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Abstract—Robots that operate in hazardous and dynamic 
environments must be equipped with onboard reasoning 
capabilities that enable them to autonomously generate mission 
plans. To operate in such environments, the mission plans must be 
continuous and temporally flexible. For critical missions, such as 
search and rescues, the success of the mission relies not only on 
the feasibility of the plan, but also on the quality of the plan. 
Thus, to generate robust efficient, temporally flexible plans, a 
measure of utility is required.  

We introduce a novel, forward heuristic planner that quickly 
extracts the optimal, temporally flexible plan, given a hierarchical 
description of alternative contingency plans and a utility function. 
Contingency plans are encoded as Temporal Plan Networks 
(TPNs). Our work presents two key innovations. The first is a 
compact encoding of a TPN search state. The second is an 
admissible and informative heuristic, TPN-Max. We empirically 
validate our solution on TPNs with increasing level of difficulty. 
Our results show that the TPN-Max heuristic performs 
significantly better, for TPNs, than the Max heuristic used in the 
forward heuristic planners [1]. 

I. INTRODUCTION 

Today’s emergencies, such as search and rescues, natural 
disasters, and fires, continue to pose great challenges and 
threats to rescuers and emergency personnel (Figure 1). The 
deployment of robots at the World Trade Center site, for 
example, highlighted the potential for robots to aid in humans 
in such. This work focuses on the development of an onboard 
autonomous system that enables mobile robots to select 
optimal mission plans. More specifically, we present a planner 
that searches for the best plan given the temporal constraints.  

There is an extensive body of work on temporal executives 
that achieve robustness, by operating on a least commitment 
plan that leaves temporal flexibility. Temporal flexibility is 
exploited by an executive to achieve robustness to temporal 
disturbances. This is accomplished by dynamically scheduling 
activities and projecting their consequences into the future, in 
order to ensure correctness. The robustness breaks down when 
the temporal disturbances perturb the plan and cause a plan 
failure. In order to resolve such failures a slow planning 
process must be invoked. 

Research presented in [6] improves robustness to such plan 
failures by extending temporal planning and execution to the 
execution of contingent Temporally Flexible Plans (TFPs). 
These plans are encoded in a model called a Temporal Plan 
Network (TPN). TPNs are comprised of a nesting of 

alternative, temporally flexible sub-plans. Temporal flexibility 
is achieved by generating plans without a fixed time schedule. 
The TPN planner presented in [6] adopts techniques from 
temporally flexible planners such as HSTS [8] and IXTET [7].  
These planners adjust to varying execution times of activities 
by enforcing temporal constrains on the minimal set of 
activities that ensure  successful plan execution. 

While TPNs have proven to be a robust approach to 
contingent plan execution, the TPN planner presented in [6] 
makes no guarantee on the quality of the executed plan in 
terms of maximizing utility. That is, contingency and temporal 
flexibility, while providing robustness, are insufficient for 
critical missions where the cost executing the activities in the 
plan affects the success of the plan. 

This research extends TPNs to include a measure of utility, 
and provides a novel online method for continuously updating 
the selection of the optimal TFP. We develop a forward 
heuristic TPN planner, and present two key innovations. The 
first is a compact encoding of a TPN search state. The second 
is an effective, admissible heuristic called TPN-Max. Our 
results show significant a reduction in both space and time 
using the TPN-Max heuristic for TPNs, as compared to the 
Max heuristic introduced in [1], and a the uniform cost search. 

II.  EXAMPLE SCENARIO 

Consider an urban search and rescue mission, called Search-
and-Sense, in which an agile autonomous air vehicle (AAV) is 
deployed (Figure 1). The goals of the mission are to collect 
images while exploring the environment and search for 
victims. To explore the environment the robot must navigate a 
corridor and search one of three places for victims; the Office, 
Corridor-B, or the Lab. 
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Fig. 1.  Example mission in which an autonomous air vehicle searches a 
building for victims. 
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In this mission, the cost of searching either the Corridor-B 
or the Lab is much greater than the cost of exploring the 
Office. Additionally, the Office is closest to the AAV, and the 
most likely place where victims may be trapped. A feasible 
planner might select a sub-optimal plan that includes Corridor-
B or the Lab, neglecting the Office where the victims are 
located.  

