roadmap metho§35][21].

Computing a collision free path for robots with complex dynamisspnaven to
be computationally hard. A path planner must explore a large pite that represents
each dimensions of the robot. Complete path planners take an indefinit@tawh time
(depending on the problem size) in order to compute a collisionfagetory and are
usually used to solve small problems, that is, problems involving rebibtonly a few
degrees of freedom. To avoid computationally time intensive path plannmogniaer of
efficient randomized techniques have been explored. For example, dbhabilistic
roadmap path planner randomly generates nodes in the world in whiclolibe r

navigates (Figure 8). The nodes are in the obstacle-free spaeevediid. Completeness
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for randomized path planners is referred to as probabilistic canplet; that is, if a
solution exists, then it will find a path with high-probabilitys].

Figure 8: Example of randomly generated roadmagsaded to find collision free paths in a space.

Rapidly-exploring Random Trees (RRTs) were introduced as ssttatdure that
can quickly explore the state space of robots with kinematic arahdgrconstraints—
termedkinodynamic constraints. For example, a helicopter has inertia, and thsisnttst
be accounted for when planning a path for it. An RRT-based plannemptgtéangrow
tree in the search space, from the initial state to theggatd (Figure 9). In our USAR
mission we use a small helicopter, and thus, adopt an RRT-basqugratér in order to

satisfy location constraints in a model-based program.

Initial state

Goal stat e

exploring the statecepa
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2.3.2 Kinodynamic Path Planning

Kinodynamic path planning is an emerging area of researclexpédres path planning
for complex robots with kinematic and dynamic constraints. Mosh aftebile robot
motion is constrained by its velocity and accelerafiti8][22]. Kinodynamic planning
refers to the class of problems in which the motion of a robot satisfy nonholonomic
and/or dynamic constraintR22]. Nonholonomic systems are systems with fewer
controllable degrees of freedom than total degrees of freedom.

A recent effort to solve a large class of kinodynamic probleraked Rapidly-
exploring Random Trees (RRTSs), has shown significant success whthplaaning for
robots with a large number of degrees-of-freedom and complicagtdnsydynamics
[22][23].

To accurately encode the constraints of a robot, its equationstafnmmust be

given. Equations of motion are a system of equations that gdverrobot’s motion.

They are generally of the forrs = f (S,U), wheres is a state of the robotS is its

derivative with respect to time, and] U (the set of all possible control inputs) is the
control input(s) applied to the robj@2].

For non-complex robots, the path-planning problem can be solved using the
robot’s configuration space— all possible position and orientation petsléscribe the
robot is reference to a fixed coordinate sysf@3]. Robots generally have physical
limitations on their motion; thus, solving the path-planning problem icdnéguration
space does not suffice. Trajectories (collision-free pathsgrgeed in the configuration
space do not account for dynamic constraints on the robot's movga®intin the

following section, we summarize the kinodynamic state space formulatiamigif22].

Sate Soace Formulation

The state space, denoted as X, is the search space for whichndnodyath planners
attempt to find a collision-free trajectory for a robot. Espneg the entire stats, of a
robot, in general, dramatically increases the dimensionality otmiee search space.
Hence, most path planners approximate X by restricting the diomahsy. Systems

described in the state space encode a stte, X, as the robot’'s position (or
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configuration) and the derivatives of the position (i.e., velocity). Tthgsconfiguration
space is a subset of the state space.

The state space consists of the obstacle regiqps, a60d free space regions,
Xtree Xobst IS the subset of X corresponding to states that would result inlisiarol
between the robot and an obstaclegeeXepresents the remaining set of states that result
in no collision— i. e., the space where the solution trajectory sulsly reside. A more
detailed development of the state space formulation and equationstiohncan be
found in[22].

To incrementally construct a path, RRT-based kinodynamic plannergatge
over the equations of motion and generate a path in the state[2Rhce Given the
current timet and the robot’s current stase by applying the selected control{spver
the time interval [t, t®], then the state of the robot at timeé will be

Equation 1:

st+a)=s)+[ (st uelt

A solution is precisely defined if22] as a time-parameterized (between [0,
Trinal]), cONtinuous, collision-free trajectory from an initial stag, (I X, to a goal state
(or goal region)yea L1 X that satisfies the robot’s physical constraints. An input fanct
for which each instant of time in [0k is mapped to its corresponding control(s),
[0, Tina] — U, which results in a collision-free trajectory from startgoal. The

trajectory at time [ Tsnq and states, st) is determined by integrating:

Equation 2:
t
st) = f(su).

2.3.2 Rapidly-exploring Random Trees (RRTS)

RRT-based planners are randomized incomplete planners that stidta Wieodynamic
problems with high degrees-of-freedom and complicated systermiyg§10]. A key
feature of RRTs is that they uniformly explore the robot's spsee and, therefore, are
heavily biased towards unexplored regions in the state space.s RREmMentally
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construct a roadmap (directed tree) in the robot’s state space by gpgyinol inputs to
existing roadmap nodes. In this case, a connected roadmap is cahsideRET. A

solution consists of a collision-free trajectory expressed fisita sequence of robot
states and corresponding control ind@®] that drive the robot from state to state.

Constructing an RRT An RRT is best represented as a directed tree data séructur
tree, a directed graph with no cycles, is built in the robot'e Space. All nodes in the
tree have zero or more outgoing arcs (edges), each corresponding to anothelletbde ca
child node. A child node can, in turn, have several children. All nodes, tbdrethe
root, have exactly one incoming arc deriving from its parent. rdbeof the tree has no
parent.

RRTs have been adapted as kinodynamic path planners by storinfic spec
information in RRT nodes and arcs. Data stored in an RRT node carisasttate and a
list of children. Data stored in an RRT edge are the control igssisciated with that
arc (form the transition between head node and tail node). The R&dws in the
robot’s state space. Nodes are added to the tree by imggia equations of motion
over a specified time interval, starting from some pre-existing node irethe tr

The general RRT construction is described as follows. A pointndoraly
generated in space and the nearest node (nearest neighbor)eisting RRT to the
random point is selected. Then, from the nearest node, the tree extends onesstieg, by
pre-specified distance, towards the random point and adds a new amevambde (a
child node of the nearest node) at the end of the arc. This procespested by
generating another random point in space and continuing with thedstepsbed above
until the maximum number of nodes is reacf&2l[23]. Figure 10 is an example of an

RRT grown in free space with a path from start to goal.
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Figure 10: Example of an RRT growing from the stiate to the goal state.

When extending the nearest neighbor node towards the random pointsiarcodist
must be performed. If the edge from the nearest node to the new nldiescelth an
obstacle then the edge is not added to the RRT. A number of effatgorithms for
incremental collision detection can be appli22].

The algorithm terminates when the maximum number of iterat®meached or a
solution is found. A valid solution is determined by testing the mistdbetween the
newly added node and the goal. The test is performed afteiteation and ifs,e and
Syoal are sufficiently close enough then the path is returned. Wtisoltrajectory is
established by working backwards frog.sto S and recording the states and their
corresponding controls.

Path planners that account for kinematic and dynamic constragismportant
for agile autonomous vehicles used in urban search and rescues. Roadedapaths
planners naturally lend themselves to the compact graph-basednglanodel used in
our planning system. The system employs a roadmap-based kinadyrath planner to
find collision-free trajectories and satisfy location constraints.
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We draw on the areas of model-based programming, temporal planning, and
roadmap based path planning in order to develop a globally optinmatyaeand path
planning system.
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Chapter 3
Model-based Programming for

Autonomous Vehicles

We use the model-based programming approach to describe ssatdgit an
autonomous vehicle (AV) must execute in order to achieve its migsistnategy is a set
of actions that the robots execute in order to achieve the migeels. Adopting the
model-based programming approach requires three key pieces of itidornide first is
a description of the possible strategies that make-up a missiersetond is a physical
description of the AV involved in the mission. And the third is a moti¢he physical
world in which the strategies are executed. These three pofcasdormation are
specified within one of the two components that comprise a moded-lpasgram: a
control program and anenvironment model [37]. In particular, mission strategies are
specified in a control program, while the vehicle and world modelseeified in an
environment model.

A control program uses the constructs from the Reactive Model-based
Programming Language (RMP[37] to encode strategies that contain activities, activity
costs, location constraints, and simple temporal constraints. In generaly actbig are a
function of the AV’s resources and the environmental constraints, sdablas energy.
An environment model contains a description of the world, where th&amisvill be
carried out and a physical description of the AV operating withenvtorld. The control
program and environment model, together, are input to the unified acthdtypath
planning system.

This chapter describes the encoding of a control program and enviromameett

used in unified optimal activity and path planning. We present a derivatR&PL for
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coding mission strategies, which contains activity costs and docatinstraints (ACLC).
This derivative of RMPL is referred to as the ACLC subset MIPR. Moreover, we
define an encoding for an environment model that is used for planningocoliise

paths.

3.1 Control Program and Environment Example

An example scenario, where both activity planning and path planningriéical, is
detecting a chemical leak. Strategies for this scenagic@ecified in the Enter-Building
control program shown in Figure 11. In this scenario, a small autonohabiaspter,
ANW1, is sent into a building, where it lowers its chemical robatt, chembots. The
chembots then use their sensing technologies in order to detect the sduhesohemical
leak. The world where ANW1 will be navigating is shown in Fggli2. The gray areas
represent obstacles that the robot must avoid. The two release ReietssepointA and
ReleasepointB, are shown with black circles. The figure depi@sD top-down floor
layout, which is sufficient if ANW1 flies on a 2-D plane atanstant height. Otherwise,

a 3-D representation of the floor plan must be provided.

Enter-Building Control Program

In the Enter-Building control program, the behavior of the autonomous helicopt
ANW1, is described using ACLC primitives. The mission goalsaaréllows. The first
goal is to start ANW1's vision system. This is achieved by usitiger the monocular
vision (Lines 5-8, Figure 11) or the stereo vision system (Lines 9-12). The néid fpoa
ANW1 to navigate from HallwayB to LaboratoryOne, while takingtymes (Lines 15-
22). Once ANWL1 arrives at the laboratory, it flies to a relgaset where the small,
chemical-detecting robot team is lowered (Lines 24-27).

Standard RMPL constructs, such sequence , parallel , choose , and
temporal bounds, are used in creating the Enter-Building control pnogitae standard
RMPL constructs are augmented by specifying cost and locationraiots for each
activity. For example, the Lower-Chembots activity on Line 25 hastaot 65 units and

is constrained to the region defined by ReleasepointA. Alsaadidm constraint can be
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specified without an activity, as seen on Line 17. If a cost otitscés not specified,
then their default value is assumed. The default cost is 0 unitharmt®fault location is
ANYWHERE, which refers to any region in the space. The additi@cu¥ity costs and
locations to RMPL activities greatly enhances the exprggsf RMPL with respect to

describing complex mission goals for mobile systems.

Enter-Building RMPL control program

1. (Enter-Building

2 ( sequence

3 ;;Choose type of vision sensing

4. ( choose

5. (( sequence ;;choicel

6 ( ANW1.Monocular-Vision(20) [10, 20])

7 ( ANW1.Set-Compression(10, {low} ) [5,10])

8 ) (0, HallwayA) [35, 50])

9. ( sequence ;;choice?2

10. ( ANW1.Stereo-Vision(40, HallwayB) [10, 20])

11. ( ANW1.Set-Compression(20, {high}) [8, 13])

12. )

13. ) ;;end choose

14. ;;Navigate from Hallway B to the Laboratory and take pictures
15. ( paral | el

16. (sequence

17. ( ANW1(HallwayB) [0, 0] )

18. ( ANW1.noOp() [5,+INF])

19. ( ANW1(LaboratoryOne) [0, 0] )

20. )

21. ( ANW1.Take-Pictures(50) [5, 50] )

22. ) ;;end parallel

23. ;; At the Laboratory lower the Chembots

24. ( choose

25. ( ANW1.Lower-Chembots(65, ReleasepointA) [15 , 25])
26. ( ANW1.Lower-Chembots(50, ReleasepointB) [10 ,30])
27. ) ;;end choose

28. ) ;;endsequence
29. ) ;;end Enter-Building

Figure 11: The Enter-Building control program. Tewg constraints are show in brackets “[]", and
activity costs and location constraints are spedifivith the activities using “()”". If temporal cstmaints,
activity costs, or location constraints are notc#ped, then their default value is assumed. ThHawlefor a
temporal constraint i,+INF] . The default value for an activity cost is 0, dhe default for a location
constraint is ANYWHERE.

Enter-Building World

A top-down 2-D view of the world where ANW1 will be navigatingsiteown in Figure
12. The occluded regions are shown in gray rectangles, label®gy, and the frame of
references is shown in the lower left corner of the figAreop-down view of ANW1 is
shown at the top of the figure. The sphere with radjsirrounding ANW1, represents
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an estimate of ANW1's dimensions. ANW1 can enter the building thraaititer

Windowl or Window?2 in order to carry out its mission.

-=a

ANW1 “*p P\
' a )

\
e 7

Window1 Window?2

HallwayA

Os

@)
ReleasepointA HallwayB

- 06

LaboratoryOne

ReleasepointB
©)

0,0, 200} 100’ |
Figure 12: The world in which ANW1 will navigate arder to execute a strategy from the Enter-Bugdin

control program. The occluded regions are showgray. ANW1's dimensions are estimated by a sphere
of radiusr.

The world is encoded as an environment model, which is then transformets int
configuration space (or state spaégyor! Reference source not found.. The path
planner operates on the transformed model in order to find colliengaths from
location to location. In the following sections, we define the spatifins for control

programs and environment models.
3.2 Supported RMPL Specification

Control programs are written in RMPL and describe the high-igvals that AVs must
achieve. A strategy is an execution of the RMPL program thaéaes all the mission
goals. More than one strategy can be specified byctimose combinator and
functionally redundant methods. The ACLC subset of RMPL provides aresffizay to
encode strategies in which the success of the mission cyitiglends on the costs of
executing activities and navigation to multiple locations. FiguresH@vs the grammar
for the ACLC subset of RMPL.
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Expr - Expr(<! ocati on>)[ub,lb]]| Activity | Target(< | ocat i on>)[ub,Ib] |
sequence( Expr+) | choose( Expr+) | parallel( Expr+)
Activity » Target.activityname(< cost >,< | ocat i on>,{parameters})[ub,lb]

Target —» robotname

Figure 13: The grammar for the ACLC subset of RMPL.

In the ACLC grammarocation is an element of the domain of locations that
an AV might visit. The symbol Expr+” refers to one or more expressions. The
specification of activity costs and location constraints are igigield in Figure 13 with
bold type. Angle brackets “<>" signify that activity costeddocation constraints are
optional. Theparameters associated with an activity is a list (which can be ejnpty
arguments to the activity. Temporal constraints are in the fibrob]  , wherelb and
ub are the lower and upper time bounds, which restrict the durationcohstraint,

activity, or a combination of the two.

3.1.1 Description of Primitives

This section provides a detailed description of the ACLC primitmesented in the
grammar. Activities and location constraints are referredstcaanmands. Commands
can be recursively combined with theequence , parallel , and choose

combinators, in order to express complex mission strategies.

Primitive Commands

» Target.activityname(cost,location,{parameters})[lb,ub]:

This expression depicts a primitive activity (or command) that Theget
“knows” how to execute. It is labeled with an activity name, alorid whe
corresponding cost, location constraint, and one or more parameterSedpec
the parameters . The minimum and maximum time allowed to execute the
activity is specified by temporal constrairfte,ub] . The estimated cost of
executing the activity and the activity’s location constraimt ba specified, but
are not required. In general, we assume the default cost is Ohardkfault

location is ANYWHERE. An example of a primitive activity (BNW1.Set-
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Compression(10,{low}) [5, 10]) . Its cost is 10 units and has a
parametetow. The command requires the target vehicle, ANW1, to execute the
Set-Compression activity ANYWHERE for at le&stime units, but no more than

10 time units.

Target(location)[lb,ub] . A location constraint asserts the region where
Target must reside, for a duration of at le#st time units and at mosib time
units. For exampleANW1(Laboratory)[25,100] asserts that ANW1 is at
the laboratory for at least 25 time units and at most 100 timg. diie process of

satisfying location constraints is detailed in Chapter 6.

Primitive Combinators

sequence(c 1,C 2,...,C n): The sequence combinator is used to create RMPL
expressions in which primitive commands or expressions denoting caiop®si

of commands,c ,,...,c , should be performed in order. Lines 5-8 in Figure 11
are an example of a sequence of commands that are to be exedhtedrder in
which they are presented. That is, ANW1 executesMbrocular-Vision

activity before it executes tt&et-Compression  activity.

parallel(c »C 5...,€ ). The parallel combinator is used to encode

concurrent threads of execution, whergc ,,...,c . are expressions that are

executed in parallel. For example, the parallel expression on L&&X in
Figure 11, requires ANW1 to execute the sequence of commands orlBH26s
while taking pictures (Line 21). The execution of parallel threadsomplete
when all commands on all the threads composed within a pargiesskon have

been executed.

choose(c ,,c ,,...,c.): The choose combinator is used to model decision
theoretic choice between different threads of execution. Only oeadhn a
choose expression is selected for execution. The optimal pre-plaieetsshe

thread whose combined activity costs are a minimum. A choose sijrds
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shown in Figure 11 on Lines 4-13. In this expression, ANW1 execukes #ie
Monocular-Vision and theSet-Compression  activities in sequence, or
the Stereo-Vision and Set-Compression activities in sequence. The
optimal pre-planner performs an informed search in order taleednich thread

in a choose expression to execute (see Chapter 5).

