
ISRA 2006 1

Abstract—Robots that operate in hazardous and dynamic
environments must be equipped with onboard reasoning
capabilities that enable them to autonomously generate mission
plans. To operate in such environments, the mission plans must be
continuous and temporally flexible. For critical missions, such as
search and rescues, the success of the mission relies not only on
the feasibility of the plan, but also on the quality of the plan.
Thus, to generate robust efficient, temporally flexible plans, a
measure of utility is required.

We introduce a novel, forward heuristic planner that quickly
extracts the optimal, temporally flexible plan, given a hierarchical
description of alternative contingency plans and a utility function.
Contingency plans are encoded as Temporal Plan Networks
(TPNs). Our work presents two key innovations. The first is a
compact encoding of a TPN search state. The second is an
admissible and informative heuristic, TPN-Max. We empirically
validate our solution on TPNs with increasing level of difficulty.
Our results show that the TPN-Max heuristic performs
significantly better, for TPNs, than the Max heuristic used in the
forward heuristic planners [1].

I. INTRODUCTION

Today’s emergencies, such as search and rescues, natural
disasters, and fires, continue to pose great challenges and
threats to rescuers and emergency personnel (Figure 1). The
deployment of robots at the World Trade Center site, for
example, highlighted the potential for robots to aid in humans
in such. This work focuses on the development of an onboard
autonomous system that enables mobile robots to select
optimal mission plans. More specifically, we present a planner
that searches for the best plan given the temporal constraints.

There is an extensive body of work on temporal executives
that achieve robustness, by operating on a least commitment
plan that leaves temporal flexibility. Temporal flexibility is
exploited by an executive to achieve robustness to temporal
disturbances. This is accomplished by dynamically scheduling
activities and projecting their consequences into the future, in
order to ensure correctness. The robustness breaks down when
the temporal disturbances perturb the plan and cause a plan
failure. In order to resolve such failures a slow planning
process must be invoked.

Research presented in [6] improves robustness to such plan
failures by extending temporal planning and execution to the
execution of contingent Temporally Flexible Plans (TFPs).
These plans are encoded in a model called a Temporal Plan
Network (TPN). TPNs are comprised of a nesting of

alternative, temporally flexible sub-plans. Temporal flexibility
is achieved by generating plans without a fixed time schedule.
The TPN planner presented in [6] adopts techniques from
temporally flexible planners such as HSTS [8] and IXTET [7].
These planners adjust to varying execution times of activities
by enforcing temporal constrains on the minimal set of
activities that ensure successful plan execution.

While TPNs have proven to be a robust approach to
contingent plan execution, the TPN planner presented in [6]
makes no guarantee on the quality of the executed plan in
terms of maximizing utility. That is, contingency and temporal
flexibility, while providing robustness, are insufficient for
critical missions where the cost executing the activities in the
plan affects the success of the plan.

This research extends TPNs to include a measure of utility,
and provides a novel online method for continuously updating
the selection of the optimal TFP. We develop a forward
heuristic TPN planner, and present two key innovations. The
first is a compact encoding of a TPN search state. The second
is an effective, admissible heuristic called TPN-Max. Our
results show significant a reduction in both space and time
using the TPN-Max heuristic for TPNs, as compared to the
Max heuristic introduced in [1], and a the uniform cost search.

II. EXAMPLE SCENARIO

Consider an urban search and rescue mission, called Search-
and-Sense, in which an agile autonomous air vehicle (AAV) is
deployed (Figure 1). The goals of the mission are to collect
images while exploring the environment and search for
victims. To explore the environment the robot must navigate a
corridor and search one of three places for victims; the Office,
Corridor-B, or the Lab.

Efficient Extraction of Optimal, Temporally
Flexible Plans
Aisha Walcott and Brian Williams

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, MA 02139 USA

{aisha,williams}@mit.edu

Fig. 1. Example mission in which an autonomous air vehicle searches a
building for victims.

5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION, SAN MIGUEL REGLA HIDALGO, MEXICO, AUGUST 25-28, 2006.

ISBN 970-769-070-4, ISRA 2006 Proceedings

ISRA 2006 2

In this mission, the cost of searching either the Corridor-B
or the Lab is much greater than the cost of exploring the
Office. Additionally, the Office is closest to the AAV, and the
most likely place where victims may be trapped. A feasible
planner might select a sub-optimal plan that includes Corridor-
B or the Lab, neglecting the Office where the victims are
located.