In this example, the feasible planner does not include the 
cost of executing activities when searching for a plan; thus, a 
highly sub-optimal plan might be selected. Our goal is to 
modify a temporally flexible planning model and incorporate 
the cost of executing activities. An example of this model, 
called a Temporal Plan Network (TPN) is given in Figure 2. 

III.   TEMPORAL PLAN NETWORKS 

Temporal Plan Networks were introduced in [6]. They draw 
from Temporal Constraint Networks [2] and Simple Temporal 
Networks [8]. TPNs support activities, simple temporal 
constraints, predecessor and successor relations, and 
contingencies. TPNs are similar in structure to Activity 
Networks [5]; however TPNs support flexible time bounds, 
concurrency, and mutex relations. Figure 3 and Figure 4 
provide a subset of the TPN grammar and mapping to its 
graphical equivalent. For a complete definition of TPNs see 
[6]. 

 A TPN recursively combines the primitives, Activity 
and With-Timing, with the operators Sequence, Choose 
and Parallel to represent a hierarchical description of 
alternative contingency plans. Given a utility function, each 
activity is parameterized with an associated cost.  

Our algorithm operates on TPN graphs. The nodes in a TPN 
graph are called events and represent temporal events that 
relate the start and end times of activities and of TPN sub-
graphs. The global start and end of a TPN are events labeled 
Start and End. Special events in the TPN created by the choose 
operator are referred to as decision points (shown in Figure 5 
with double circles). In Figure 5, events d1, d2, and d3 are 
decision points. The arcs in a TPN are labeled with flexible 
temporal bounds and impose an ordering between events. An 

arc may have at most one activity. For example, the arc b→c is 
labeled with the activity Search-Corridor-A with a temporal 
bound of [5,20], which implies that the activity must take a 
minimum of 5 units of time and a maximum of 20 units of time 
to execute. Events at the tail of an arc are called targets. For 
example, event ‘a’ has two targets: b and d1. Finally, a 
sequence of continuous events and arcs a TPN is called a 
thread. An example of a thread in Figure 5 is a→b→c→d2. 

Kim et. al. developed a TPN planner called Kirk [6]. Kirk 
applies a modified network search algorithm in order to extract 
a feasible temporally flexible plan in a TPN [6]. A feasible 
plan is a complete and consistent set of contiguous threads in a 
TPN.  

A complete plan is a TPN sub-graph with three properties:  
1) The sub-graph originates at the start event and ends at 

the end event. 
2) The sub-graph contains only one thread extending 

from each decision point in the sub-graph.  
3) The sub-graph includes all threads extending from 

each non-decision event.  
A consistent plan is a TPN sub-graph with one property:  

1) The sub-graph does not violate any temporal 
constraints. That is, the temporal constraints of the 
sub-graph are satisfiable [6] [8]. This is detected by 
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Fig. 2.  Example TPN for a Search-and-Sense mission. TPN1
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Fig. 4.  Mapping from TPN grammar to TPN Graph. 

TPN→ (Sequence TPN1,…, TPNN)    |  (Choose TPN1,…, TPNN) 
(Parallel TPN1,…, TPNN)    |  Primitive

Primitive→ Activity(cost)  [lb,ub]   |  With-Timing <TPN> [lb,ub]
 

Fig. 3.  Grammar used to encode a Temporal Plan Network. 
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Fig. 5.  Bold sub-graph represents the optimal feasible plan for the Search-
and-Sense mission. 
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applying a graph search algorithm to detect temporal 
inconsistencies [8].  

While the Kirk planner searches a TPN for a feasible plan, it 
does not address planning problems for which the cost of 
executing activities is critical to the success of the mission. 
Thus, we develop an optimal forward heuristic planner that 
incorporates the costs of executing activities, and uses an 
admissible TPN heuristic, called TPN-Max, to efficiently and 
systematically explore the search space. Our planner extracts 
the optimal TFP if, and only if, one exists. The bold sub-graph 
in Figure 5 represents the optimal TFP for the Search-and-
Sense mission. The optimal TFP is, in turn, used as input to an 
executive, which schedules and dispatches the activities in the 
plan to the specified robot(s) [7] [8]. 