3.1.2 Temporal Constraints

To encode strategies in a control program with flexible time bouewhgoral constraints
are used. Lower and upper bound times are specified for a commarwbmposition of
commands using the forfib,ub] .Ib is a positive number, representing the minimum
time an AV must take to execute a command, @nds a positive, number representing
the maximum time allowed for executing the command. Noteubatnust be greater
than or equal tdb . If no temporal constraint is given, then the time bound is asstomed
be[0, +INF] , this places no restriction on the duration of a command or composition
of commands. For example, the expression defined by the sequebice®9-12 of the
Enter-Building control program does not contain a temporal constraint; thus, theeactivi
within the sequence are constrained only by their respectiy@otainbounds. It is also
possible, however, to constrain the duration of commands by adding time loyutids
combinator that surrounds the commands. For example, the sequetm@mands on
Lines 5-8 are further constrained by3®,50] temporal bound. The technique used to

test for temporal consistency is detailed in Chapter 4.

3.1.3 Location Constraints

In general, a location constraint is used to constrain the executian attivity to a
specific region. The statememtrget.Activity(region) Is interpreted as that
Target must be inregion throughout the entire execution, from start to end of
Activity , and no where else. For exampl&NWL1.Stereo-Vision(40,
HallwayB) states that for the duration of tBgereo-Vision activity ANW1 must
remain in HallwayB. Like temporal bounds, location constraints carsée to constrain

a set of activities to a specific region. This is achieved by consigaaciivities within an

expression to a location. For example, the activities in the sequenteées 5-8 are
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constrained to HallwayA. Additionally, to require an autonomous vel#dl® to be in
the region, the target AV and region can be asserted in a cordagvhpr. For example,
ANWZ1(HallwayB)[lb,ub] requires the ANW1 to be in HallwayB for a minimum of
Ib time units and a maximum ab time units. We refer to these commands as location
assertions. Location assertions can specify waypoints for the AMlow. For example,
the sequence on Lines 16-20 requires ANW1 to be in HallwayB for &éaninsf time
then execute a no-op (no operation), and, finally, visit LaboratoryOnanfanstant of
time. When location assertions are combined with a parallel cotohiaa seen on Lines
15-22, the mission designer can explicitly express a set of wagpfmntan AV to
navigate to, and the activities that the AV must execute whilegaiing to the
waypoints. The expression on Lines 15-22, for example, requires ANWY foofh
HallwayB to LaboratoryOne, while concurrently executing thake-Pictures
activity.

A location constraint is entailed when the path-planner in the uniidtg and
path planning system finds a collision free path from the AV’secirlocation, to the
goal location specified in the control program. This process isaiega in Chapter 6.
Note that location constraints are similar to achievement cantstia [14], except that
an achievement constraint specifies the intended internal $tate @mbedded system,

rather than the location of an AV.

3.1.4 Activity Costs

Estimated activity costs, such as power or fuel, are deterrbydide mission designer.
An activity and its cost are specified together in an RMPLrobptogram. The activity
costs are used in the optimal pre-planning process to guide the search towaptisrtale
strategy.

On the whole, RMPL primitives can be combined recursively inrdaddescribe
complex behaviors for autonomous vehicles. Costs provide the informationdnieede
perform deterministic, decision theoretic execution. Location caingdr specify where

activities are to be performed, while abstracting away theifggaion of how to get
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there. To execute ACLC RMPL programs, the pre-planner perfoptima unified

activity and path planning.

3.2 Environment M odel

The environment model contains the information about the world where theomdus

vehicle will be navigating. It includes terrain information, a b& description of the

AV(s), and the domain of the locations where an AV can visit. D@gmns of the terrain

and the AV(s) are used to create the state space used by the path planner.

3.2.1 Environment Model Specifications

The environment model is defined by a tufée R, T) where:

M is a pair{fWorld Dimensions, Obstacles) encoding a map of the world where
the robots will be navigating. The map is defined by its waliltiensions,
denoteddim(M) and is comprised of length, width, height, and starting height,
which specify the 2-D plane or 3-D space in which the robots raMet. The
map also includes the obstacles or occluded regions Q,=GQ.., Oy} that the

robots must avoid. The obstacles are described as polygons.

R is a the physical description of the robot in the mission. Thisides the
dimensions of the robot and its minimum and maximum translational and
rotational velocities. Also, the initial position (state) of eaaot is given. For

the purpose of this research, we encode R as a(ngolels, initial-state, [min-v,
max-v], [ming, maxd). R can be extended to incorporate additional information

about the robot’s dynamics for more complex problems.

T is a symbol table, mapping locations in the domain of locatiotiseio actual

coordinates or regions M.

Enter-Building Environment Model

In the Enter-Building world, the AV explores a 2-D plane with disiens 80’x 100’, at
a starting height of 20’ (Figure 12). This is encodedia¥M) = (80, 100, 0, 20’). The
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obstacles in the world are encoded as rectangles, which arespbgitheir minimunx
andy coordinates, length, and widtmitx, miny, I, w). There is a total of 12 obstacles in
the Enter-Building world. The encoding for LaboratoryOne, which cositdive
obstacles, is @1 = {Os, Gs, ...,Oo}, where, for example, (0", 55, 50’, 1') states the
obstacle 5 starts at coordinates (0, 55) with a length of 5Gafeet width of one foot.
Thus,M =((80, 100, 0, 20Q), {01 ,0,, ...,02}).

The Enter-Building example contains only one robot, ANW1. The dimensifons
ANW1 are defined by a sphere with radiysvhich encompasses the small helicopter. In

this example, the radius is one foot. For simplicity, we reprebenAV as a moving

sphere with a heading. Its start state is hovering at aaruristight(x, y,e,§<, ;/> =(75, 80,
135, 0, 0. ANWL1 is described by the following tuple, R(¥, (75, 80, 135 0, 0, [0,
ZV%], [0°, 360]). [31] gives a precise state formulation, including dynamicsafor

small, agile autonomous, helicopter.

-=a

ANW1 /iy\
' 4 )
‘\‘v ’

S~

Windowl1 Window?2

HallwayA

Os

RéféasepointA

HallwayB

{Laboratory;
ReleasepointB | QOpe |

0O,

©, 0, 20 100’ I
Figure 14: Regions specified by the locations andpmbol tabld.

Finally, the domain of locations where ANW1 can visit is spedifas the set of
regions {HallwayA, HallwayB, ReleasepointA, ReleasepointB, Lalboy&ine} and are
depicted with circles in Figure 14. The symbol tabldor the Enter-Building example,

42



maps each location to a coordinate, or a coordinate-radius paitefiregs a region, and

is given in Figure 15.

Name Coordinatex|y)
HallwayA (3, 60) radius 5’
HallwayB (53,40) radius 5’
Rel easepointA (20, 25)
ReleasepointB (20, 50)
LaboratoryOne (15, 20) radius 15’

Figure 15: Symbol table for the Enter-Building aohprogram.

3.3 Pre-planning and Execution System Overview

The control program and environment model, together, are used asdrtpet unified
activity and path planning system, described in this thesis @ifj6). The system is
composed of an optimal pre-planner and a roadmap-based path-planneontiioé c
program is mapped to a graph data structure, called a TempanaNBtaork (TPN),
described in Chapter 4. The optimal pre-planner uses informedhdeahniques in order
to search the TPN for safe threads of execution. The environment imaseld with the
roadmap-based path planner, which attempts to find a collision-freggathieve the
location constraints.

The output of the optimal pre-planner is the best strategy (pham)dibes not
violate any of its temporal or location constraints. The plan rsitifgut to a plan runner.
The plan runner is an executive that exploits the temporal flexibility in thepl@NZ25].
The plan runner consists of an offline pre-processing stage, whighilesrthe temporal
constraints into a for that can be dispatched quickly, followed by anecstheduling
phase that dynamically builds the schedule for the plan whileitaetivare being

executed25].
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Figure 16: Overview of the unified activity and lpaianning system.
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Chapter 4

Temporal Plan Networks

A model-based control program describes a mission strategy witHevgl goals that
autonomous vehicles must achieve during their mission. For manynsssnovement
between locations is an essential component of the planning prdoessldition,
minimizing the combined cost of these activities is key. To suppeset missions, we
developed the activity cost and location constraint (ACLC) sub$eM&IL in Chapter 3.
To enable fast mission pre-planning, strategies written in ® [ Rkbntrol program are
compactly encoded in a graph-based data structure called a TerRpamaNetwork
(TPN) [39][40]. Planning is then performed by applying efficient graploraigms to
TPNs.

This chapter introduces the TPN model and presents an extensionnmdieé
that includes activity costs and location constraints. A mappiam fthe ACLC
primitives to a TPN model is also discussed. We conclude this chveifttea description

of a TPN generated plan.
4.1 Overview of Temporal Plan Networks

A temporal plan network is a compact graphical encoding of a RMdRAtrat program.
TPNs represent activities, activity costs, location and tempmastraints from the
corresponding RMPL control program. The construction of a temporalngt@vork is
based on the RMPL combinators used to express mission strategiesRMRE
combinators define the composition of sub-networks within a TPN, arattiviies and
constraints define the arcs and vertices of the network. Fifjareepicts the TPN
representation of the Enter-Building control program shown in Figure 11.

As seen in Figure 17, a temporal plan network is composed of weankarcs,
each of which refers to a specific element in the correspondimgot program. Vertices
denote time points that correspond to specific events, such as thersénd of an
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activity. The arcs in a TPN represent activities, actieibgts, location constraints, and
temporal bounds on activities. For example, the arcFDstates that the activity
Stereo-Vision() has a cost of 40 units, must take a minimum of 10 time units and
must not exceed 20 time units. In addition, the location constaaifiiallvayB)
which is attached to arc DF, requires ANW1 to be in HallwayB throughout the
duration of the activity. Vertices in a TPN represent tempmrahts. The start and end
of an activity are each signified by a vertex. For exampienteD marks the start of the
Stereo-Vision() activity and event F marks the end of that activity. The arcs
correspond to the temporal distance between e88§§40]. An arc with temporal
bound[0,0] indicates that the event at the head of the arc is executeediately after

the event at the tail of the arc. An arc with[8,+INF] time bound indicates that the
event at the tail of the arc may start at any timer dffte event at the tail of the arc. In
addition, the direction of a TPN arc defines the order in which svaemta thread are
executed. In a TPN, a path from the start event to the end eviiet loifgh-level activity
denotes a thread of execution. For example, any path from S tchE Enter-Building
TPN corresponds to a thread of execution.

Enter-Building [0, ] ‘®

Monccular-Vision() Se- Compressmn(lov
10]

Loc(HallwayB) Loc(LaboratoryOne) Lower-Chembot()
[0, 0] [0, O]

Loc(HallwayA)
[0, ]

Loc(initial-position

‘ 10, 20] 8,13 ', Loc(Releaseptp
10, 30
G @ 20 _ ) 0 50>
Loc( HallwayB) Se-Compressio(high) Take-Pictures( Lower-Chembot()
Sterer-Vision()

Figure 17: Example Temporal Plan Network for theeErBuilding control program. In the figure, the
name of the autonomous vehicle ANWL1 involved in thission is omitted and the activity names are
abbreviated for clarity. In Figure 17, arcs withaut explicitly labeled temporal constraint are assd to
have [0, 0] bounds and arcs without explicit logaticonstraints are assumed to not be constrained by
location.

TPNs encode choice between possible threads of execution usingghtypecof
event, called a decision point. These are depicted in Figure 17 withedotdiés; these
are the events C and W. The event C is a decision point that rhargstt of a decision

sub-network that ends at event M. Associated with each decision gaidédision sub-
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network. The sub-network begins at the decision point and ends at an event kdere t
threads of the choices re-converge. For example, for the decision sudrknstarting at

C and ending at M, the two possible threads of execution are-J-K -L -~M and
C-D-F-G-oH-M. Only one thread from each decision sub-network in a TPN is
included in a plan.

TPNs encode concurrent threads of execution with sub-networks congidbed
parallel threads. For example, the event N in Figure 17 denotest#int of two
concurrent threads of execution. The end of the parallel sub-network atdbesevent
where the two threads converge. For example, the event V (Hiudenotes the end of
the parallel threads that start at N.

Location constraints in a TPN are specified using the “Loc” foncand are
parameterized with the name of the region where the autonomousevethist reside.
Recall that the symbol tablein the environment model translates a region of the input
map. Location constraints are resolved by the unified activity amdpbatning system,
which operates on both the environment model and the control program, int@rder

satisfy the constraint. This process is described in further detail in Cleapter

4.2 RMPL to TPN Mapping

In this section we provide the mapping from the ACLC subset of RMPLPN sub-
networks. This mapping shows how any control program with the ACLC scaséie
encoded as a temporal plan network. The optimal pre-planner then sefanrcisase
threads of execution in a control program by searching its corresparednupgpral plan

network representation.
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Interval:

Interval + Location:

_ ( >[LB, UB] ( >
(region)[LB, UB] Loc(region)

Interval + Activity:

A[LB, UB]
A[LB, UB] ( —— )

Interval + Activity + Location:

A(region)[LB, UB] < ) A[LB, UB] C
Loc(region)

Interval + Activity + Cost:

A(cost)[LB, UB] Q%’Q

Interval + Activity + Cost + Location:

A(cost, region)[LB, UB] A[Li’,sttj il
Loc(region)

Figure 18: Mapping from ACLC primitives to TPN sobktworks.

Recall that the RMPL notion for cost, location, and temporal boungiseas in
the form (cost, location) [lower time bound, upper time bound]. Both Fig8rand
Figure 19 depict the information stored in a TPN sub-network. Inrgerevents mark
the start and end of an activity or the start and end of a TPMNetwlork created by an
RMPL combinator.
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Sequential Composition: Allba, U] B[lbg, Ubg]

(sequence (Alg, 10Ca, Iba uba]) LocAflocA) [0.0]
(Bl@, locs, 1bs, uls]) )

Loc%locB)

Allba, Ubs]

Loc(l 0.0]
Parallel Composition: oc(loca)
(parallel (A[G, loca, Iba uba] )

(B[, locs, Ibg, ubs]) )

B[lbg, Ubg]

B [0,0]
Loc(locs)
Allbpa, Uby]
Choice:
olee [0,9], Loc/zlocA) O’O]

(choose (A[g, loca, Iba uba]) .-
(Bls. locs, Ibg, ubs] ) ) @ O
Bllbg, Ub
0.0 [bo, Lbd] [0,0]
LocB(IocB)

Figure 19: Mapping from ACLC combinators to TPN sdiworks.

Given the mapping of RMPL primitives and combinators to TPN stenks,
any control program can be modeled as a temporal plan netwoik.résult, efficient
network algorithms can be applied to TPNs in order to find the best executat#gystn
a control program. In the remainder of this chapter, we define feasill optimal plans,

denoting feasible and optimal executions of an ACLC RMPL program, respectively.

4.3 TPN Plan Formulation

Recall that RMPL control programs specify possible stratetijas will accomplish a
mission. A TPN represents these possible strategies as diguplans, that is, plans
containing choices. Each possible plan in a TPN is distinguishedebgethof chosen
decisions in each decision sub-network. For example, the network of Biguras two
decision points, each with two potential choices, and hence representpo&siiole

plans. The first possible plan contains the decisiond &hd W- X, the second contains

49



the decisions G| and W-Z, the third contains CD and W- X, and the fourth
possible plan contains the decisions B and W- Z

More formally, a plan is a complete, consistent execution of M®LRcontrol
program. A TPN plan is represented as concurrent threads origimdtthe start of the
TPN, S, and finishing at the end of the TPN, E. Each thread espsea string of
activities, temporal constraints, and location constraints. A plasonsplete if three
properties hold. First, the TPN plan must be composed of a $etafls that originate at
the start S and end at E. Second, if the plan contains a decisiondeainiing a decision
sub-network in the corresponding TPN, then only one thread from theosthet end of
that decision network is selected. Third, all threads extending &bmon-decision
points in the plan must be selected. A plan is consistent if bbils temporally and
location consistent. To be location consistent, all location constigitite plan must be
satisfied. That is, there exists a collision-free path to eagion specified in each of the
location constraints. We refer to a plan that is complete andstemisas deasible plan.
A feasible plan for the Enter-Building program is shown in boldigufé 20 below. In
the example, the plan begins at S and ends at E. The out-arch afogadecision event
in the plan are selected and only one thread from each decision audrknist included
in the plan. In addition, the temporal constraints of the plan highlightétgure 20 is
temporally consistent, as defined in the next section, and thets axsllision free path
for all locations. Therefore the plan is feasible. Finally,flaa in Figure 20 is optimal,
that is, it is comprised of the least-cost complete and consistent set of threads

D Enter-Building [0, =] @

Loc(HallwayB) I Loc(LaboratoryOne)
[ 0] ~

63

Loc(ReleaseptH
0, 30,
NP5

40 50
Loc(HallwayB) ge- -Compressio(high) Take- P|c[ures Lower-Chembot()
Sterec-Vision()

Figure 20: Example of an optimal, complete and st@st plan for the Enter-Building activity. Thettkal
arrows from location to location enforce the oritewhich each location is visited by ANW.