In this example, the feasible planner does not include the
cost of executing activities when searching for a plan; thus, a
highly sub-optimal plan might be selected. Our goal is to
modify a temporally flexible planning model and incorporate
the cost of executing activities. An example of this model,
called a Temporal Plan Network (TPN) is given in Figure 2.

III. TEMPORAL PLAN NETWORKS

Temporal Plan Networks were introduced in [6]. They draw
from Temporal Constraint Networks [2] and Simple Temporal
Networks [8]. TPNs support activities, simple temporal
constraints, predecessor and successor relations, and
contingencies. TPNs are similar in structure to Activity
Networks [5]; however TPNs support flexible time bounds,
concurrency, and mutex relations. Figure 3 and Figure 4
provide a subset of the TPN grammar and mapping to its
graphical equivalent. For a complete definition of TPNs see
[6].

 A TPN recursively combines the primitives, Activity
and With-Timing, with the operators Sequence, Choose
and Parallel to represent a hierarchical description of
alternative contingency plans. Given a utility function, each
activity is parameterized with an associated cost.

Our algorithm operates on TPN graphs. The nodes in a TPN
graph are called events and represent temporal events that
relate the start and end times of activities and of TPN sub-
graphs. The global start and end of a TPN are events labeled
Start and End. Special events in the TPN created by the choose
operator are referred to as decision points (shown in Figure 5
with double circles). In Figure 5, events d1, d2, and d3 are
decision points. The arcs in a TPN are labeled with flexible
temporal bounds and impose an ordering between events. An

arc may have at most one activity. For example, the arc b→c is
labeled with the activity Search-Corridor-A with a temporal
bound of [5,20], which implies that the activity must take a
minimum of 5 units of time and a maximum of 20 units of time
to execute. Events at the tail of an arc are called targets. For
example, event ‘a’ has two targets: b and d1. Finally, a
sequence of continuous events and arcs a TPN is called a
thread. An example of a thread in Figure 5 is a→b→c→d2.

Kim et. al. developed a TPN planner called Kirk [6]. Kirk
applies a modified network search algorithm in order to extract
a feasible temporally flexible plan in a TPN [6]. A feasible
plan is a complete and consistent set of contiguous threads in a
TPN.

A complete plan is a TPN sub-graph with three properties:
1) The sub-graph originates at the start event and ends at

the end event.
2) The sub-graph contains only one thread extending

from each decision point in the sub-graph.
3) The sub-graph includes all threads extending from

each non-decision event.
A consistent plan is a TPN sub-graph with one property:

1) The sub-graph does not violate any temporal
constraints. That is, the temporal constraints of the
sub-graph are satisfiable [6] [8]. This is detected by

Mono-Vision

20 10
[1, 5] [1, 5]

Analyze-Data

25
20

10

[10, 30]

[10, 15]

[25, 35]

[0, 20]

Tx-Comp-Data

Tx-Raw-Data

Search-and-Sense [15, 100]
Search-Office

[0, 15]
20

Search-Corridor-B

Search-Lab
70

30

[0, 15]

[0, 15]

[5, 20]
80

Stereo-Vision

Search-Corridor-A

Fig. 2. Example TPN for a Search-and-Sense mission. TPN1

TPN2

. . .

TPN1

TPN2

. . .

TPN1

TPN2

. . .

. . .
TPN1 TPN2

. . .
TPN1 TPN2

Activity[lb, ub]

[lb, ub][lb, ub]
With-Timing [lb, ub]

Activity [lb, ub]

Sequence TPN1,…, TPNN

Parallel TPN1,…, TPNN

Choose TPN1,…, TPNN

Fig. 4. Mapping from TPN grammar to TPN Graph.

TPN→ (Sequence TPN1,…, TPNN) | (Choose TPN1,…, TPNN)
(Parallel TPN1,…, TPNN) | Primitive

Primitive→ Activity(cost) [lb,ub] | With-Timing <TPN> [lb,ub]

Fig. 3. Grammar used to encode a Temporal Plan Network.

w

d1
Mono-Vision

20 10
k l m n[1, 5] [1, 5]

Analyze-Data

o
25

e f
d3 j

g

x
20

10

[10, 30]

[10, 15]

[25, 35]

[0, 20]

h

iTx-Comp-Data

Tx-Raw-Data

Search-and-Sense [15, 100]

Search-Office
[0, 15]

20
Search-Corridor-B

Search-Lab
70

30
r u

q s

p t

[0, 15]

[0, 15]

b c d2

[5, 20]
v80

a

Stereo-Vision

Search-Corridor-A

EndStart

Fig. 5. Bold sub-graph represents the optimal feasible plan for the Search-
and-Sense mission.