IV.  OPTIMAL PLAN SELECTION 

 We formulate the problem of selecting the optimal feasible 
TFP as a state space search problem. We define a partial plan, 
present a compact encoding of a TPN search state, and 
describe the search tree representing the TPN search space. 
Finally, the algorithms for the Expand function that maps TPN 
search states to successor states are given.  

A. Partial Plan Encoding 

 The search space of an optimal planning problem consists of 
all possible partial plans in a TPN. A partial plan is an 
incomplete plan, comprised of threads in a TPN sub-graph. 
More specifically, a partial plan is a set of contiguous 
concurrent threads in a TPN that originate at the Start event, 
all threads have not been extended to the End event (Figure 6). 
A partial plan satisfies two properties of a complete plan, that 
is, properties 2) and 3). 
 We compactly encode a partial plan p as a pair 〈PPFringe, 
PPChoices〉 where: 

-PPFringe(p) = {e1,e2,…,en}, the set of un-extended 
terminal events, ei. A terminal event is the event at the end 
of a thread. 
-PPChoices(p) = {〈d1,ei〉, 〈d2,ej〉, …, 〈dn,ek〉} the set of pairs 
of choices made at decision points in p’s threads. Each pair 
contains a decision point, dj, and one target event ei, of the 
decision point. 

Figure 6 depicts a partial plan denoted by the following pair of 
sets: 〈{i,t,End}, { 〈d1,e〉, 〈d2,p〉, 〈d3,g〉} 〉. 

B. TPN Search State 

 The choices, PPChoices, in a partial plan are used to denote 
a TPN search state. All partial plans with equivalent sets of 

PPChoices map to the same search state. The partial plan in 
Figure 6, for example, maps to the search state {〈d1,e〉, 〈d2,p〉, 
〈d3,g〉}. 

C. Search Tree 

Our forward heuristic planner constructs a search tree in 
order to systematically explore the search space of an optimal 
TFP problem. The search tree represents the set of all unique 
possible search states.  

 The tree is made up of nodes and branches that are uniquely 
labeled. A node n is labeled with a set a set of un-extended 
terminal events denoted fringe(n). A branch b in the search 
tree is labeled by a set of pairs of choices denoted choices(b). 
The set of choices contain pairs of decision points with targets. 
A path through the tree is a sequence of nodes and branches 
originating at the root. The complete search tree for the 
Search-and-Sense TPN is given in Figure 7. 

 The root of the tree represents the initial state of an optimal 
TFP problem. The root is a partial plan which is comprised of 
a set of threads that originate at the Start event and either at the 

_________________________________________________ 

procedure Node_To_Partial_Plan(Search-Tree tree, Node 
n, TPN tpn) returns a partial plan. 
1. PPFringe ← Fringe(n) 
2. PPChoices ← {} 
3. t ← n, initialize search tree node 
4. while Parent(t) ≠ Root(tree) do 
5.   PPChoices ←PPChoices ∪ Branch(t,Parent(t)) 
6.   t ← Parent(t) 
7. endwhile 
8. Create TPN sub-graph partial plan 
9. Initialize visited of each TPN event to false 
10. e ← Start_Event(tpn) 
11. stack ← {} 
12. Push(stack,e) 
13. while not(Empty(stack)) do 
14.   e ← Pop(stack) 
15.   if not(Visited(e))then  
16.    Visited(e) ← true 
17.   if Decision_Point(e) == true then 
18.     target ← Get_Target(e,PPFringe) 
19.     arcs ← arcs ∪ {Get_TPN_Arc(tpn,e,target)} 
20.     events ← events ∪ {target} 
21.     Push(stack,target) 
22.   else  
23.     for ti ∈ targets(e) and not(Visited(ti)) do 
24.       arcs ← arcs ∪ {Get_TPN_Arc(tpn,e,ti)} 
25.       events ← events ∪ {ti} 
26.       if ti ∉ PPFringe then  
27.      Push(stack,ti) 
28.     endfor 
29. endwhile 
30. return Partial_Plan(arcs, events) 
____________________________________________________________ 

Fig. 8.  Procedure to map a search tree node to its equivalent partial plan. 
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Fig. 6.  Example of a partial plan from the Search-and-Sense TPN. 