[5 50]
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A solution to a temporal plan network is a feasible plan. The oppregblanner
applies a best-first search strategy to the TPN, while viegptemporal and location

constraints in order to find the optimal feasible plan,
4.4 Temporal Consistency in TPNs

To declare a plan consistent and feasible, it must be tempooakystent. We conclude
this chapter by defining temporal consistency, and by reviealogyithms for checking
temporal consistency. The temporal constraints of a plan, geshdnata TPN, form a
Simple Temporal Network (STN). Thus, the techniques that verify témeporal
consistency of an STN can be applied to TPN pja@k An STN is similar to a TPN in
that it contains a network of arcs between events. It diffeteaheach arc of an STN
specifies only a time bound (no cost or activity) and decision paiatdisallowed. One
way to test for temporal consistency of an STN is by conveitimggo an equivalent
representation, called distance graph. If the distance graph of an STN contains no
negative weight cycles, then the corresponding STN, and thus the pld\ is
temporally consistenf9]. An STN is converted to a distance graph by maintaining its
events and by creating two arcs between connected pairs of gaglg. Given an STN
arc x- Y, labeled [Ib, ub] the distance graph arcy with label ub specifies the upper
bound time of the STN arc. The distance graplyarg with label —Ib specifies the lower
bound time from the STN apc-y. In general a distance axcy with labell specifies
the constraint y—x |. For the lower bound arc, its corresponding constraintx— is

equivalent to y— Ib Figure 21 illustrates an STN and its corresponding distance graph.
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10 0 20
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-31
Figure 21: Example of STN and its correspondin¢adise graph.

In the above example, the sequence of events a, b, ¢, andahatained by the
temporal bound31,50] on STN arc ad this specifies that the entire sequence of
events must be completed at a minimum of 31 times units and anomaxof 50 time
units. If this constraint is ignored, then the sequence of eventsmaperally consistent.
However, with the a d constraint included, the STN it is not temporally consistent. This
inconsistency is identified by the negative weight cycleba.c—-d-a in the distance
graph. Intuitively, events a, b, ¢, and d can be executed within a minitinuenof
5+0+20 = 25 time units, which is the sum of the lower bounds on each eliergvants
must be executed within 10 + 0 + 20 = 30 time units (the sum ofgper lbbounds).
However, the additional constraint-a, over the entire sequence requires the events to
take at least 31 time units to execute. This contradicts themaaxamount of time to
execute the sequence (30 time units); therefore, the abovelexidiostrates a temporal
inconsistency in the STN and any plan that includes that STN as a sub-networkids inval

As stated above, to detect temporal inconsistencies in a plan @ p&h, an
algorithm that detects negative weight cycles in a distgnagh is used. Some of the
more common algorithms for testing negative weight cyalea graph are the Floyd-
Warshall all-pairs shortest path, the Bellman-Ford single-sosihortest path, and the
FIFO-Label-Correcting (where FIFO stands for first-in-firstyalgorithmsg[8].
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Figure 22: Distance graph from a sequence of STistcaints.

The Kirk temporal planner framed the problem of finding a negateight cycle
in a distance graph as a single-source shortest path (S®®RnprTo detect a negative
weight cycle in a distance graph, the FIFO-Label-Correctiggrihm was applied
[1][18]. However, framing the problem of finding a negative weightecyt a distance
graph as a SSSP problem causes the FIFO-Label-Corredgogtran to fail on
particular distance graphs. The distance graph in which tloeitalg will not detect a
negative weight cycle is a distance graph with a positive tgfon an arc in a sequence.
In this case, the positive infinity value would propagate to an incensistib-network
and cause that inconsistent sub-network to be declared temporally teinskor
example, the STN in Figure 22 has a negative cycle betweenad: &ydcomputing the
shortest path from the source a to nodes b, c, and ¢l|Nite shortest path from arc-ab
is included in the shortest path cost ef@and a d. Then, when attempting to reduce
the shortest path from a to c, through the patiba c- d- c, the-30 distance on arc d-
- C is substracted from the current estimate of the shortestfrpatha to c. Since the
current estimate of the shortest path from a to €INF, then-30 is subtracted from
+INF , which results intINF . By propagating the +INF cost forward, the negative cycle

from c— d- c is not detectedhis issue is also illustrated in Figure 23.

+INF

Inconsistent Sub-network
e ° (contains a negative

weight cycle)

Figure 23: A sequence that starts with a +INF and @ontains a sub-network that is temporally
inconsistent. The +INF arc gets propagated forwaften applying the single-source shortest path
algorithm and the shortest path between nodesdngtph all become +INF, and thus, a temporally
inconsistent plan is mistakenly declared temporedigsistent.
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We make clear the distinction between a single-source shpéatsproblem and
the algorithms used to solve it, as mentioned above. To addressubeigropagating
+INF cost, we reformulate the problem of finding a negative weigtledn a distance
graph, as a single-destination shortest path (SDSP) pr¢8]eifhe SDSP problem is to
find the shortest path to a given destination r®ihea graph from all other nodes in that
graph.

The key to solving an SDSP problem is to reverse all the atbg imput graph.
Given this formulation a SSSP algorithm that detects negativghtveycles in a graph
can be applied. Thus, we still use the FIFO-Label-Correctirayitiigh, but on the SDSP
formulation, where the source node, for example a, is specified as the dastnuate.

Intuitively, by reversing the arcs in the distance graph, tbe arith +INF are
essentially ignored. These arcs are headed in the oppositeodirettthe destination
node, and have a positive weight. Thus, they cannot be a part of thetghattiefsom a
node to the destination. For example, in Figure 24 we want to dleéeoegative weight
cycle b-c-b in the original distance graph. As stated, the shortest path frosouthee
node a to nodes b and c is +INF, even though there exists a negaity eycle. At the
bottom of the figure, the arcs in the original distance graph hase tversed. If a
single-source shortest path algorithm, like the FIFO-Labelgcbng algorithm, were
applied to the graph at the bottom of Figure 24, then the arc with the +INF doesobt aff
the shortest path from a to b, which is -5. Thus, the negative cyotelb is detected,
because the algorithm will repeatedly reduce the cost of node Ibf i;méxamined more
times than the number of nodes in the input graph (Line 11-12, Figur&t2b)s point,
since the cost of b is negative, it can be shown that a cycle must exist.

The FIFO-Label-Correcting algorithm is shown in Figure 25. The Puisction
adds a node to the end of the queue and the Pop function returns the nodepabfitiee
gueue. Note that Line 13 examines the incoming gric§),(which is equivalent to
examining a distance graph with its arcs reversed. In thenaligiFO algorithm all the
outgoing arcsi(j) are examinef39][40]. The algorithm has an @) run time, whera
is the number of nodes in a graph amé the number of edges in the graph. For a more

careful discussion of the FIFO-Label-Correcting algorithm[$ke
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Original distance +INF

source
Reversed arcs +INF
destination _g

Figure 24: By framing the problem as a single-akadibn shortest path problem all negative weigliesy
in a distance graph can be found.

function SDSP-FIFO (Grapls, Nodedestination) returnstrue if negative weight cycle or
false if no negative weight cycle.

1. initialize FIFO-queu&® ~ [

2. for eachn; 0 Nodes(G) do

3 d(n;) « +INF

4, examined_countf) — 0

5. end

6. d(destination) — 0

7. Push(Q, destination )

8. whileQ#0 do

9. i — Pop(Q) //Removes the node at the top (or head) of the Q

10. examined_count() — examined_count() + 1

11.  if examined_couni() > |[Nodes@G )|then

12. return true /hegative cycle detected, repeatedly revisiting a node

13. for eacharc{,i) 0 Gdo//Arcsarereversed by examining the incoming arcsj toi

14. if d(j)>d(i) + weight(j, i) then

15. d(j) < d(i)+ weight(j, i)

16. if j OQthen

17. Push(Q, j ) //Adds| to the end (or tail) of the Q

18. end

19. end

20. return false

Figure 25: FIFO-Label-Correcting pseudo code usatktect a negative weight cycle in a TRN

In summary, this Chapter presented the mapping from the ACLQatlee of
RMPL to TPN sub-networks. We defined a complete and consistent iexeotia TPN

and presented the algorithm to test for temporal consistency of a TPN plan.

55



56



Chapter 5

Optimal Pre-planning of Activities

To find the best strategy for accomplishing mission objectives, wethes notion of
optimal pre-planning. Optimal pre-planning is the process of takisgtaf possible
strategies, encoded in a TPN model of a control program, and seaiwhthg optimal
feasible plan. As a part of the optimal pre-planning processdogt &* search to find
the best strategy. The optimal pre-planner is a forward hewsesich planner that uses a
TPN heuristic to efficiently guide the search towards the best solution. Mecitge in
heuristic search planners is that the admissible heuristics,asuttfe max heuristic of
HSP, tend to be extremely weak, and uninformative. The TPN heusistovel in its use
of dynamic programming to provide an estimate that is more @ecand informative
than max. The algorithm that guides the search is called TPNA*. TPNA*isalsl for
its compact encoding of plan space. This chapter presents thadiemyi and develops
the procedures that define the optimal pre-planning process.

To illustrate the optimal pre-planning process, we first presentexample
problem, and then apply the TPNA* search to that problem. The esapialled
AtHome. The RMPL control program for the AtHome example isrgive Figure 26.
Figure 27 illustrates the equivalent TPN representation. Fopuh@ose of focusing on
optimal pre-planning, the AtHome example does not contain location aontsirWe
address the combined problem of optimal pre-planning with location constiai
Chapter 6.

The objective of the AtHome program is twofold. The first objectsveirefuel
the autonomous vehicle, ANWL1. This objective is achieved by Lines 3-1i aontrol
program, depicted in Figure 26. The second objective is to send sensar ttiatadntrol
center. This can be achieved through two methods: either by uploadirggnsor data,

or by fusing sensor data onboard and then uploading the fused data. Theetiirsd is
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specified by the control program in Lines 14-20, and the second methpecifes in
Lines 21-24.

AtHome RMPL Control Program

1. (AtHome [15,100]

2 ( parallel

3 ;; Refuel autonomous vehicle ANWL

4. ( sequence

5. ( ANW1.Connect-To-Charger(80) [5, 20])

6 choose

7 ( ANW1.Refuel-CellA(20) [0, 15] )

8 ( ANW1.Refuel-CellB(70) [0, 15] )

9. ( ANW1.Refuel-CellC(30) [0, 15] )

10. )

11. ) ;;end sequence

12. 1 Send sensor data to control center by one of two ways
13. ( choose

14. (( sequence

15. ( ANW1.Upload-Raw-Data(25) [10, 30 1)
16. ( choose

17. ( ANW1.Purge-DataSet1(10) [10, 15])
18. ( ANW1.Purge-DataSet2(20) [25, 35])
19. )

20. ) [0, 20]) ;;end sequence

21. ( sequence

22. ( ANW1.Sensor-Fusion(20) [1, 5] )

23. ( ANW1.Upload-Fused-Data(10) [1, 5] )
24, )

25. ) ;;end choose

26. ) ;endparallée
27. ) ;;end AtHome activity

Figure 26: Control program for the AtHome stratelgythis example there are no location constrathiss
the default value for all activities is ANYWHEREs axplained in Chapter 3.

The control program for the AtHome program maps to an equivalent §iRiW/n
in Figure 27. The arcs of the TPN are labeled with activésnes, costs, and temporal
constraints, specified by the AtHome control program. For exartipbearc between
nodes J and K represents thennect-To-Charger activity. Stored on this arc are
the estimated cost of 80 units and time boundf@0] , which is specified in the
control program (Line 5). In this example, arcs without an explitabeled cost are
assumed to have a default cost of 5 units. The AtHome TPN containscakoh
constraints, thus, they are not included on the TPN arcs. The AtHBMasTreferenced

throughout this chapter.
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AtHome[15, 100]

ANW1.Refuel-CellA()
[0, 15]

. 20
e ANW1.Refuel-CellB()
[0, 15]

ANW1.Connect-To-Charger()

N 70 R/
\s\ANWLR’[gfules\jCeIIC()
M3 O

ANW1.Purge-Date-Set1()
0, 15}

10,
O
< [25, 35
V5D

ANWl.Purg%pDala—SeIZ()
AN [0, 20]
\\
N [1,5] [1, 5]
Oy e Gana Oty

ANW1.Sensor-Fusion() ANW1. Uploac-Fuser-Datacntl cente)
Figure 27: Corresponding TPN representation ofAlldome program in Figure 26. Decision points are
marked with double circles. Arcs without an explioine bound have f,0] time bound. Arcs without
an explicit cost are assumed to have a default @8t units. There are no location constraintshis t
example, thus, they are not included on the arcs.

ANW1.Upload-Raw-Datafntl_centey

An RMPL control program, like AtHome, is composed of one or more lgessi
strategies for a robot to execute during a mission. In order toafifeésible plan, the
original temporal planner within Kirk uses a modified network dedhat tests for
temporal consistency, selects activities, and defines causabktkeen eventgl0][39].
Recall that a feasible plan is both complete and consistent. Asptamplete if it refers
to a selected sub-network of the TPN such that 1) the sub-netwgrkabeis at S and

ends at E, 2) the sub-network contains only one thread extending frondeasion

point in the sub-network, and 3) the sub-network includes all threads extending from each

non-decision point. For a complete plan to be consistent, and thus feisilst also
adhere to its temporal constraints. That is, the simple tempomnatraints of the sub-
network must be satisfiable. While the original Kirk temporal plasearches a TPN for
a feasible plan, it does not address pre-planning problems foh wig cost of executing
activities is critical to the success of the mission.

The optimal pre-planning process presented here extends Kirk byrnadatest-
first search strategy, in particular A*, in order to find theiropt feasible plan. That is,
from the set of all complete and consistent plans in a TPN, TRdArch returns the
feasible plan with the minimum cost.

The primary contribution of this chapter is threefold. The firshésformulation

of an optimal pre-planning problem as a state space search probiiensedond is a
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compact encoding of a TPN state and a mapping from a seatehasits corresponding
TPN sub-networks. The third contribution is a procedure that ext@autsiristic from a
TPNa priori, which is used to efficiently guide the search. We conclude this chapter with
a discussion of the TPNA* search and its properties.

5.1 Review of A* Search

An optimal pre-planning problem can be framed as an optimization prdblewhich an
informed search technique can be applied. We adopt the widely usedré¥i akgorithm
[26]. A* is a deterministic search that combines greedy-seartthuniform-cost search,
in order to find the optimal path from an initial state to a gtatle of a search problem.
The minimum-cost path is found by selecting search nodes accdaodisng evaluation
function. The evaluation functidrestimates the cost of a search nodey summing two
values, gf) andh(n). The first value, gJ), is the actual path cost from the start node,
which represents the initial state, to nadeél'he second valuday(n), is a heuristic value
that serves as an under-estimate of the cost from méal¢he goal. The best solution is
found by repeatedly selecting the path with the Wast The general A* search
procedure is shown if28].

One important element of A* is the dynamic programming princiben A*
finds a better path to an intermediate nogét prunes the expansion of all other sub-
optimal paths that reach, thereby storing only the best-cost path to nodp6].
However, in the case of TPNA* search, the algorithm is sydtenthat is, it visits
search states at most once. Thus, in TPNA*, there is only ohdgatnoden, and the

dynamic programming principle is not necessary.
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procedure A*-Search ( Problenp) returns minimum cost solution if, and only if, one exists.

initial states « Initial-State(p )
noden — Make-Root-Node§)
f(n) < g(n) +h(n)
Insert(n, Open)
while Openz [0 do

Nt — Remove-Best( Open)

if Goal-Test(pes, p) then

return solutionnyey

elseif nyey O Closedthen
10. new-child-nodes — Expand(pes )
11. for eachn; O new-child-nodes do
12. if state(n; ) O Closedthen
13. Insertf;, Open )
14. Inserti,es, Closed )
15. end
16. return no solution

NN E

©

Figure 28: The general A* search algorithm. Theuinig a problem that represents all possible st#tes
search finds the shortest path from the initialesta the problem’s goal state (checked by the Geat
function). Two sets, Open and Closed, are maintkifi@e Open set is a priority queue, which stoies a
nodes according to their evaluation functif(n). Nodes in Open are available for expansion. Tl
set contains all nodes that have been expanded.

A* search is both optimal and complete as lontp@¥ is an admissible heuristic,
that is,h(n) never overestimates the cost from a node the goal. The algorithm is
complete for all problems in which each node has a finite branchatgr f&roofs of
optimality and completeness can be foun{®]. For a more careful introduction to A*

search, sep26].

A* Search Example

To develop the TPNA* search algorithm, we first consider how keaydor the optimal
plan relates to searching for the shortest path in a graph. Intesthpath problem, every
vertex in a graph is analogous to a decision point in a TPN. Anptearha weighted
graph is shown in Figure 29. Each vertex is a decision point and eachassigned a
cost (also called a weight) if the start vertex is A drelgoal vertex is G, then there are
four possible paths from A to G: AB-D-G, A-C-D-G, A-C-F-G, and

A - C-E-G. The shortest path is the one with the least cost. In this tbasshortest
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path is A-C-D-G which has a cost of 8 units. We demonstrate how A* search

explores this graph to find the shortest path.

A <> h(B) =
h(C) =

h(D) = 3

=2

Figure 29: Example of a weighted graph (on the kftd the corresponding heuristic cost for eactexen

the goal G (on the right). The graph can be comsitl@ state space search problem, where each vertex
represents a state and each arc represents acpetidn that takes the problem from one statihéonext.

The initial state is A and the goal state is G.tE@ertex in the graph is analogous to a decisidntpn a

TPN.