〈d1,e〉, 〈d2,r〉

n2 {d3}:175 n3{d3}:135 n4{}:130 n5{} :180 n6{}:140

n0 {d1, d2}: 80

n7{}:135 n8{}:145 n9{}:185 n10{}:195 n11 {}:140 n12{}:150

n1 {d3}:125
〈d1,e〉, 〈d2,q〉 〈d1,k〉, 〈d2,p〉 〈d1,k〉, 〈d2,q〉 〈d1,k〉, 〈d2,r〉〈d1,e〉, 〈d2,p〉

〈d3,g〉 〈d3,j〉〈d3,g〉 〈d3,j〉 〈d3,g〉 〈d3,j〉

 

Fig. 7.  Complete search tree representing the search space of the Search-
and-Sense TPN. Leaf nodes are nodes with no children, eg. n7 - n12. 
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first decision point reached or the End event. The root is 
encoded as follows:  

-PPFringe(root) = {e1, e2, …, en}, where each event ei is 
either a decision point or the end event of the TPN. 
-PPChoices(root) = {}. 

 Node n0 in Figure 4 is the root node that corresponds to the 
partial plan comprised of three threads: 1) Start→a→b→d1, 2) 
Start→a→b→c→d2, and 3) Start→End; Node n0 is compactly 
encoded as 〈{d1,d2,End}, {} 〉. 
 The search tree is constructed by applying the Expand 
function to the least-cost leaf node in the tree. We use an 
evaluation function, as in A* search, to determine the 
estimated cost of a feasible plan through a node, and to 
determine the order in which leaf nodes are expanded [9]. The 
evaluation function is the sum of the path cost, g(n),  and a 
heuristic, H(n). The path cost of each node is shown in Figure 
7. We describe the equation for computing H(n) in Section 4.  
 A node in the search tree maps to a unique partial plan p in 
the TPN. The procedure is given in Figure 8, and consists of 
two main steps. The first step is to construct the encoding of p 
as 〈PPFringe(p), PPChoices(p)〉  (Lines 1-7). The second step 
is to map the encoding to its actual partial plan in the TPN 
(Lines 8-28).  

D. Search Tree Expansion 

 To construct the search tree the Expand function is applied 
to the least-cost leaf node in the current tree. The Expand 
function is comprised of two procedures: 1) Extend threads 
(Figure 9) and 2) Generate child nodes (Figure 11). 

 1) Extend Threads: To extend threads of partial plan 
corresponding to a node n, threads from each event in 
fringe(n) are extended until either a decision point is reached 
or the end event is reached along each thread.  This is 
accomplished by applying a modified version of a Depth-First 
Search (DFS) algorithm (Figure 9). As threads are extended 
during the modified DFS, activity costs are added to the 
current path cost, g(n), of node n. When an event ti is reached 
during DFS, two cases are checked. 
 -Case 1 (Lines 10-11): ti is a decision point signaling a 
choice between possible threads. At this point ti, is not 
extended further, and fringe(n) is updated to include the event 
ti. For example, the fringe of search tree node n1, fringe(n1), is 
set to {e,p}. The threads of n1, originating from events e and p 
are extended, as illustrated in Figure 10. First, e is extended 
along the thread e→f→d3. The event d3 is a decision point, 
and thus, is not extended further (Figure 8a). Then DFS is 
continued, extending the thread e→i→o→w→End. At this 
point, two threads in the partial plan that corresponds to n1 
have converged at the End event (Figure 10b). To detect when 
threads converge Case 2 is applied. 

-Case 2 (Lines 8-9): ti is an event where two or more threads 
have re-joined and converged. This case serves two purposes: 
1) to avoid redundant extension of threads, and 2) to test for 
temporal consistency, as done in [6]. To detect when threads 
converge, we maintain a table that maps each search tree node 
to its corresponding set of selected events in its partial plan, 
denoted selected_events. The selected events of a node n are 
the events reached during expansion of node n. Threads have 

converged at an event e, if e is in either in the set 
selected_events(n) or in the set of selected events of an 
ancestor of node of n. For example, in Figure 7, 
selected_events(n0) = {Start, End, a, b, d1, d2} and 
selected_events(n1) = {e, f, d3, i, o, w, p, t, v}, where threads 
converge at events w and End (Figure 10c).  

2) Generate Child Nodes: Once a search tree node n has 
been extended, its fringe either is empty or contains decision 
points. If the fringe is empty then the node corresponds to a 
complete plan. Otherwise, the targets of the decision points in 
fringe(n) are used to generate new child nodes in the search 
tree. This is done by creating the set of all possible choices by 
computing the cross-product between the target events of each 
decision point in the fringe(n) (Figure 11, Lines 1-6). For 
example, the root node n0 has two decision points in its fringe 
d1 and d2. The event d1 has two target choices, either e or k; 
and d2 has three target choices, p, q, or r. Thus, there are six 
sets of choices that result from performing the cross product 
between the targets of  d1 and d2: {e,k}×{p,q,r} = {{e,p}, 
{e,q}, {e,r}, {k,p}, {k,q}, {k,r}}. Each set represents a new 
child node, which is initialized and inserted into the search tree 
(Figure 11, Lines 7-13) as new leaves. 

____________________________________________________________ 
procedure Extend-Events(Node n,TPN tpn) returns 
updated n, if temporally consistent; otherwise false. 
1. stack ← {} 
2. updated_fringe ← {} 
3. for each event fi ∈ fringe(n) do 
4.   Push(fi,stack) 
5.   Visited(fi) ← true  
6.   while not(Empty(stack)) do 
7.     e ← Pop(stack) 
8.     if Threads_Converge(e) and  
         not(Temporally_Consistent(e)) then 
9.        return false 
10.     else if Decision-Point(e) = true then  
11.        updated_fringe ← updated_fringe ∪ e 
12.     else  
13.        for each ti ∈ targets(e,tpn) do 
14.          if not(Visited(ti)) then 
15.            g(n) ← g(n) + cost(e,ti) 
16.            Visited(ti) ← true 
17.            selected_events ← selected_events ∪ {ti} 
18.            Push(stack,ti) 
19.        endfor      
20.   endwhile  
21. endfor 
22. Fringe(n) ← updated_fringe 
23. return n 
____________________________________________________________ 

Fig. 9.  Procedure to extend the fringe events of a search tree node. This is 
the first step of the Expand function. 
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V. TPN HEURISTIC 

To efficiently focus the search towards the optimal TFP, we 
develop heuristic equations applied to TPN events, denoted 
h(ei), and the heuristic used for search tree nodes, denoted 
H(n). The heuristic cost of each TPN event is computed prior 
to the search for the optimal TFP. We present the evaluation 
function f(n) which represents the estimated cost of a search 
tree node n. The estimated cost of a search tree node n is an 
underestimate of the actual cost of a solution through n. A 
solution is feasible temporally flexible plan. Our forward 
heuristic TPN planner finds the optimal feasible solution by 
expanding the leaf nodes in order of their estimated cost.  

A. Heuristic for TPN Events 

To efficiently focus the search towards the optimal TFP, we 
adopt a strategy similar to that of forward heuristic planners, 
such as HSP [1] and FF [4]. These planners define a planning 
problem as a state space search problem, and extract heuristics 
from the encoding of the problem. The heuristic is extracted 
from the relaxed version of the problem. A relaxed planning 
problem is a simpler version of the problem. We define a 
relaxed TPN as one in which the temporal constraints are not 
considered; thus, backtracking to a consistent plan is not 
required. With a relaxed TPN, the optimal pre-planning 
problem is reduced to a shortest path problem in the TPN 
search space, where the shortest path is the least-cost complete 
plan.  