2=
oo
|
o

A* search can be applied to find the shortest path, the path withasteweight,
from A to G in the graph in Figure 29. The heuristic c@f), for each vertex is shown
to the right of the graph in Figure 29. To expand vertices inflbisstrder, A* maintains
a priority queue, calle®@pen. Open is initialized with the start vertex A. During each
iteration, the vertex with the least estimated cé@®), is removed from Open and
expanded, adding each of its target vertices to Open. Once aigegtganded, it is then
inserted in a set containing all expanded nodes, c@llesd. For example, when vertex
A is expanded, targets B and C, with estimated dBjs=4 + 2 =6 and(C) =2 + 5 =
7, are inserted into Open, and A is inserted into Closed. ThereXp@&ded, adding its
target D,f(D) = 8, to Open. This process continues until the goal G i©eeaéigure 30
illustrates the priority queue for each iteration of the search.

Notice, that in this problem the dynamic programming principle eppllhere
are vertices in the graph, namely D and G, which can be reaché&dosior more paths.
For example, there are two paths to D, B- D and A-C-D, where A~ C-D is the
least-cost path. First D is reached via the suboptimal patughrB, giving D an
estimated cost of 8 units (iteration 3). Then D is reachedss/gpiimal path, A-C- D,
and D is inserted again, but with a cost of 6 units (iteration 4n Dheith a cost of 6 is
expanded, and G is inserted into Open. Next, D with cost of 8 unignisved from
Open. Since vertex D already exists in the set Closed, this D with a cost of & isnmtot
expanded[28] details the steps required to solve search problems withphaybtaths to

the same vertex.
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Iteration| Open:(vertex,f(vertex)) Closed

1. | (A 5)

2. | (AB,6)(AC,7) (A, 5)

3. |(AC,7)(ABD,8) (A, 5) (B, 6)

4. |(ACD6)(ABD,8)(ACF,9) (A, 5) (B, 6) (C, 7)
(A CE, 10)

5. |(ABD,8)(ACDG,8) (ACF,9) |(A 5) (B, 6) (C, 7)
(A CE, 10) (D, 6)

D/ Closed, go to next iteration
6. (ACDG,8) (ACF,9(ACE,10) [(A, 5 (B, 6) (C, 7
G is removed from Open, Goal-Test satisfied, | (D, 6)

shortest path found

Figure 30: Example of applying A* search to finae thhortest path from vertex A to G in the graph in
Figure 29. The priority queue Open contains pagéths with their estimated cost. The vertex expdnd
during each iteration is underlined. The goal @vahin bold (iteration 6).

5.2 Optimal Pre-Planning Overview

The input to the optimal pre-planning system is a temporal planonet®Recall that a
TPN, by definition, represents the space of all complete exesutf an RMPL program.
There may be any number of complete executions represented ®P\,adepending on
the number of choices at each decision point in the network. In thenfg TPN, for
example, the decision points B, L, and V create two parallelo$détgee threads each,
resulting in nine possible executions of the AtHome program.

The optimal pre-planner outputs the optimal complete and consistenitierec
with the least-cost, if and only if one exists. The optimal swiub the AtHome program
is highlighted in bold in Figure 31. Although the plan with choices®Band L- P has
the least-cost, the activities within that plan create gpoeah inconsistency with the
overall AtHome program’$15,100] time bound. Consequently, the optimal feasible
solution is the next best plan, which contains choice®PBV - W, and L- P. This plan

is both complete and consistent.
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AtHome [15, 100]

ANW1.Refuel-CellA()
[0, 15]

20

ANW1.Connect-To-Charger() s

5,20 > s
50 W 7@

ANWI. PU{%(—?SIE—Sell()
ANW1.Upload-Raw-Datafnt|_centey -

[10, 30] s 10
@ /x.—’."( O )

 omie)

Figure 31: The bold portion of the TPN denotes dpgimal plan for the AtHome program. We use a
default arc cost of 5 units (not including arc E).

Our approach to solving an optimal pre-planning problem is an instan&& of
search. In this section we define the search space in termrRBNs, Tvhere each search
state denotes a partial execution of the TPN. Then we forenaiabptimal pre-planning
problem as a state space search problem, and describe the ssancset to represent

the search space.

5.2.1 TPNA* Search Space

The search space of an optimal pre-planning problem consistse gbréfixes of all
complete executions of a TPN. We refer to these prefixes réial gexecutions. More
specifically, a partial execution is a set of contiguous concuthesdds that originate at
the TPN start S and have not been fully expanded to the end eVeatltthread of a
partial execution is comprised of activities, and temporal canssr TPN events are
implied by activity arcs. The events at the end of eachdhiest do not have an out-arc
are terminal events. For example, Figure 32 illustrates alpexecution extracted from
the AtHome TPN. The terminal events are E, L, and B. We tefdre set of terminal
events as the fringe. A choice in a partial execution is an oditesmca decision point to
one of its target events. The partial execution in Figure 32 hashwices: B-D and

L-P.
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Fringe

Figure 32: Example of a partial execution from #telome program TPN. The terminal events are E, P,
and W and make-up the fringe of this partial exiecutThe choices are BD, V- W, and L-P.

A partial execution is compactly encoded by its terminahesvand choices. We
define a formal mapping from a partial execution to its encodmca pair(fringe,
choices), where fringe is a set containing the terminal events in th&lpaxecution, and
choices is a set containing each choice in the partial execut@nefcoding for the
partial execution shown in Figure 3X{&, P, W}, {B - D, L-P, V- W}).

A state in the search space is a partial execution andfirredleby the set of
choices in that partial execution. For example, Figure 33riditest two partial executions
that map to the same state. The two partial executions are dnasde}{E, P, D},
{B -D, L-P})and b){E, P, V}, {B -D, L-P }). Both partial executions map to the
same set of choices; thus, denote the same state. The optinpdérprer, however,
explores the search space in such a way that no search stapdoi®d more than once.
This is described by the expansion procedure in Section 5.3.

Choices in (a) and (b) are equivalent

(@) {E, P, D}, {B-D,L-P}) (b) {E, P, V}, {B-D, L-P})

Figure 33: Two partial executions, (a) and (b),nwéguivalent choices {B D, L-P}. Thus (a) and (b)
map to the same state.

5.2.2 Search Tree

TPNA* explores the search space by expanding a search tsmargh tree is comprised

of a set of nodes and branches, where each node denotes a séarcinganeral, the
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root of the tree denotes the problems initial state. For TPlansing, the root of the
tree denotes the partial execution comprised of the set dfralids that originate at S,
and either end at the first decision point reached or the endEvehichever is reached
first. Figure 34 shows the encoding of the root nodarsl its corresponding partial

execution, extracted from the TPN of Figure 15.

S

parent: Null
TPNfringe: EL B

Root search node

Figure 34: Root search node for the AtHome progfamthe left) and it equivalent partial executiam (
the right). TheTPNfringe contains events E, L, and B. L and B in(shown in bold) are decision points
that can be expanded further and E is the evenifgiilgg the end of that particular thread.

In general, each node and branch in the search tree contgmesificdabel, as
shown in the complete search tree for the AtHome program in FRuré\ noden,
denoting a search state, is labeled with the following{panent, TPNfringe) where:

» parent(n): a reference to’'s parent node in the search tree. This is shown in the

search tree as a branch from the parent to the child

* TPNfringe(n): a set of terminal TPN events in the corresponding partial execution.
For example, in Figure 3parent(ss) = 5, andTPNfringe(ss) = {V, E}. Correspondingly,
a branch is labeled with a s€tl{, &), (d,, &), ... ,{dn, &)}, where each pair in the set is
a choice denoted biglecision-point, event). For example, branchy(ss) is labeled with
the choicegB, D) and(L, P). These are the choices included in the partial execution
denoted by s The union of the labels along the unique path from a tree méal¢he
root node, and the events TiPNfringe(n) comprise an encoding of a partial execution.
Figure 36 illustrates the partial execution corresponding to eade on the path from s

1o Sio.
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{(B.D),(L.P)} {(B.D),(L.Q)} {(B.D), (L.M}} {(B.C).(L.P)} {(B.C).(L.Q}Y  {(B.C).(L.M)}

S S3 > S
{V, E} {V. E}

S

{V. E}
{(v, W)} {(V,Y)}l {(V,W)}‘ {(V'Y)}l {Kv, Wi {(V'Y)}l
S S Si0 S 2 Si3

{E} {E} {E} {E} (E} {E}

S Sy
{E} {E} {E}

Figure 35: The complete search tree for the AtH@mgram. Each search node is labeled with a state
name sand its corresponding TPN fringe events. The ras@re labeled by choices. The choices for a
node’s state are the union of the branch choiaasyathe path from the root to that node. The tm#ains
nine leaf nodes £ss,3), each referring to the nine complete (not necdgseonsistent) plans in the
AtHome search space. The underlined TPN eventsdecésion points that are expanded, in order to
generate a node’s children. Each set of TPN fringmts that contain E marks the end of anotheathodé
execution from S to E. Nodg denotes the optimal execution.

To describe the mapping from a search tree ngde, its partial execution, we
define the Node-To-Partial-Plan procedure in Figure 37. There arenain steps that
comprise the procedure. The first step, Lines 1-7, is to cressg Q(s), containing all
choices on each branch along the path fepto root. The second step, Lines 8-33, is to
construct a partial-plan with events and arcs. This is done d¢igrbeg at the TPN start
event S and tracing the threads that extend from S, using degptisdarch until all
threads end at an eventi®Nfringe(s). While tracing each thread, if a decision point is
encountered, then the thread corresponding to the chofeésinis added to the partial-
plan (see Lines 20-24). For example, the search nogegsire 35) can be mapped to its
corresponding state in the search space, cre@tindpile walking upwards in the search
tree along the path fromy 80 5. This results iM(sg) = {branch(sy, ) O branch(s;, s1)}
= {(B, D), (L, P), (V, Y)}. Next, Q(s) is mapped to a partial plan by starting at the start
event S of the AtHome TPN, and tracing the threads that extend $. Whenever a
decision point is reached, the corresponding choi€(#) is taken. For example, when
the decision point L is reached on thread - J- K - L the decision paiL, P) directs

the trace to continue the thread along P.
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AtHome [15, 100
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ANW1.Refue-CellA()
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ANW1.Connect-To-Charger()
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J Y @:“

AN\/\/l.Purqi—lgate—Sell()
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AtHome [15, 100]

ANW1.Refue-CellA
[0, 15]

ANW?1.Connect-To-Charger()

{(B, D) (L, Q}
3
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ANW1.Sensc-Fusion( ANW1.Upload-Fused-Data(cntl_center)
{(v, w)} AtHome [15, 100]
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Figure 36: The search states corresponding to ganich tree node along the path from the rptt §;.
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procedure Node-To-Partial-Plan( Search Treee, Search Tree Nodg TPNtpn)
returns a set of arcs denoting a partial plan.
//Sep One: extract choices on path fromn to root
search tree nodemp — s
Q(s) - O
while parent(emp ) # root(tree) do
Q(s) « Q(s) O choice-set ( branchémp, parenttemp) ) )
temp — parenttemp)
endwhile
/[Sep Two: run a depth-first search on tpn following the choices until each event in
TPNfringe(n) is reached
9. e  start-eventfpn)
10. last-in-first-out staclstack — [
11. Push(stack, e)
12. initialize visited(event ) of each TPN event to false
13. create partial plapartial-plan
14. events(partial-plan) ~ O
15. arcs(partial-plan) ~ O
16. while stack # O do
17. e ~ Pop(stack)
18. if visited(e) = falsethen

ONo TR~ WNPE

19. visited(e) ~ true

20. if decision-pointg) = truethen

21. choice — get-choiceQ( s), e)//returns a decision-pt, arc, and target
22. arcspartial-plan) — arcs(partial-plan) O {get-arc(choice )}

23. eventspartial-plan ) — events(partial-plan ) [0 {get-target(choice )}
24. Pushgtack, target )

25. else

26. for eacht; O target(e ) and visited(t; ) = falsedo

27. arcsfartial-plan ) — arcs(partial-plan) O {arc(tpn, e, t; )}

28. eventgfartial-plan ) — events(artial-plan ) O {event(tpn, t; )}
29. if t; O TPNfringe( e) then

30. Pushstack, t; )

31. endfor

32. endwhile

33. return partial-plan

Figure 37: Algorithm to map a search tree nodéstearresponding partial execution.

Detecting When Threads Re-converge

Notice that in Figure 36, TPN events E, U, N, and V1 are events Wiregsls converge.
For example, nodes and go denote partial executions with threads that converge at V1.
thread D-V1 and W- X - V1, respectively. Nodesgefers to a partial execution that
includes the thread VAN - U - E. Thus, wheng is generated, it is only necessary to

include the thread W X — V1 and not continue the thread from V1 to E.
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To detect when threads converge, a set of selected TPN exentsiatained for
each search tree node. The set contains the events that are curckrdbdrn the partial
execution. For example the selected TPN events for naate S, E, A, J, K, L, B} and
the selected events fog are {Q, R, L1, U, V1, N}. The union of these two sets is a set
containing all the events in the partial execution denoted.bihe selected events of a
search tree node contain all new events selected betweeartre pnd the node. We
create a table that maps each search tree node to itedél&dt events set (for example
see Figure 38).

Node Selected Events
S1 {S,E, A J, KL, B}
s | {Q,R, L1, U, V1, N}
S10 {w, X}

Figure 38: An example of a table mapping the nadeng the path from;g90 s, to their corresponding
selected TPN events. Each event included in agb&stecution is added only once.

Figure 39 presents the function Threads-Converge, which returns iraetécts
convergent threads, otherwise it returns false. Given searemames, the function
proceeds upwards in the search tree along a path from asnodee root. As it reaches
each ancestor it tests if an events in a selected TPN events set of that ancestor.
Threads-Converge is used in the node expansion procedure for two pufipdeesvoid
extending threads that have already been extended, and 2) to de¢ectwycle has
been formed in the partial execution, prompting a test for temporaistency (see
Section 5.4).
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function Threads-Converge?( Search Tree Ng§dePN eveng, Tableselected-events)
returnstrueif the TPN event eisincluded in the selected events
set of an ancestor of Node n, otherwise false is returned.
search tree nodemp — s
while parenttemp ) # NULL do
if e 0 selected-eventy temp ] then
return true
temp — parenttemp)
endwhile
return false

NogkrwNpE

Figure 39: Function that detects when an eventready included in a partial execution. It lookstlaé
selected events in the ancestors of a search o@e ff the event in question is included in onghafse
sets, it is an indication that threads have coradrthus, forming a cycle in the partial execution.

Node Expansion and Goal Test

The TPN fringe events of a search tree node that are depmiois are used to generate
new child nodes. Recall that a decision point represents a choiceebedvget of threads
in the decision sub-network. The set of all possible choices for tigalepoints in the
fringe of the search tree node is constructed by computing themmduct of the sets of
choices of each decision point in the fringe of the node. For exatin@leot node;shas
two TPN fringe events, B and L, which are decision points. B hashwites, either C
or D; and L has three choices, M, Q, or P. There are six possitslefschoices that
result from performing the cross product operation, {CxQM, Q, P}, between the two
decision points. The six combinations of choices, given as sets of ordered pairs, are

1. {(B, D), (L, P} 4. {(B, D), (L, P}

2.{(B, D), (L, Q)} 5.{(B, D), (L, Q}
3.{(B, D), (L, M)} 6.{(B, D), (L, M)}

During search tree expansion, a child node is created for ettol @dmbinations
that result from applying the cross-product to decision points irritigeefof a node. This
is illustrated in Figure 35, where nodesssare children of s Note that the labels on
each branch from;go its children correspond directly to each combination of choices.
Expansion only adds child nodes to the search tree that denote tdéynporaistent

executions. This process is detailed in Section 5.4.
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The expansion process terminates if a search tree node is refnowedhe
gueue, Open, that satisfies the Goal-Test, or if no consistenioso&xists. Goal-Test
tests if the partial execution denoted by a node is complete.ig hedich thread in the
partial execution originates at the TPN start event, S, and ends at the TPN enH.event

A partial execution that is temporally consistent and saidfie Goal-Test is
referred to as &asible execution. The feasible execution that minimizes the evaluation
functionf(s) is referred to as aoptimal execution, and is the solution to the optimal pre-
planning problem. If no feasible execution is generated then then®mpaprocess
terminates, returning no solution. The goal of optimal pre-plannirgfiad the optimal

execution.

In summary, we frame the optimal pre-planning problem as a spat®e search
problem. Given the encoding of a state as a partial executioar@seee is constructed
with the root denoting the problem’s initial state. A child nodgeiserated by expanding
a node in the tree. At any point, a node in the search tree can fyEedn#o its
corresponding partial execution by the Node-To-State procedugeréri37). The

remainder of this chapter develops the expand procedure and TPNA* search.
5.3 Expansion

The process of generating new search tree nodes was fiogtuogd in Section 5.2. We
elaborate on this process by developing the Expand procedure, shownri #g The
Expand procedure performs search tree node expansion in two phasesstTpieage,
given a search tree nodeis to extend the threads from each eveftRNfringe(s), until,
along each thread, either a decision point is reached or the end event, E, . Méulee
extending threads, if two or more threads re-converge, then afailesemporal
consistency is performed (see Section 5.3.1 FigureT4®).first phase is accomplished
by performing a modified version of a depth-first search (DF&ljed Extend-Non-
Decision-Events, which is invoked on Line 3 of the Expand procedure (F@urd his
procedure is illustrated in Figure 44. In the figure, Extend-NondecEvents is

applied to the root search tree node. Each thread, originating &x&nded until either

72



the end event E is reached or a decision point in each threadhsde#t this example,
the end event E is reached first, and then S extends its thoetus decision points L
and B. The second phase creates new child nodes, where each node seprasante
combination of choices between decision points. The second phase, outlinadhl-

13 of Expand, is accomplished by executing the Branch procedure, given in Figure 50.

el i v A A
® (O—®
® ® ®

®——® ®——®
/.@—»®—» O—R—O)

(&)

Figure 44: Example of Phase One, Extend-Non-DetiEieents, applied to the initial root tree node.

procedure Expand( Search Tree Nod@ returns set of search tree nodes.

1. set of choices from decision points on the frin§e foinge-choices — O
2. booleanconsistent — false

3. set of TPN decision poinfsinge [

4. [consigtent, fringe] — Extend-Non-Decision-Events()//Phase One: Extract Decision Points
5. if consistent = falsethen

6. returnd

7. dseif fringe= 0 then

8. complete6) ~ true

9. return { s} //insert the updated sinto Open

10. else

11. initialize senew-child-nodes — [J

12.  new-child-nodes — Branch (s, fringe )//Phase Two: Expand decision choices
13.  return new-child-nodes

Figure 45: Pseudo-code for expanding a node is¢hech tree.

The Expand procedure returns a set of new search tree nodes. iEhenspty if
the parent search tree node is determined to be temporally isteohsn Phase One

(Lines 4-5).For examplewhen g in Figure 35is expanded a cycle is formed. This
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occurs when the thread from B converges at E. At this point, testemporal
consistency is done. The time bountid] on the thread extended from B are less
than the minimum time bounds of the AtHome program, The node s6 is tdiyppor
inconsistent and Modified returns false and the empty IEdExtend-Non-Decision-
Events extends all of the fringe eventsad the TPN end event E, without encountering
any decision points, thes is marked completed and is the only element in the set
returned by the Expand procedure, Lines 6-8. Otherwise, the setrdi se® nodes will
consist of child nodes generateddyines 9-12.

5.3.1 Phase One: Extend-Non-Decision-Events

The objective of Phase One is to extend each thread of a searclumddats next

decision point. Each event along a thread that is not a decision porgeepa unique
choice; hence, TPNA* can make these choices immediately rditherinserting these
events into the queue, Open, for a delayed decision. The extension afstigethe

responsibility of Extend-Non-Decision-Events. We precede the disocus$ Extend-

Non-Decision-Events with a brief summary of depth-first search.

In general, depth-first search operates on a problem specifiedyeagph with a
start vertex, the initial state of the problem, and goal vetftexgoal state of the problem.
Depth-first search grows a tree that, when complete, refsealt unique paths from the
start to the goal. During DFS, vertices at the deepest iletbe tree are expanded first.
This is done by maintaining a stack, where vertices are expanded in last-ouf order.
Figure 46 illustrates the DFS tree created by applyin§ @Rhe graph in Figure 29 (the
heuristics and the weights are ignored).
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Figure 46: Progression of depth-first search agplethe graph in Figure 29. The start vertex iandl the
goal vertex is G. The final tree shows the foursille paths from A to G.

The pseudo-code for Extend-Non-Decision-Events is shown in Figure 47. The

argument to Extend-Non-Decision-Events is a search tree si08eflag, indicating
whether or nots is consistent, and a set of TPN events are returned. Each ievent
TPNfringe(s) is extended in depth-first order. While extending ewewoin a thread, one
of three cases applies.

Case 1 (Lines 9-12):g is an event where two or more threads, in a partial exaguti
denoted by its search tree nalee-converge.

Case 1 is detected by the Convergent-Threads function, describeduphgunSection
5.2. This case is significant for two reasons. First, it indicdtas a cycle has been
formed in the corresponding partial execution, as shown in Figuréhi&, a test for
temporal consistency must be performed. In general, events thabtare-convergent
must be consistent as long as their temporal consftajab] has the propertip <
ub. To verify temporal consistency in a partial execution, the SBIEP- algorithm,
presented in Chapter 4, is executed on the temporal constraints pHrtia¢ execution
encoded as a distance graph. For example, nodersesponds to choices-BC and

L -~ P (Figure 35). Whensss generated by, sits fringe initially contains C and P. When
S5 is expanded, C is extended to the end event E. E is already indfutiesl selected
node set of an ancestor node §framely s An ancestor of a search tree nodis any
search tree node on the path from the roaot tdhus, when E is reached by expandifg s
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a cycle has been formed in the current partial execution, denotedTys signals a test

for temporal consistency38]. If the partial execution violates its simple temporal
constraints, as inssthen Extend-Non-Decision-Events is terminated and the node being
expanded is pruned from the search tree. Otherwise, the procedure continues.

procedure Extend-Non-Decision-Events ( Search Tree Nede
returnstrue and the set of decision points reached by extending the
threads from the TPNfringe.
of s, otherwise falseis returned.

1. initialize stack « [

2. initialize updated-fringe — [0 //contains decision-points reached by expanding threadsin s
3. for each eveng O TPNfringe( s) do

4. threadcosts — 0

5. Push g, stack)

6. visited(g, true )

7. while stack# 00 do

8. event — Pop(stack)

9. /[Case One: If ¢ induces a cycle then check temporal consistency
10. if Threads-Convergefvent ) then

11. if Not( Temporally-Consistent( distance-gragi() ) then

12. return false

13. /ICase Two: If g isa decision point then stop extending this thread
14. elseif decision-pointgevent ) = truethen

15. updated-fringe ~ updated-fringe O event

16. /[Case Three: Continue DFS if target of g isvisited then check temp consistency
17. else

18. for eacht; O target(event ) do

19. if visited(t; ) = falsethen

20. threadcosts — threadcosts + cost(event, t; )

21. visited(t;, true )

22. selected-nodes) ~ selected-nodes() O { t; }

23. Push(stack, t; )

24, else

25. if Not( Temporally-Consistent( distance-gragh() ) then
26. return false,Od

27. endfor

28.  endwhile

29. selected-nodes() — selected-nodes() U { & }

30. endfor

31. TPNfringe( s) ~ updated-fringe
32. g(s) « g(s) +threadcosts
33. return true, updated-fringe

Figure 47: Pseudo-code for the Phase One ExtendEMaision-Events procedure.

The second reason Case 1 is significant is to avoid redundant extension of threads.

Consider the search nodg,dor example. When;gis expanded, the thread starting at V
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converges at V1 with thread -BD V1. TPN event V1 was extended during the
expansion of an ancestor node gf . It would be redundant to extend V1 again, since

it was already included in the partial execution by an ancestey. of s

Search tree nodg:
selected-nodes(sy) = {S, E, A, J, K, L, B}
AtHome [15, 100]

3 ®
ANW1.Connect-To-Charger()
[5.201 )
50 "W @
®
Search tree nodg (during expansion, after extending fringe event C):
AtHome [15, 100] =

ANW1.Connect-To-Charger()

[5, 20] N N
d g0 W @

N
\ [1,5] [1, 5]

ANW1.Sensc-Fusion( ANW1.Upload-Fused-Data(cntl_center)

Figure 48: A cycle is formed at when search tredeng is expanded. The cycle, between the partial
execution of sand g, is shown in thick bold. Temporal consistency eaked on the current partial
execution, and it fails. Thus, expansion gissterminated and the node is pruned from thecheage.

Case 2 (Lines 13-15)g is a decision point signaling a choice between possible threads.
Extend-Non-Decision-Events stops extending the current thread whemselgoint is
reached and updates the fringe with the decision-point. For exalmplexpansion of the

root node sextends three threads, two of which end at decision points B and L.
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Case 3 (Lines 16-27): This case is applied when neither Case 1 nor Case 2 applies.

In Case 3g is extended to each of its targets that have not been visitedihesgeneral
depth-first search. If a target has been visited, then a dyate formed in the
corresponding partial execution. The cycle was formed duringexipansion of the
current nodes and not betweesand an ancestor node. For example, when the search tree
node s is first generated by its parent, it contains two decisiontpan its fringe, P and

C (Figure 48). If C is extended first, then it extends to E aldmg thread
C-F-G-H-N-U-E, marking each event as visited. Then P is extended and the
event U, which was marked visited, is reached (Figure 49). Apthig a cycle has been
formed during the expansion of a search tree ngdand a test for temporal consistency

is performed (Lines 25-26).

AtHome [15, 100]
©)

ANWI1.Refue-CellA()
0,15

ANW1.Connect-To-Charger() P 20

[5, 20]
5 ®—@7

[1,5] [1, 5]

ANW1.Sensa-Fusion( ANW1.Upload-Fused-Data(cntl_center)

Figure 49: Extend-Non-Decision-Events appliedstarsl the event U is reached by the threads fromd a
L.

A partial execution is complete if, when Extend-Non-Decision-Evisnapplied,
all threads extending from a fringe event reach the end evenitliguivcausing a
temporal inconsistency. If this is the case, then there are imatepoints in the fringe,
and the partial execution is considered a feasible execution.id lustected in the

Expand procedure (Figure 43, Lines 6-8).
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5.3.2 Branch

The second phase of TPNA* search, introduced in Section 5.2, createhitee nodes
from s. This is performed by the Branch procedure, Figure 50. The procedyins iy
creating sets of choices for each decision-point in the TPNefiofg (Lines 1-8). A set
contains the target events of a decision point. For example,Eaftend-Non-Decision-
Events is applied to the root node the fringe of g contains two decision points, B and
L. Thus, the sets created from B and L are {P, Q, M} and {C, Dpeetvely. Next, to
create all possible combinations of choices, the cross productfesnped on the sets,
Line 9. For each combination, a new search node, with pgrsntreated, Lines 11-20.
Finally, the Branch procedure returns the set of child nodes geddrgttheir parent

search tree nods,

procedure Branch ( Search Tree NodgSet of Decision pointdec) returns set of child nodes.

initialize sets of possible combinatioc@mbinations — [0
for each decision-poird; (I dec do
choices ~ {{t}| {t; O target( d) }
endfor
combinations — Set-Cross-Producthoices)
initialize set of search tree nodgsldren — [0
for each setset; 0 combinations do
current-cost — 0
search tree nodhild — Make-Search-Nodegset; )//initializes TPNfringe( child ) w/ eventsin cset
10.  for each target O child do //get the cost on arc from decision-point of target to target
11. current-cost — current-cost + cost( decision-point( ), t; )
12.  endfor
13.  Set-Parent-Nodethild, s)
14.  children — children O { child }
15. endfor
16. return children

©CoNoG~WNE

Figure 50: Pseudo-code for the Branch procedur&ghareates new child search nodes.

5.4 Computing the Estimated Cost of a Search Node

To define the optimal pre-planner as a forward heuristic seaectdewelop an evaluation
function for search tree nodes in order to guide TPNA* search. Urhent description of

TPNA* search excludes the activity costs, and thus, finds abfeaskecution. To find
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the optimal feasible execution, we introduce two measures of dustfirst, is the path
cost gé) for a search tree node The second is an admissible heuristic co@&), for a
each search tree node s. The sush @tdh(s), as in A* search, is the estimated cost of a

solution througts, and thus, is used as our evaluation function.

5.4.1 Computing the Path Cost g(s)

The path cost g, of a search tree node is the sum of the costs of each arcriratiEgra
of the search state. When a search tree saglérst created, it is initialized with the cost
of its parent,g(parent§)), (see Section 5.4.2). Whenis expanded by Extend-Non-
Decision-Events, the costs along the arcs of each thread bdimpes are summed
(Figure 47, Line 20) and added to its initial cost. For exampleadheal path cost of the
partial execution denoted by nodgisthe sum of each distinct arc, from the start event
S, along each thread ending at E. For example, assume thatdh# def cost for the
AtHome TPN (Figure 51) is 5 units (not including the arc from S to E). Thehg(Xs)
+c(V, W) +c(W, X) + c(X,V1) =190 + 5 + 10 + 5 = 210 units, whepe y) is the cost
on the arc from TPN eventto TPN evenly. If TPNA* only uses g as its cost function
then the search operates as a uniform cost search. That is, ntdiswised to guide the

search.

Figure 51: The partial execution denoted by seanmhe g The network contains a default arc cost of 5
units for all arcs without activity costs. The pathst for g(g) = 210 units.

5.4.2 Extracting the TPN Heuristic Cost

A uniform cost search will find the shortest path to all statemn optimal pre-planning
problem. To efficiently focus TPNA* search towards the optimateten, we develop
an admissible heuristic for a search tree node. The heuwstiota search tree node is

formed by computing a heuristlge) for all eventse in the set of TPN events. Then,
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given h(e) for all events in the fringe of search tree node s, take tkxeh(en over all

events iNTPNfringe(s). We refer to this search tree node heuristic as DP-max.

Summary of the Heuristic used in the Heuristic Search Planner (HSP)

To develop a heuristic cost for search tree nodes, we fisweo related work on
heuristic search plannendeuristic planners, such as FE] and HSP (Heuristic Search
Planner)[1], compute heuristics based on the encoding of the problem. HSP censider
two ways to compute the estimated cost of achieving a goajigea planning problem:
additive costs and max cosf8]. The additive heuristic cost of an eveatis

h(e) = Z[c(e,t)+h(t)] . The additive heuristic cost works well if the problem ensurat t

tCtargets(e)
sub-goals are independdai. For example, consider the parallel sub-network in Figure
52. Each thread extending from M contains independent sub-goals that a¢-4he end,
or goal state, N. To compute an admissible heuristic cost pdaraing problem with
independent sub-goal, the additive heuristic can be applied. Thef @atcuting M is at

least the sum of the costs of executing the commands on its parallel threads.

h(M) = h(a) +h(k) + h(i) + c(M, a) + c(M, k) + c(M, i)

Independent
sub-goals

Figure 52: Example of additive heuristic cost fqramallel sub-network, where each thread contasnswn
independent sub-goals. The heuristic cost for ethenevent S can be expressed as the sum of thistieeu
costs of its targetd)(a), h(k), andh(i), plus the costs from S to each of its targe{d4, a), c(M, k), and
c(M, i).

If the additive heuristic function is used to compute the heudestof event J in
the parallel sub-network in Figure 53, thé&(J) is inadmissible. The inadmissible
heuristic for J is caused by including the cost from the depersdéngoal | in each
heuristich(a), h(d), andn(p). We refer to this issue as double counting.

To address the issue of double countidg,suggests a max heuristic. The max

heuristic for an everg is h(e) = nax )[c(e,t)+h(t)]. For example, max heuristic for S
tOtargets(e
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in Figure 53, below, iB(J) = max[cost(J, a) k(a), cost(J, d) Hh(d), cost(J, p) H(p) ]. In
this case, the heuristic cost of S is admissible. However, #xeheuristic often severely
underestimates, and thus, is not very informative. For examphéa)if= 1000,h(d) =
999, andh(p) = 900, therh(J) = 1000. This estimate is significantly low, since all ttsea

from S must be executed.

Dependent
sub-goal

Figure 53: The additive heuristic applied to J lessim an admissible heuristic for J. The heurssfior a, d,
and p, each include the cost from their dependebtgeal |- K. The max heuristic does result in an
admissible heuristic for J, however, it is not mfiative.

To compute the heuristic cost of a set of TPN events, we exipbogttucture of
the TPN and apply the dynamic programming principle. As a reseltcam get an

improved heuristic cost of TPN events with dependent sub-goals.

Heuristic Cost for TPN Events Using the Dynamic Programming Principle

To develop a heuristic for TPNs, we note that a TPN is composexbb€itly defined
sub-networks. That is, the mapping of each RMPL combins¢gyence , parallel
andchoose , to a TPN sub-network, explicitly defines sub-goals, with & staent and
end event, in the TPN. For example, in the AtHome TPN (Figureh27g\tent B is the
start event of a decision sub-network, ending at the sub-goal N, amsdahteA is the
start event of a parallel sub-network, ending at the sub-goaiven@ TPN with explicit
sub-goals, we can define an exact heuristic omdlased TPN. A relaxed TPN is one in
which temporal constraints are not considered. With a relaxed #eNoptimal pre-
planning problem is reduced to a shortest path problem in the probkenssaae, where
the shortest path corresponds to a complete minimum cost exettuboigh the TPN
while ignoring time bounds. We compute the heuristic b{gtfor every TPN eveng.
We accomplish this by proceeding backwards from the end evemiplying the

dynamic programming principle in order to compute the shortest path €ach
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preceding evene to E, until the start S is reached. The algorithm Compute-TPN-

Heuristic is given in Figure 57.

Definition The heuristic cost of an evegt h(e), in a TPN is defined by one of two
eqguations:
1. The heuristic cost of a TPN evestthat is a decision point, as seen in Figure 54, is

defined as follows:
h(g)=_min [c(g,t)+h(t)] (Eadjion 3)

tOtargets(g )

.
.
-
= O .
-~ 7 Targetst O targets€))
\\ : .
N .
N
®

Figure 54: Example of a generalized decision sutixom.

An example of applying Equation 3 to a decision sub-network for th®rAe
TPN is as follows. The AtHome TPN contains three decision stibemks. The first one
starts at B and ends at N, the second starts at L and endsaaidLthe third starts at V
and ends at V1. Given a default arc cost of 5 units, the heuristiofcdstision point L,
for example, if(L) = min( c(L, P) +h(P), c(L, Q) +h(Q), c(L, M) +h(M) ) = min(40,
90, 50) = 40.