We apply the three heuristics, Min, Additive and Max, 
presented in [1], to compute an exact estimate for events in a 
TPN. The Min heuristic is applied to a disjunction of sub-goal, 
and the Additive and Max heuristics are applied to a 
conjunction of sub-goals. A disjunction of sub-goals is a set of 
goals where only one is selected. A conjunction of sub-goals is 
a set of goals where all the goals are selected. A disjunction of 
sub-goals in a TPN is represented by decision points, where 
only one thread is selected. The Min heuristic for TPNs is 
given in Equation 1, and also applies to the TPN primitives 
Activity and With-Timing (Figure 12).  The heuristic 

cost of d1 (Figure 5), for example, is the thread with the 
minimum cost to the End event: h(d1) = min(h(k) + c(d1,k), 
h(e) +c(d1,e)) = min(30,35) = 30. 

( )
( ))t()t,e()e( jji
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             (1) 

A conjunction of sub-goals in a TPN is represented by 
multiple threads extending from a non-decision event ei. These 
are constructed by the Parallel operator. In this case, all 
threads from ei must be selected. To compute the heuristic cost 
of a non-decision event with multiple target threads, we apply 
the HSP Additive heuristic [1], given in Equation 2. 
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∑
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The additive heuristic is admissible if threads extending 
from a non-decision point converge at an event that has no 
targets, as shown in Figure 13a. However, if the threads 
converge at an event with at least one target, then the Additive 
heuristic is inadmissible, as shown in Figure 13b. This is the 
result of counting the cost of a thread multiple times. For 
example, in Figure 13 the heuristic costs h(t1), h(t2),…h(tn) 
each include the cost h(x). Thus, if the Additive heuristic is 
used, then the cost h(pi) would be overestimated, and thus, is 
inadmissible heuristic. 

To address the issue of multiple counting [1] suggests the 
Max heuristic (Equation 3). While the Max heuristic is an 
admissible heuristic for problems with dependent sub-goals, it 
often severely underestimates and not very informative. Recall, 
in a TPN dependent sub-goals are threads that rejoin and 
converge at the same event.  
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We propose an exact heuristic for TPN sub-graphs with 
dependent sub-goals, called TPN-Additive given in Equation 
4. This equation takes advantage of the construction of a TPN, 
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Fig. 13.  Example of a TPN sub-graphs with conjunctive sub-goals. (a) 
Shows a TPN sub-graph ending at event x. (b) Shows a TPN sub-graph 
ending at event y. If the additive heuristic is applied directly then the cost of 
the thread from x to y is counted multiple times, resulting in an inadmissible 
heuristic. 

____________________________________________________________ 

procedure Generate-Child-Nodes(Search-Tree-Node n, 
Search-Tree tree) inserts child nodes into tree. 
1. targets_sets ← {} 
2. for each decision-point di ∈ Fringe(n) do 
3.   choicesi ← {tj|{tj ∈ Targets(di)} 
4.   targets_sets ← targets_sets ∪ {choicesi}    
5. endfor 
6. combinations ← Cross_Product(targets_sets) 
7. for each set cseti ∈  combinations do 
8.   child_node 
9.   Parent(child_node) ← n 
10.   Fringe(child_node) ← cseti 

11.   g(child_node) ← g(Parent(child_node)) 
12.   Insert(tree,child_node) 
13. endfor 
____________________________________________________________ 

Fig. 11.  Procedure to generate and insert new nodes into the search tree. 
This is the second and final step of the Expand function. 
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Fig. 12.  Example of a TPN sub-graphs with disjunctive sub-goals.  
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where there is a start and end event for each sub-graph created 
by the Parallel operator. The start event is referred to as 
the parallel_start and the end event is referred to as the 
parallel_end. For example, in Figure 13 the event pi is the 
parallel_start and the event x is the parallel_end. With known 
parallel start and end events, we can lookup the cost of a 
parallel_end and subtract out the times that it is multiple 
counted (Equation 4). 