2. The heuristic cost of an evesthat is a non-decision point is defined as follows:

hg)=  Ylc(e.t)+h(t)] —[( |targets(e)| -1 x h(parallel-end(g))]  (Equation 4)

tCtargets(e; )

wheretargets(e) are the events that are at the tail of each out-ae; [dirgets(e)| is the
number of targets, anghrallel-end(e) is the corresponding event where the threads re-
converge (Figure 55).
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@
rallel-end

Figure 55: Example of a generalized parallel suivaek. The heuristic cost of a parallel start everis
the sum of each thread within the parallel sub-nétwplus the heuristic cost of the parallel end.

Equation 4 can be applied to parallel sub-networks and simple commeand a
TPN. Recall that a parallel sub-network is a point in the TPNevtigeads fork and re-
converge. For example, the AtHome TPN contains three panalielets. The first one
starts at event S and ends at event E, the second one staréa@teAds at U, and the
third parallel sub-net starts at D and ends at V1. The heudsst of event D, for
example, ih(D) = ¢(D, V1) + ¢(D, I) +h(V1) + h(l) - [ h(V1) ] =5 + 25 +15 + 46- 15

= 70, where the arcs that are not labeled with a cost have a default of 5 units.

start end

Figure 56: A simple command arc.

A simple command arc is defined by a start event that contalgsone out-arc

connected to its end event (Figure 56). Its heurlig&g is defined as follows:

h(e) =c(g, t) + h(t) Equation 4a)

For example, the event Y, in the AtHome TPN, has a heuristio€bgY) = c(Y,
Z) +h(Z) = 20 + 20 = 40. The heuristic cost of a simple command is a degenerate form of
Equation 4. The first term of Equation 4 occurs only once for the oget tafre. The last
term on the right-hand-side of Equation 4 is 0, because the number of targets is one.

The heuristic cost of all events in a TPN can be compatedori using the
dynamic programming (DP) principle. The TPN heuristic is adbilessbut approximate,
because it computes the cost of a relaxed TPN that ignorgs s@mporal constraints.
The procedure for computing the heuristic cost for all everdsTiRN is shown in Figure
57.
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procedure Compute-TPN-Heuristic ( TPMn, StartS, EndE ) returns heuristic cost for

all TPN events.

1. initialize liststack « [

2. initialize eventcurrent-event — E

3. h(current-event) — 0

4. visited(current-event, true )

5. estimatedgurrent-event ) — true

6. Push (current-event, stack )

7. whilestack # [0 do

8. current-event — Pop(stack )

9. if all targets(current-event ) are estimatethen

10. /Case 1

11. if decision-pointcurrent-event ) = truethen

12. h( current-event ) — min  [c(event,t) +h(t)]
tOtargets(event)

13. /ICase 2: Non-decision point subnetwork

14. else

15. if | out-arcsgurrent-event ) | > 1then //Case2a: Parallel sub-network

16. p-end — parallel-endgurrent-event )

17. for eacht; [ targets(current-event ) do

18. temp-cost — cost(current-event, t; ) + h(t;)

19. endfor

20. h( current-event ) — temp-cost — [( | targetsurrent-event ) |- 1) x h( p-end )]

21. ICase 2a. simple command

22. else

23. h( event) — cost(current-event, target ) + h( target )

24. for eachp; 00 predecessourrent-event ) do

25. if visited(p; ) = falsethen

26. visited(p;, true )

27. Pushgack, p; )

28. endfor

29. estimatedgurrent-event ) — true

30. e€se

31. Push-Back ( stack, current-event )

32. endwhile

33. return true

Figure 57: Pseudo-code to compute the heuristitfoogvents in a TPN. The predecesggrsf an event

g, is the set of events at the head of each incomindgromp; - e.

The problem of finding the heuristic cost from the end event E &aam TPN
event is similar to the single destination shortest path proldestribed in Chapter 4. In
this case, the algorithm to solve the single-destination shpd#s problem is applied to
an entire TPN and additional book-keeping is required in order to avoid doubléng
of costs in the TPN. The algorithm in Figure 57 uses depth-fisstiseand the dynamic
programming principle in order to walk backward through the TPN, from the end E to the

start S. During each iteration, if the heuristic for all tesg® current-event have been
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estimated, theh(current-event) is computed. Figure 58 shows the heuristic costs for the
events in the AtHome TPN (Figure 59).

h(E) =0 | h(K) =45 | h(D) =70
h(U) =5 | h@) =125 | h(H) =15
h(L1)=10 | h(N)=10 | h(G) =25
h(T) =15 | h(Vl) =15 | h(F) =30
h(P) =35 | h(X) = 20 | h(C) =50

h(R) =15 | h(W) =30 | h(B)=55

h(Q) =85 | h(Z) =20 | h(A)=185

h(O) =15 | h(Y) =40 | h(S) =190
h(M) =45 | h(V) =35

h(L) =40 | h(l) =40

Figure 58: The heuristics for the event in the AttéoTPN using the default cost of 5 units.

The cost computed above specifies the cost to go, startimy avant in a single
TPN thread. Our remaining step is to use this cost to comput®sheéo go of a search

tree node.

Figure 59: TPN for the AtHome strategy with alldts costs.

DP-Max: A Heuristic Cost for Search Tree Nodes

Note that a search tree hode may contain one or more decision ipaist$PNfringe.
The heuristic cost of the search tree node is the sum of thetieadsts of each of the

decision pointgl; in its fringe. However, this still can result in some double cagnBy
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definition of a TPN, all threads re-converge either at sub-goalat the end event E.
Thus, the heuristic cost for each decision point in the fringe mayde the cost of a
shared sub-goal. Figure 60 depicts a partial execution with degisintsd, andd; in its
fringe. If h(d) and h(l,) are summed, themp,), their shared sub-goal, would be counted

twice.

hid) |

h(dj)g
~©&—O~
@

Figure 60: Example of the fringe of a search shdtk decision points;cand ¢ Thread from the choices of
either decision point will re-converge at p1.

To avoid this remaining element of double counting, we can apply the max
heuristic in order to select the cost of the decision point Wwethighest cost, of those in
the fringe of a search node. We refer to the function used to cerifuheuristic cost of
a search node as DP-Max.

Our essential contribution is that the DP-Max estimate is mioslercthan that of
the HSP Max heuristic. All computation of the partial executienoted by a search tree
nodes, starting from the max decision point is exact. This is atre$uhe heuristich,
computed for all TPN events by dynamic programming.

In summary, the Compute-TPN-Heuristic procedure computebethestic cost
for each TPN event computed prior to the execution of TPNA*cheas a result, to
compute the estimated cost of search tree node, a constant table-bpmtagon, is

executed to find the heuristic value for each event during optimal pre-planning.
5.5 TPNA* Search and Properties

This section discusses the overall TPNA* search algorithm apdopserties. The search
is systematic, and therefore, each state, denoted by d pagaution, is visited at most
once. We argue that our formulation of the search space is conthbgtes, TPNA* is
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guaranteed to find the optimal solution if, and only if, a temporahysistent, complete

execution exists.

5.5.1 The Algorithm

The pseudo-code for the TPNA* search algorithm is shown in Figfurdhe algorithm
begins by creating a root nodg,sbased on the start event of the input TPN (Lines 3).
The estimated cost of,&, is computed andgs; is inserted into the priority queue, Open
(Lines 4-5). When the main loop, shown on Lines 6-18, is executed, thh searaodes
with the minimum cosf(n), are removed from Open and expanded in best-first order. As
each node,uss; iIs removed from Open, the Goal-Test is performed to tekeipartial
execution is complete. If the Goal-Test is satisfied, then thenapsolution has been
reached. Otherwise, the expand procedure is invoked (Line 11). If teemanodes
generated by applying the Expand procedure to a search tres, ilbee there exists no

consistent solution that extensisThus,s is pruned from the search tree, Line 18.

procedure TPNA* ( TPNtpn, Start Evens, End EvenE ) returnsan optimal solution that is
complete and consistent if, and only if, one exists.

1. Compute-Heuristicfpn )

2. Open- 0O

3. create root nodgqy « Make-Root(S o, S)

4. f( S’oot) - g(S'oot ) + h(S'oot )

5. Insert(Soo, Openf( st ) )

6. while Open# [0 do

7 Ses « Remove-Best( Open)

8 if Goal-Testues, tpn, E ) then

9. return Extract-Solution$ey )

10. édse

11. set of search tree nodise-nodes — Expand(Spey )
12. if tree-nodes # [0 then

13. for eachsy,jg O new-nodes do

14. Insert(Siia, Openf( S ) )

15. endfor

16. else

17. Prung Sy )

18. endwhile

19. return no solution

Figure 61: TPNA* is the driving procedure for thgtional pre-planning system.
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The Prune procedure removes a search tree adtat violates its temporal
constraints. If, after removing the parent of has no children, then the parent also is
pruned from the tree. This process continues walking up the treedtower root until
the search tree node with at least one sibling is pruned. In thst wame, the Prune

procedure will require walking up the search tree from the detgadsn the tree to the

root.

procedure Prune ( Search Tree Node Search Tresearch-tree)

1. search tree nodemp — s

2. while(temp)# NULL do

3. if root(temp ) = truethen

4. Deletegearch-tree, temp )

5. return

6. else

7. parent — parenttemp)

8. Remove-Childgarent, temp )

9. Deletegearch-tree, temp )

10. if parent has no childreithen

11. temp — parent

12. else

13. temp — NULL

14. endwhile

Figure 63: Pseudo-code to prune a search treefrmuethe search tree.

AtHome Example

The TPNA* search process for the AtHome strategy is illustrated uré-iggd. Each node
is denoted bys: iteration#: f(s) : g(s) : h(s)), where iteration# represents the iteration at
which the node was expanded. The search tree nodes that are not intlisedearch
tree were pruned from the search space. Notice that the size tee is much smaller
than the complete search tree in Figure 35. For example, the &wiCeresults in a
temporal inconsistency. Thus, whenastempts to generate child nodesss and g, the
search detects the temporal inconsistency an&,sand s are never added to the search
tree. Additionally, by using the admissible heuristic for a $etnee node, it is possible
for some states to not be explored. In this example, the heuristiedgtine search

directly to the optimal execution denoted lgyldowever, if § were inconsistent, TPNA*
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search would pruneg @and then expand the next best search tree node in Open. In the
worst case, the only consistent execution is the feasible execution withliesthigst.

(s;:1:150: 100 : 50)
{B.L E}

{(B.D) . (L.P} {(B.D) . (L.Q)}

{(B.D) , (L.M)}

(S2:2:200:190: 35)(s3: -:275:240: 35) (&4 : - : 235: 200 : 35)
V. E} {V. E} {V. E}

w.wy |
($:3:230:230:0)
{E}

Figure 64: Search process for TPNA* applied to AtHome control program. Each search tree node is
denoted by(s: iteration#: f(s) : g(s) : h(s)). The heuristic cost of $s max(h(B), h(L) ) = 50.

The TPNA* search algorithm is complete, consistent, and systerbe search
can be improved by using better techniques for using inconsistengesdgflicts) to
explore the search spafgl]. For example, all partial executions that contain choices
B C or V- Y result in a temporal inconsistency. Once this is first dete¢hen using
conflict-directed search technique, the portion of the search spaceecpruned that

contains partial executions with either of those choices.
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5.6 Summary

TPN

Compute Heurist

—
v
Create Root Noc Open Child nodes
(priority queue)
N~
Remove Be: [T Branct
Prune
No
Expanc Extend-Non-
Decision-Events

1 Output Solution }

This chapter described the optimal pre-planning process. The rganittah driving the

Figure 65: Flow chart for the optimal pre-plannprgcess.

process is a variant of A* applied to temporal plan networks, TR¢arch. We defined
a function to compute the admissible heuristic value for events PNaifl Section 5.2.
Then we formulated the search space and search tree with nodearasitebrin Section
5.3. Finally we presented the expansion procedure for generating ndbdessearch tree.

A flow chart of the optimal-pre planning process is shown in Figure 65.
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Chapter 6
Optimal Activity Planning and
Path Planning

In Chapter 5, we developed an optimal pre-planner that adopted anrah stategy to
find the least-cost complete and consistent execution of a TPNopEimeal pre-planning
problem was formulated as a TPN search problem with activitiests, and temporal
constraints. In this chapter, we extend optimal pre-planning probtesetisfy location
constraints on activities. To address this class of problemsxterdethe optimal pre-
planner, to include spatial reasoning, via a roadmap-based path planner.

Movement of an AV or ground vehicle is often constrained by the ‘eehicl
dynamics (e.g. turning radius). To address this, we exploit acylart effective
kinodynamic path planner, called Rapidly-exploring Random Trees (RRARRT is a
roadmap that explores the state space by randomly growing totardsstination. This
chapter introduces a globally optimal, unified activity planning andh gdénning
algorithm, called UAPP (Unified Activity and Path Planning). RFAinterleaves activity
and path planning by searching a hybrid graph, called a RoadmagRNVNPN) that
connects TPNs and RRTs. Search over a RMTPN allows UAPRdottie globally
optimal complete and consistent plan composed of activities and pathfcwée on
mission strategies developed for a single autonomous vehicletf@Ynavigates from

region to region in order to execute activities.
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6.1 Motivation

Chapters 3 and 5 described two of the three strategies, EntdmBuand AtHome,
which comprise the Search-Building mission described in Chapterthislchapter, we
focus on the third strategy, called Exit-Building. The Exit-Buildgtgategy requires the
autonomous vehicle (AV), ANW1, to deploy its team of tihglpbots, which are
equipped with two-way radios and minimal first-aid supplies. Thesedaployed in a
specific location, an office complex, where potential victims ayapped. ANWL1 first
deploys itshelpbots, and then recovers the chemical detecting roksbiEmbots, and
quickly scans their data for any extreme hazard. Finally, ANYit$ éhe office building
and communicates with the mission control center. The control progmamhd Exit-
Building strategy is shown in Figure 66, and its equivalent TPNeseptation is shown

in Figure 67.
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Exit-Building RMPL Control Program

1. (Exit-Building [0,150]

2 ( sequence

3 ;;Lower helpbots

4. ( choose

5. (( sequence

6 ( ANW1.0Open-Rear-Hatch(20) )

7 ( ANW1.Lower-Helpbots(30 chenbot s.location) [5, 20] )
8 ) (LaboratoryTwo) )

9. ( sequence

10. ( ANW1.0Open-Rear-Hatch(20) )

11. ( ANW1.Lower-Helpbots(45 HallwayC) )

12. )

13. ) ;;end choose

14, ;;Retrieve chembots and take pictures

15. ( paral | el

16. ( ANW1.Explore(50 LaboratoryTwo) [0, 10 1)
17. (( paral | el

18. ( sequence

19. ( ANW1.Retrieve-Chembots(40 chenbot s.location) [15, 20] )
20. ( ANW1.Scan-Chembot-Data(20) [10, 20] )

21. )

22. ( ANW1.Take-Pictures(10 hallwayB) [10, 30] )

23. ) [5, 50])

24, ) ;;end parallel

25. ;7 ANWL leaves building

26. ( choose

27. ( ANW1.Contact-Control-Center(50 Outsid eA))
28. (( sequence

29. ( ANW1.(HallwayA) [20, 30] )

30. ( ANW1.Contact-Control-Center(20 Ou tsideA) [25, 40])
31. ) [20, 40])

32. ( ANW1.Contact-Control-Center(70 Outsid eB))
33. ) ;;end choose

34, ) ;;end sequence

35. ) ;;end Exit-Building

Figure 66: Control program for the Exit-Buildingategy.

The Exit-Building program contains a number of activities thatcanstrained to
a specific location. For example, the activitpntact-Control-Center has the
location constraint OutsideA. This means that ANW1 must remainhén region
OutsideA throughout the entire duration of @entact-Control-Center activity.

The vehicle dynamics are important when executing a missiotegtraA
vehicle, such as a helicopter, has a high dimension state spacgetoltuiskly explore a
vehicles state space and find a collision-free path through thd aorRRT-based path

planner is used.
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Exit-Building [0, 150] ‘®

Retrieve-Chembots| Scar-Chemba-Data( Contac-Cntl-Ctr()

Ok DD

oc(chembots.location)

Lower-Helpboty()
Loc(chembots.location)
5, 20]

Oper-Rea-Hatch( ,’ Loc(oSL?tsideA)
’

1
’ Loc(ou15|deB)
_‘, Contac 8nt| Ctr()

[20, 40] :
20 3 25 .@b

. %0
Oper-Rea-Hatch(  Lower-Helpbot() Loc(LaboratoryTwo) Loc(hallwayA) LOC(UUISIdeA
Contac-Cntl-Ctr()

Take—Pictures(

Loc(hanayB)[5 50

O,

\ Loc(hallwayC)

\ [0, ] [0, ] Explore)
20 45

Figure 67: TPN representation of the Exit-Buildstgategy.

The main contributions of this chapter are threefold. The fitsieiglescription of
an extended TPN model, called a Roadmap TPN (RMTPN), which dR&¥s from its
events in order to satisfy location constraints. The second ferantdation of the search
space as a unified representation that consists of partiauteorec comprised of
activities, temporal constraints, and RRT paths. The third is @am®g&h to the TPNA*
algorithm, developed in Chapter 5, that resolves location constraintiyrigamically

updating partial executions with paths.

6.2 Overview

UAPP searches an RMTPN model to find the optimal, complete and consistentaxecuti
We describe the RMTPN model in terms of RRTs, but it can bergjerssl to any
roadmap-based path planning model, such as the probabilistic roa(RREY planner

[3] and the moving obstacles path planf&k]. We specify a number of assumptions in
order to simplify the combined activity and path planning framewanmk, then provide

suggestions for extending the UAPP algorithm.