( ) ( )[ ])e(_1)e(targets)e(

)e(

iii

i

endparallelhh

h

add

tpnadd

∗−−

=
  (4) 

Our forward heuristic TPN planner computes the heuristic 
costs of each TPN event by traversing backwards from the 
TPN End event to the Start event. At each event the dynamic 
programming principle is applied (see Equation 5) [10]. 
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


=
(5)                   _aise),e(

targetonehasorpointdecisionaise),e(
)e(

ii

iimin
i startparallelh

h
h

tpnadd

 

B. Search Tree Node Evaluation Function 

During optimal TFP search, we use the heuristic costs of the 
events to compute the estimated cost of a solution through a 
search tree node n. The heuristic cost of n, H(n), is computed 
from the heuristic costs of the TPN events in the fringe(n). If 
H(n) is computed as the sum of the heuristic costs of each of 
event in its fringe, then the cost of a shared sub-goal might be 
counted multiple times. For example, in Figure 7, the search 
tree node n0 contains decision points d1 and d2 and any thread 
extending from d1 or d2 will converge at the event w.  If 
htpnadd(d1) and htpnadd(d2) are summed, then htpnadd(w), their 
shared sub-goal, would be counted twice. To avoid this 
remaining element of multiple counting, we define H(n) to be 
the maximum over the events in fringe(n) (Equation 6). We 
call H(n) TPN-Max. The evaluation function for a search tree 
node is given in Equation 7. For example f(n0)=80 + 
max(h(d1), h(d2)) = 80 + max(20,30)=110. 

( )
( ))e()( i

fe
max
i

hnH
nringe∈

=                    (6) 

)()()( nHngnf +=           (7) 

In short, the heuristic cost of all events in a TPN is 
computed a priori. The TPN-Max heuristic is admissible, but 
approximate, because it computes the cost of a relaxed TPN 
ignoring the temporal constraints. Our essential contribution is 
that the TPN-Additive estimate is much more informative than 
that of the HSP Max heuristic. 

VI.  EXPERIMENTAL RESULTS 

 We generate experiments with TPNs containing sub-
graphs created by all three of the operators to highlight the 
performance of each heuristic (Figure 14). The activity costs 
and temporal constraints are randomly generated. We increase 
the level of difficulty by increasing the number of decision 
points from 2 to 12, and thus, increasing the number of states. 
Our results show a significant reduction in computation time 

and space complexity as the problem difficulty increases, for 
the TPN-Additive heuristic as compared to HSP Max. 

On average, as the problems become more difficult, the 

TPN-Additive explores makes less calls to the Expand 
function than HSP Max (Figure 15), a reduction in 
computation time. For example, with 12 decision points using 
no heuristic resulted in a mean of 492 calls, HSP Max resulted 
in a mean of 275 calls, and TPN-Additive resulted in a mean 
of 169 calls.  TPN-Additive had 39% fewer calls compared to 
HSP Max. Similar results are shown when comparing the 
average of the maximum number of nodes in the priority 
queue, which corresponds to space complexity (Figure 16). In 
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Fig. 15.  Results comparing the average number of calls to the Expand 
function when using each heuristic. 
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Fig. 16.  Results comparing the average of the maximum nodes in the queue 
for expansion. 
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Fig. 14.  Example TPN structure used in experiments. Heuristic functions were 
compared for TPNs of this form with increasing numbers of decision points. 
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this case, with 12 decision points TPN-Additive stored 35% 
fewer nodes than HSP Max. 

VII.  DISCUSSION 

Our TPN plan executive adopts techniques inherent to 
heuristic search planners that can solve problems with durative 
actions. We formulate our problem as a state space search, 
extract a heuristic from the problem encoding and then apply 
A* search or other optimal state space search algorithms. This 
is similar to other planners, such as FF [4], HSP [1] and SAPA 
[3]. 

To summarize, we propose a novel solution to optimal plan 
selection through temporal plan networks. We provided a 
compact encoding of a TPN search state along with an 
informative heuristic based on the encoding of a TPN. Given 
these two contributions, we develop a systematic, fast forward 
heuristic planner. The major computation occurs during the 
Expand function. The  Extend Threads procedure runs in 
c ×O(nm), where n is the number of events, m is the number of 
arcs in the TPN, and c is the number of times threads 
converge. In the worst case, all possible feasible plans are 
generated before the least-cost plan is selected. This is a result 
of backtracking to the next best node in the search tree if the 
current node being expanded corresponds to a temporally 
inconsistent partial plan.  Empirical analyses show that our 
heuristic, TPN-Additive, considerably out-performs the HSP 
Max heuristic when applied to TPNs. 
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