6.2.1 Assumptions

We make the following three assumptions. The first is a controfrgarofpr the mission
may specify multiple threads of activities, such as commungatnd taking pictures;
however we impose the assumption that only one thread of activdrestrains the

location of the vehicle. This means that, given a set of pardatksds, all threads but one
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have the location constraint “ANYWHERE”. The second assumption we madRkat all
regions specified in the domain of locations are disjoint, exceldt WHRE". The third
assumption is if an activity requires the AV to be in region Bef@mple, and the AV is
currently in region A, then if a path from region A to region Eoisnd, we assume that,
the robot arrives in region B by the beginning of the activity, ranthins in region B for
the duration of the activity. This might require a helicopter to havepver to stop in
one place, or an airplane to fly in a holding pattern.

RRTs are probabilistically complete and incrementally exploeg space for a
given number of iterations (see Chapter 2). UAPP fails tefgadilocation constraint if

no collision-free path is found within a specified number of RRT iterations.

6.2.2 RMTPN Model

The Roadmap TPN (RMTPN) model is an extension to a temporal plawrkethat
grows RRTs in order to satisfy location constraints. Reball & location constraint is
attached to a TPN arc and is used to either require an adivégt of activities to be
performed in a specific spatial region, or to assert a waypuatthe AV (Autonomous
Vehicle) must navigate to. The RMTPN model supports dynamic pathtespdbey
growing RRTs in order to achieve location constraints (Figure 68).

Videc-Surveillance(
/C>[10, 1

Loc(RegionX)

Figure 68: High-level example of a RMTPN growingRRT from RegionX to RegionP.

6.2.3 UAPP Overview

By unifying activity planning with path planning, activities thate anot
constrained to a specific region may be executed in paralldk Wig AV is navigating.
This is a result of dynamically updating the RMPTPN whemaatlon constraint is
satisfied. For example, in Figure 65tivity2 IS not constrained to a specific region,
but must be executed aftéwctivityl and beforeActivity3 . In this case, it is
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possible to navigate from RegionA to RegionW while performiuivity2 in
parallel. Likewise, Activity5 can occur in parallel to Acti8t since it poses no

additional location constraint.

Patt-Strateg:
Activity4()
! L ionZ
Activity1() Activity2() ACtity30 o oy S oc(Regionz)
, . 120, 30] . ’

Loc(RegionA) Loc(RegionW) %
o [0, o] [0, o]
Activity5() ¥
[20, 30] @
@, Loc(RegionM)  Activity4()

Figure 69: Example RMTPN representation of a cdmirogram that has a total ordering on its actgiti
We refer to this strategy as Path-Strategy

Recall that the motivation for the RMTPN is the introduction ofatmn
constraints on all TPN activities. If a location constraimas explicitly specified, then
the default ANYWHERE is assumed. Each location constraint isfisdt by finding a
path for the AV that satisfies the constraint within the time bowmdthe activity. This

process is detailed in Section 6.4.

6.3 UAPP Search Space For mulation

This section develops the unified TPN and path planning space that &piRiPes. The
search space has two layers. The first is a layer cortarectivities in the initial TPN,
while the second layer denotes where path planning will be donedRHQ) These two

layers are inherent to a RMTPN model.
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TPN Space E )__:(C ? W

Roadmap Path
Planning Space.-’

Figure 70: Unified search spaedllustrates the two spaces in which the unifiednpler searches. The
circles points in the TPN represent regions whieeeAV will navigate to.

The input to the UAPP algorithm is a TPN representation of aaigotogram
and an environment model. The TPN is treated as an RMTPN, allawimgrow RRTs
and dynamically update its representation with paths. The patheplaperates on the
configuration space (or state space) model of the world. The outpuABP is the
optimal execution, moving through the TPN and path planning layers. Thaabpt
execution must not violate any of its temporal constraints, ahafaits location
constraints must be satisfied. UAPP generalizes the TPNAtdding in a procedure to

satisfy location constraints.

6.3.1 Partial Execution

Recall, from Chapter 5, that the search space of an optimplgeing problem consists
of the prefixes of all complete executions in a TPN. LikewiseRMTPN search space
consists of the prefixes of all complete executions in an RMTRégse prefixes are,
again, referred to as partial executions. There are two eleroer@sRMTPN partial
execution. First, the RMTPN execution contains a set of contighoesds that originate
at the start event S and have not been fully expanded to the end e@stoRd, an
RMTPN partial execution contains a single additional thread, whiaehpath. A feasible
path connects all locations in the partial execution, within thepdesh constraints,
specified in the partial execution’s corresponding STN. An example ofial gacution

of the Path-Strategy (Figure 69) is given in Figure 71.
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Activityl() Activity2() Activity3()

[20, 30] ;L15~ 3

_,,Ei)c(RegionW)
Activity5()

9 [20, 30]

©

Loc(RegionM)

\

Region/

Regionz Region\

Figure 71: Example of a RMTPN partial executionhadgtpath from RegionA to RegionW to RegionM.

A RMTPN patrtial execution is compactly encoded by its teainévents, choices,
and path connecting regions. The formal mapping of a RMTPN paxgaLgon to its
encoding is defined by the tugleinge, choices, RRT-path) where:

» fringe: is a set containing terminal events in the partial exec(ésmescribed in
Chapter 5).

» choices: is a set containing each choice in the partial execution &siloed in
Chapter 5).

* RRT-path: is a path between activity regions that does not violateetngoral
constraints. The RRT-path can be traced from the current RRT noklédothe
initial AV state by following the parent RRT nodes on the path.

The encoding for the partial execution shown in Figure #{Eism}, {g - m}, RRT-

path(rrt-node(RegionM)).

A complete execution of an RMTPN is a complete execution ¢wrabe TPN
layer, which satisfies all of the location constraints of thecetton, and a continuous
roadmap path, through the path planning layer, to each region specifieskyence of

location constraints.

6.3.2 Search Tree
Recall that a search tree is constructed by TPNA* searchpf€r 5). A search

tree for an optimal pre-planning problem specified by a RMTi®NMomprised, once
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again, of nodes and branches. An example search tree for thetiRaédignSis shown in
Figure 72. Initially, the root of the search tree denotes @aparecution encoded &S,
{}, initial-AV-location). A search tree node, is encoded by the tupléarent(n),
TPNfringe(n), location(n)), whereparent(n) and TPNfringe(n) are defined the same as in
Chapter 5. For a given search tree nodecation(n) is the current RRT node in the path
planning layer. For exampléocation(ss) in Figure 72 is rrt-node(RegionZ). Finally,
branches in the search tree denote a specific set of choideg isearch space, as
described in Chapter 5.

The RRT path containing all regions of a partial execution derwteal search
tree noden can be obtained by following the path frdotation(n) backwards to the
initial state of the AV.

(s, rrt-node(RegionW))
{a. E}

{<(g, m)} {(g, h)}

(S, rrt-node(RegionM)) (s3, rrt-node(Regionz))
{E} {E}

Figure 72: Search tree Path-Strategy in Figure 69.

Node Expansion and Goal Test

As described in Chapter 5, the TPN fringe events of a search tree node sicngexnts
in the TPN layer, and an RRT node in the path planning layer. Tdiatepoints of a
search tree node are used to generate new child nodes. For esxEPNStinge(s;) is
comprised of the two events g and E. Event g is a decision point, anddhesch
choice from g, a new child node is generated. In this case dnertwo choices-gm
and g- h, which are denoted as search tree noglaads in Figure 72.

When a search tree nodes expanded to its first location constraint, locatmn(
the search tree node looks-lgeation(parentf))) and plans a path from the RRT node
returned by that procedure to the locattonfFor example, when the search tree ngde s
is expanded a location constraint, Loc(RegionM) is satisfied andotagion(s,) is

updated to rrt-node(RegionM). This is illustrated in Figure 73 and FigdreThe
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additional TPN events and arcs are inserted when location consaeensstisfied (see
Section 6.4).

€ ®
(s1 = (s, {m}, (RegionW)
rrt-node(RegionW)
{0, E}) Activity3
0 iop\) ,
(0.1 15, 3 AN
‘@
{<g, m>} Apply-Controlsu, t)
pply-Controlsu, ,
[Ib, ub] - ‘ ’
(S, {E}) At(RegionA) At(RegionW)
' RegiorM L 4 “

RegionA

Regionz RegionW\

Figure 73: Example of an RMTPN partial executiontfe search tree nodg(Figure 72) before satisfying
location constraint Loc(RegionM) during expansidihe corresponding search tree is shown on the left,
and the partial execution is shown on the top right

$=(%, {m}, (RegiorW, Regionh))

Activity1()

Activity2()

(s, rrt-node(RegionW) Activitys
{a, E}) [0, ]

Applﬁk—JF:Lﬁ)Tlrolsu, t)':,-

Apply-Controlsu, t)
{{g. m)} k@ N ey W -
At(RegionA) At(RegionW) At(RegionM)

(S, rrt-node(RegionM), 3 RegiorM [ 4 “

{E} RegionA -

Regionz Region\

Figure 74: Example of partial execution for therskatree node,s(Figure 72) after satisfying location
constraint Loc(RegionM) during expansion.

The UAPP node expansion procedure is detailed in Section 6.4. The procedure
extends the expansion procedure described in Chapter 5 by growingiiRBRifempt to
satisfy location constraints of a search tree nodé the location constraint is satisfied,
then the RRT node denoting the goal location, rrt-goal, is recordbdhe search tree
node, and locationf = rrt-goal.

The UAPP expansion procedure terminates if a search treesnsdeemoved
from the priority queue, Open, which satisfies the Goal-Test. Tdad-Test verifies that
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the RMTPN patrtial execution denoted $ys complete. That is, the corresponding TPN
partial execution is consistent and complete, andntains a collision-free path through
the path planning space, which connect all regions in the partial execution densted by

We refer to the definitions outlined in Chapter 5 feasible execution, and
optimal execution to describe a feasible and optimal RMTPN execution. A feasibl
RMTPN execution is a partial execution through the TPN andpdatining space that is
consistent and complete and satisfies the Goal-Test. An optimalPRMexecution is
feasible execution that minimizes the evaluation funcfioif no feasible execution
exists, then either one of two cases has occurred. The fihsttihere exists no complete
consistent execution in the corresponding TPN. The second is thhin wie given
number of iterations to grow an RRT, a location constraint was nsfiesét and thus the
algorithm terminated.

6.4 Expansion and Satisfying Location Constraints

Recall from Chapter 5 that the TPNA* Expand procedure is composésao phases.
The first phase, Phase One (Figure 47), is to extend threads &dmeegent in the
TPNfringe(s) of a search tree node until, along each thread, either a decision point is
reached or the end event, E, is reached. If, while extending threadsy more threads
re-converge, then temporal consistency is tested. The second piese, TR0, involves
generating new child search tree nodes, and is accomplished Byatheh procedure
(Figure 50).

The UAPP expansion procedure extends the TPNA* expansion procedure by
adding one more step to Phase One. This step grows the RRTs frimratian(n), of a
search tree node, in an attempt to satisfy location constraintslotfation(n) is empty
then the RRT grows from thkocation(parent(n)). The procedure to satisfy location
constraints is called Satisfy-Location-Constraint and is giwverFigure 75. More
specifically, as a thread of search tree nsde extended, if an activity with a location
constraint is extended, then the Satisfy-Location-Constraint proceslumgoked. The
procedure grows an RRT for a specified number of iterations frorot¢hion(s) to the

region specified in the location constraint, referred to as therggian (Lines 4). This is
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illustrated in Figure 76, where the thread is extendeAdivity3 , which has the

location constraint Loc(RegionW).

procedur e Satisfy-Location-Constraint ( Search Tree Ngdeath Plannerrt_pp
Location Constraintoccon )

returnstrue if location constraint is satisfied, othersvfalse.

1. initialize RRT nodestart

2. dart ~ location(s)

3. create RRT nodgoal —~ Make-RRT-Node( get-regiot¢ccon ) )

4. setroadmap-path — Grow-RRT(start, goal )

5. if pathfound{oadmap-path ) then

6 initializeend-at-assertion — end-event( most-recent-At-assertiar)()

7 create navigatiomavactivity

8 set-commandiavactivity, Apply-Controls )

9. set-parameters@vactivity, control-inputs¢oadmap-path ) )

10. [Ib, ub] ~ get-time-bounds(oadmap-path )

11. set-temporal-constaintsévactivity, [Ib, ub] )

12. insert-arcend-at-assertion, navactivity, [0, 0] )

13. create At-Assertioat-region

14.  set-temporal-constraingt-region, [0,+INF] )

15. insert-arc( end-evem@vactivity ), start-eventét-region), [0, 0])

16. insert-arc( start-everdf-region ), start-event{occon ), [0,+INF] )

17. insert-arc( end-everligccon ), end-eventét-region ), [0,+INF] )

18.  if Not( Temporally-Consistent( distance-grapi() then

19. return false

20. dse

21. location(s)~ ( rrt-goal(roadmap-path ) )
22. return true

23. dse

24. return false

Figure 75: Procedure to attempt to satisfy locationstraints, during Phase One.

Activity2() Activity3

Activity1()

At(RegionA)

Apply-Controlsu, t
\ pp y[lb‘ s )
Reglonﬁ

Region:z ReglonV\

ReglmM ‘ ]

Figure 76: Attempting to satisfy the location coasit Loc(ReglonM) by growing an RRT from the cunte
region, RegionW.
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Inserting TPN Arcs for Temporal Consistency

Planning a path from region to region adds more time to the RMJd?t\al execution.
Thus, when a path is found, we insert a set of arcs and a navigatigity in the
corresponding TPN, with specific time bounds. Primarily, we wartest if the time
needed to navigate along the path does not induce a temporal inconsistency.

A location constraint is satisfied if, and only if, the path planmgurns a
collision-free path from the AV’s current position to the specifiechtion within a
specified number of iterations. In this case, a navigation actihiy abstracts the RRT
path, is added to the partial execution (Lines 7-11). We use an $&grtgon which
means the AV is At the location for the duration of the activity. &ample, in Figure
77 the Apply-Controls2 , shown on arc p5p6, is inserted from the previous At
assertion, At(RegionA). The temporal bound onAlpply-Controls2 activity is the
minimum and maximum time it takes to get from RegionA to RegionW.

In addition to the navigation activity, an At assertion is added that bekisthe
duration of the location constraint (Lines 13-17). This is a resulingérting two
temporal constraints. The first constraint is on the arc fromsthet event of the At
assertion to the start event of the location constraint. This @jigen a temporal bound
of [0, +INF]. The second, is an arc from the end of the location reamisto the end of
the At assertion, also with a [0,+INF] temporal bound. The addition cketlaecs is
illustrated in Figure 77 with arcs p/q and arc ¥ p8. Once the navigation activity and
the At assertion are inserted into the partial execution; thieathe partial execution
converge. Thus, a test for temporal consistency is performed (L®)e3he test verifies
whether or not the path can be followed by the AV within the temporadtraints of the
partial execution. The minimum and maximum time bounds of the patboamputed

based on the AV’s minimum and maximum velocities.
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Apply-Controls1u
pp[lb, ub] )

®3

Al(rrt-qi)de(RegionA)) A;(frt—node(RegionW))

Regiov @ s
Region/

Region: Region\\

Figure 77: After the location constraint Loc(Regighis satisfied.

There are two cases in which the Satisfy-Location-Constraineg@uoe returns
failure. The first case occurs when a collision-free pattihéogoal region is not found
within the given number of RRT iterations. The second case occursanwlision-free
path is found, but the amount of time to navigate does not fit withirethpdral bounds
of the partial execution. In this case, the RRT continues explantijthe maximum
number of iterations is reached. If the maximum number of it&rsiis reached and no
path is found, or if the temporal bounds of the path cause a temporalisteog then
the RMTPN partial execution is inconsistent (Figure 77, Line 19 and Line 24).

If the Extend-Non-Decision-Events procedure succeeds, then the Branch
procedure is invoked. Recall that the Branch procedure, as describdthpteC5, is
responsible for generating new child nodes from a pace@hild nodes are generated for

each possible set of choices between decision points in the fripge of

Converting an RMTPN Path to a Sequence of Activities

As stated, an RMPTN grows RRTs in order to achieve locatwstaints. A path
generated by an RRT path planner can be converted into a sequiencevities, as
shown in Figure 78. This is done by creating an actiipply-Controls , Which is
parameterized by the requisite control inputs to get from staséate in the RRT path.
Once a complete execution is found, the navigation activities inghutet) the Satisfy-
Location-Constraint procedure can be removed and replaced with a cegh@pply-
Controls commands for each RRT node pair.
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RRT Patf
S

Siv1
\

Activity:
Apply-Controls ( control inputs ) [Ib, ub]

Apply-Controls( {} )

Figure 78: Example of mapping from a path sequemitie nodes and edges to a sequence of activities.
Each activity refers to the action of navigatingttmcation by applying the control inputs u foe thuration
of the activity.

An example of a complete RMTPN execution with the control acteoskown in

Figure 79.

Activity4()

®

At(RegionA) At(RegionW) At(RegionM)

Region# pply-Controlsu, t) -

Region: Region\\

Figure 79: Example of a complete RMTPN execution.

6.5 Discussion

In summary, we developed a solution to satisfy location constfaint®ntrol programs
based on the assumptions presented in Section 6.2.1. We use the RMTPNanabdel

apply the UAPP algorithm in order to satisfy location consainta given partial
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execution. Given this solution, we are able to unify activity planaimg) path planning
by searching over their combined layers, in order to find the djobptimal plan. The
UAPP algorithm can use the cost of the RRT paths, found while expamdegrch tree
node, with the cost of the activities of the search tree nodealér tw get a global cost.
Moreover, given a roadmap based path planner with an optimal admissib#titiesuch

as a visibility graph, the UAPP algorithm can use the heuristiorder to partially
expand paths of a search tree node to get a better estimateflassiution through that
node.

The process of satisfying location constraints can be gerestatz control
programs with multiple threads by employing the standard thesatution techniques as
described in39][28]. These techniques are used to place an ordering on two intervals
that assert two different locations. We describe this further in Chapter 7.
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Chapter 7

Performance and Discussion

This chapter describes the implementation and experimental resuhe optimal pre-
planner and the unified optimal activity and path planning system P)AWe

demonstrate both capabilities on a suite of randomly RMPL contrgtaro Then give a
discussion of the results and suggestions for future work. Finadlycomclude with a

summary of the thesis contributions.
7.1 Implementation

Both the optimal pre-planner and unified activity and path planning R)Aklstem were
implemented in C++ on a Windows based system using the gcc compitandom
RMPL generator, created to empirically validate the systgas also implemented in

C++.

7.2 Empirical Validation

We first analyze the performance of the optimal pre-plannex set of random RMPL
control programs. We use a random RMPL generator to creatseslaf problems that
are parameterized by the number of decision points, the number ofscpeicdecision
point, the number of parallel sub-networks, and the solution depth. We dibmuss
performance of optimal pre-planning using the uniform cost and BR-Muristic to
guide the search. Finally we conclude with preliminary resultseotUAPP applied to 10
RMPL control programs with increasing number of location constraints.
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7.2.1 Analysis of TPNA* Search with Feasible, Unifecost, and DP-Max

We begin our analysis of the optimal pre-planner with a genemaparison of the three
search strategies: feasible, uniform-cost, and DP-Max on @ $aage space. Recall that
the feasible search strategy introducefBB®l], implements a modified network search in
order to find a feasible execution through the TPN. When the sesaches a decision
point, it immediately makes an arbitrary choice, and proceeds fnivesugh the TPN,
until either a temporal inconsistency is detected, or a feasdution is reached. If the
feasible search detects a temporal inconsistency, it backti@ctss last decision point
and selects a different choice.

depthd
(solution dept)

depth 1 depth 2

Figure 80: Example of type of problem instance yred.

We compare the trade-off of finding a feasible solution velisalsny an optimal
solution in a large state space. The of problems used to companetbearch strategies
involved a sequence of choices, with varying depth, as shown in BQuighe number
of branches per decision point was set to 2, and the solution depth feorgeld10. We
allotted each search algorithm the same maximum amount of Gnsolve all 10
problems. Note that random problems of this type will not illustthé effectiveness of
the DP-Max heuristic. This is due to the fact that there is oméyactivity per thread in a
decision sub-network. As a result the uniform cost and DP-max hewait perform
comparable to each other.

Table 1: General analysis of the three searchesfies.

Search strategy Avg. Time to solve
Feasible 47,869us
Uniform-cost 54,972us
DP-Max 51,930us
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In this experiment, the feasible search only slightly out-perfortheduniform
cost and DP-Max searches, as was expected. Table 1 shows rhgeas@mputational
time for each search strategy to solve 10 problems. The grapiguie B1 and Figure
82 illustrate the computational time to solve optimal pre-planniraplepms with a
sequence of decision sub-networks. The graph implies that the steatdygies are
comparable in the amount of time to compute either a feasiblaosolut an optimal
solution for problems with less than 6 decision points in a sequ€hedeasible search
strategy found a solution to the problem with a depth of 6 fairly quidkle hypothesis

that the feasible search “got lucky” with the set of arbitrary choiceade.

% 10° Graph of feasible, uniform-cost, and DP-mex searches.
4.3 | 1 1

= uniform&Sa
i femsibleSG |
4- - dpmaxS0o )
34
3

25— -

time in microseconds (Us)

1 1 = _ i} 1
i 2 3 4 5 [ 7 ] E] 10
Murnber of sequences of decision-points (solution depth)

Figure 81: Plot of the computation time of the fbles unified-cost, and DP-max search strategies on
RMPL control programs with a sequence of choicesasolution depth from 1-10.
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Graph of feasible, uniformn-cost, and DP-mex searches. (semilog)
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time in microseconds ius)

o = - L 1 ‘- I
1 2 3 4 5 & 7 i) k) 10
Murnher of sequences of decision-points (solution depth)

Figure 82: Semi-log plot of the graph in Figure 81.

We used this preliminary data to develop the experiments de$arib®ection
7.2.2 and Section 7.2.3. Note that, to conclude which search strategy peHernest in
practice, 10 random problem instances is insufficient. More asatgsi be performed
using a bank of random examples per solution depth, and by analyzirayedhsge

performance of each search strategy overall.

7.2.2 Analysis of TPNA* Search on Class A Problems

This section presents a performance analysis of the optimadlgoreer on problems
without location constraints. We compare the results of optimal prexplg with the

DP-Max heuristic to pre-planning with a uniform-cost search, thatoptimal pre-

planning with only activity costs. For the types of problems in ¢lass, we expect the
search with DP-Max to perform comparably to the search witfomicost search. In
Section 7.2.3 we show a class of problems for with the DP-Max heunigperforms the

uniform-cost search.

To analyze the performance of the optimal pre-planner on a large state space, a se
of 100 problems, encoded as RMPL control programs, was generated. The problems were
composed of aequence of choose expressions with a varied number of choices and
solution depths, as shown in Figure 80. To simulate a temporal incongigsteand PN,

threads within eaclthoose were randomly selected to be made either temporally
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consistent or inconsistent. This is done by setting the temporal botiadsread(s) to be
inconsistent. That is, the lower bound time is greater than the upper bound time.
We designed two trials, where each trial referred to the nuwibehoices per
decision point, which corresponds to the branching factor of each proBletrial
consisted of problems with = 2, or 3 wheré is the number of branches. We set the
branching factor range based on the results in SectionA2gtoblem instance was
randomly created based on the following parameters:
* Depth of solution ranged from 2 to 6 decision sub-networks within a problem.
* The cost was randomly generated ranging from 10 to 100.
* The maximum number of temporally inconsistent branches within sidiecub-
network ranged from 1 to-1.
The results are shown in Table 1 and Table 2.
In each trial, we analyze the maximum number of searcmtees in the priority
gueue, Open, for each problem instance. We also show the average otimbgueue
operations per data set, where an enqueue operation is the prboes=ting a search

tree node into Open. Finally, the average time to solve the probleamgastfor each
trial is given.

Table 2 highlights the performance of TPNA* applying a feasinéprm-cost,
and DP-Max search strategy on the randomly generated classbiééms. We provide
the range of values for the maximum number of search tree nod@pen problem
instance, and the range of enqueue operations per problem instance.

Table 2: Analysis of uniform-cost and DP-Max
search on 100 problem instances with a branching

factor of 2.

Uniform DP-Max
Avg. Time to solve 1,070.3 us 1,090.7us
Avg. of the Maximum 17.1 17.1
Number of Nodes in Open
Avg. Number of Enqueue | 44.4 44.4
Operations
Minimum(of the Maximum | 4 4
Number of Nodes in Open)
Maximum(of the Maximum | 49 49
Number of Nodes in Open)
Minimum(Number of 8 8
Enqueue Operations)
Maximum(Number of 128 128
Enqueue Operations
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As expected, the DP-Max heuristic proved to be uninformative whemgdivis
class of problems. Note that this class of problems, which is coohpdsesequence of
choose expressions, demonstrates the worst case for temporal coogisteecking.
That is, a partial execution consisted of solely one thread. Comébgu inconsistent

partial execution was not detected until the thread re-converged at then@ileMent E.

Table 3: Analysis of uniform-cost and DP-Max on
100 problem instances with a branching factor of 3.

Uniform DP-Max
Avg. Time to solve 12,500us 12,741us
Avg. of the Maximum 120 120
Number of Nodes in Open
Avg. Number of Enqueue | 265 265
Operations
Minimum(of the Maximum | Q 9
Number of Nodes in Open)
Maximum(of the Maximum | 530 530
Number of Nodes in Open)
Minimum(Number of 14 14
Enqueue Operations)
Maximum(Number of 1,105 1,105
Enqueue Operations

In general, any of the two optimal search strategies wouléfibegreatly by
extracting conflicts (inconsistent choices) from the segoelses This can be done with a
Conflict-directed searcf@1] [33]. We are currently characterizing the class of problems

for which the DP-Max heuristic outperforms the uniform-cost search.

7.2.3 Analysis of UAPP

We present preliminary data of the UAPP algorithm. We focusientirne to compute a

combined activity and path plan for 10 RMPL control programs with areastg
number of locations.

Table 4: Analysis of UAPP on ACLC RMPL control

programs.
Timeto Number of | Number of | Number of | Number of
Solve(p.s) locations Sequence Choose parallel

831 3 1 1 0
370 4 2 1 0
7,300 4 3 1 0
610 7 3 2 0
5,337 8 3 2 1
270 9 3 2 2
3,465 12 3 3 2
9,463 13 4 3 2
14,971 14 5 3 2
7,470 15 5 3 3
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To gain an insight on the amount of time to compute a combined acindtpath
solution in a simple world, we created an environment with dimensions 100'’x100’ and no
obstacles. The robot dimensions were estimated with a sphere @ dadirThe UAPP
algorithm is dominated by the time to grow RRTSs. This is toxipeeed since the search
space of the optimal pre-planning problem has increased. A numbeorefanalyses
need to be performed in order to completely characterize the WAdriithm. For
example, a comparative analysis of UAPP using various RRT ptmarend UAPP
using other roadmap based path planners would provide greater insighthe

computational and memory costs of unifying activity planning and path planning.

7.3 FutureWork

This section gives suggestions for future work. We focus on threa arabs: 1)
improving heuristic costs of search tree nodes, 2) solving locatiwstraints on multiple
threads within a control program, and 3) employing an optimal menoanyded search

strategy to improve space efficiency.

7.3.1 Improving Heuristic Costs for Search Tree é&od

An issue for computing an accurate admissible cost is that deaechodes may contain
more than one TPN event in their fringe. Threads corresponding ltoegaat may re-
converge at a sub-goal before the end event E. In this casenthef the heuristic costs
of the TPN events in the fringe, computed by the dynamic prognagnprinciple, will
double count the cost of their common sub-goal. Without combined knowledge of where
the threads containing these TPN events converge, the heuristit agstarch tree node
can become inadmissible, while a max heuristic is less inforealhis can be
addressed, by performing a depth first search from eacheoTPN fringe events, in
order to obtain the point where the threads converge. This only requimesst an O(E)
forward search, where E is the number of edges, each timeuhsticecost of a search
tree node is computed.
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7.3.2 Extending UAPP to Multi-Threaded Control Reogs

In a single AV strategy, in order to plan paths from regioretpon, the UAPP must
determine the order in which the regions are visited. If two lmcationstraints are
asserted over two intervals of time that overlap, then the two aoristpose a threat to
each other, and are called conflicts. For example, threads in lelpsub-network are
executed concurrently. If, however, two threads of a parallel sulBrietvave activities
that are to be executed in different regions, then these mdigdnnot be executed at the
same time. For example, consider the parallel sub-network f@&xibduilding program
(Figure 83). The parallel sub-network contains location constrairgaam of its threads.
Thread M~N-O-P-R-N - M has the location constraint Lat{embots.location).
Thread M~N-S- TN - M’ has the location constraint Loc(HallwayB). Finally, the
thread M-U-V - M’ has the location constraint Loc(LaboratoryTwo). The UAPP
algorithm must be able to determine the order in which each winegpecified by the

location constraints, are visited.

Retrieve-Chembotsi Scar-Chembc-Data(
10, 20

40
oc(chembots.location)

Take-Pictures(

50
Loc(LaboratoryTwo)

Figure 83: Snapshot of the parallel sub-networktha Exit-Building TPN (Figure 67). The location
constraints within a parallel sub-network must haweorder that specifies the order in which regiares
visited.

To determine the order in which each region is visited and guardrgeéwo
activities constrained to different locations are not assened the same time interval,
we apply the standard threat resolution techniques describ8Ji39]. The UAPP
algorithm approaches threat resolution into two steps: 1) Cométtction and 2)
Resolution. Conflict detection requires determining the feasible tanges over which
the activities in the partial execution can be executed, and theedaes interval to
determine whether or not, more than one location constraint is aseeeean interval.
If a conflict has been detected, then UAPP attempts to resolve the confhepdsing an

ordering forcing one conflict before the other.
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Intervals of activities on one thread of a parallel sub-network ovarlap with
intervals of activities on another thread within the same sub-netwar&ation
constraints within a parallel sub-network may also overlap, and tlarssidered
incompatible. This would require the AV to be in two regions at the same tivheh is
not possible. We refer to this incompatibility as a conflictconflict, as described in
[39], occurs if two constraints within the same interval agkernegation of each other.
For example, given a conditidd, if C andNot(C) are asserted over the same interval
then they conflict. A conditiol€, is analogous to a location constraint. For example, if
two location constraints are asserted over the same time inthewathe two constraints
conflict.

To detect location constraints that conflict within a given paet@cution, we
first determine when two intervals overlap. To detect when twoviateroverlap we
computing the feasible time ranges for each event in thalpaxecution, as described in
[39]. A feasible time range of an event is given by the upper bawhdh& lower bound
times for the event to occur. To compute the feasible time rahgeents in partial
execution, we use the distance graph encoding of the partial éxeclitie upper bound
time range for each event is given by the shortest path didiameghe start event S to
each even{39]. The lower bound time range for each event is given by thetinega
shortest path distance of an event to the start event S.

Once the feasible time ranges for each event in the pargalgan have been
computed, then overlapping intervals with location constraint conflictde detected. If
a conflict is detected, then we use the threat resolution technigogbeel in[39]. This
technique involves applying the standard promotion/demotion techjf2§Liby inserting
a TPN arc with a non-zero lower bound from the end of one conflict tstére of
another. Inserting this arc imposes an ordering on which region,fisdeai the
conflicting location constraints, will be visited first. Insertitigs arc may result in a
temporal inconsistency. Thus, if both promotion and demotion result in potain
inconsistency, then the conflict is unrecoverable, and the partialtexeds invalid.
Otherwise, if imposing an ordering on conflicts succeeds therawgrow an RRT to in

attempt to resolve the location constraints, as described in the previous section.
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7.3.3 Improving Space Efficiency

Best-first search, operates similar to breadth-first searc that space consumption
grows exponentially in the depth of the search. A memory-bounded opi@amasearch
can compensate for the tendency of A*-based algorithms to use grcggace. Thus, a
search strategy such as TPNA* search may not be suitabterfain AVs. This is of
particular importance for mobile robots, given their limited conmgutesources. Initial
versions of this type of search strategy were presentgd end[29]. These memory-
bounded searches are guaranteed to find the optimal plan that canebevsthin their
allocated memory. They do this by partially expanding search reodkegruning high-
cost nodes from the explicit memory, while backing up heuristimates along partial
paths in the search tree. The most recent version of theseghagorZhou and Hansen’s
SMAG*-propagate and SMAG*-reopdd 3] improve speed by accounting for heuristic
inconsistencies that occur during the search. A memory-bounded sé&atelgyscan
adapt the SMAG* optimal search algorithm and apply it to find thenapEexecution in

an RMTPN within a specified amount of memory.

7.4 Summary

There are three main research contributions presented in this. thés first is a
language, the ACLC (activity cost and location constraint) subs&MPL, used to
specify mission strategies for autonomous vehicles. The missategés are specified
in a control program. The language supports activities witts @l location constraints.
Location constraints are specified alongside an activity. Theytragm&an autonomous
vehicle (AV) to a specific spatial region throughout the duratiorihef activity. To
resolve location constraints, an environment model is described. Therenemt model
contains a description of the autonomous vehicle used in the missidheamarid in
which it will navigate. In addition to location constraints, the AC&ubset of RMPL
allows the mission designer to specify the estimated costeauéng an activity. Given
the ACLC specification for mission strategies, a control progimmmapped in to a

compact graphical representation, called a temporal plan network).(TPNIs were
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introduced in[40][39], but are extended in this thesis to encode activity costs and
location constraints.

The second contribution is an optimal pre-planner (Chapter 5). The optieial
planner operates on a given TPN encoding of a mission strategy. \\ie g@aftial
execution of the TPN as search states in the search spaqainibey algorithm driving
the optimal pre-planner is TPNA* search. TPNA* constructs a Betaee in order to
explore the search space for an optimal feasible execution. Inoagavie provided an
optimal heuristic for TPN events, called DP-Max, which can be tesefficiently guide
TPNA* search.

The third contribution is the unified optimal activity and path planningRB)
system. This system supports optimal pre-planning of activiiddacation constraints.
UAPP operates on a road-map TPN (RMTPN) and explores the comdiieddarch
space and path planning space. Location constraints are resolvddtdynining a
temporally feasible ordering on the locations within a partiacetion. Then an RRT
based path planner grows a tree in attempt to entail each constraint (Chapter 6).

In conclusion, unifying model-based mobile programming with roadmap-based
path planning can provide enhanced autonomy for robots. Robots equipped with robust
automated reasoning capabilities and sensing technology can be @sédtoergency

personnel in rescue missions, potentially saving more lives.
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