ISRA 2006 3

applying a graph search algorithm to detect temporal
inconsistencies [8].

While the Kirk planner searches a TPN for a feasible plan, it
does not address planning problems for which the cost of
executing activities is critical to the success of the mission.
Thus, we develop an optimal forward heuristic planner that
incorporates the costs of executing activities, and uses an
admissible TPN heuristic, called TPN-Max, to efficiently and
systematically explore the search space. Our planner extracts
the optimal TFP if, and only if, one exists. The bold sub-graph
in Figure 5 represents the optimal TFP for the Search-and-
Sense mission. The optimal TFP is, in turn, used as input to an
executive, which schedules and dispatches the activities in the
plan to the specified robot(s) [7] [8].

IV. OPTIMAL PLAN SELECTION

 We formulate the problem of selecting the optimal feasible
TFP as a state space search problem. We define a partial plan,
present a compact encoding of a TPN search state, and
describe the search tree representing the TPN search space.
Finally, the algorithms for the Expand function that maps TPN
search states to successor states are given.

A. Partial Plan Encoding

 The search space of an optimal planning problem consists of
all possible partial plans in a TPN. A partial plan is an
incomplete plan, comprised of threads in a TPN sub-graph.
More specifically, a partial plan is a set of contiguous
concurrent threads in a TPN that originate at the Start event,
all threads have not been extended to the End event (Figure 6).
A partial plan satisfies two properties of a complete plan, that
is, properties 2) and 3).
 We compactly encode a partial plan p as a pair 〈PPFringe,
PPChoices〉 where:

-PPFringe(p) = {e1,e2,…,en}, the set of un-extended
terminal events, ei. A terminal event is the event at the end
of a thread.
-PPChoices(p) = {〈d1,ei〉, 〈d2,ej〉, …, 〈dn,ek〉} the set of pairs
of choices made at decision points in p’s threads. Each pair
contains a decision point, dj, and one target event ei, of the
decision point.

Figure 6 depicts a partial plan denoted by the following pair of
sets: 〈{i,t,End}, { 〈d1,e〉, 〈d2,p〉, 〈d3,g〉} 〉.

B. TPN Search State

 The choices, PPChoices, in a partial plan are used to denote
a TPN search state. All partial plans with equivalent sets of

PPChoices map to the same search state. The partial plan in
Figure 6, for example, maps to the search state {〈d1,e〉, 〈d2,p〉,
〈d3,g〉}.

C. Search Tree

Our forward heuristic planner constructs a search tree in
order to systematically explore the search space of an optimal
TFP problem. The search tree represents the set of all unique
possible search states.

 The tree is made up of nodes and branches that are uniquely
labeled. A node n is labeled with a set a set of un-extended
terminal events denoted fringe(n). A branch b in the search
tree is labeled by a set of pairs of choices denoted choices(b).
The set of choices contain pairs of decision points with targets.
A path through the tree is a sequence of nodes and branches
originating at the root. The complete search tree for the
Search-and-Sense TPN is given in Figure 7.

 The root of the tree represents the initial state of an optimal
TFP problem. The root is a partial plan which is comprised of
a set of threads that originate at the Start event and either at the

procedure Node_To_Partial_Plan(Search-Tree tree, Node
n, TPN tpn) returns a partial plan.
1. PPFringe ← Fringe(n)
2. PPChoices ← {}
3. t ← n, initialize search tree node
4. while Parent(t) ≠ Root(tree) do
5. PPChoices ←PPChoices ∪ Branch(t,Parent(t))
6. t ← Parent(t)
7. endwhile
8. Create TPN sub-graph partial plan
9. Initialize visited of each TPN event to false
10. e ← Start_Event(tpn)
11. stack ← {}
12. Push(stack,e)
13. while not(Empty(stack)) do
14. e ← Pop(stack)
15. if not(Visited(e))then
16. Visited(e) ← true
17. if Decision_Point(e) == true then
18. target ← Get_Target(e,PPFringe)
19. arcs ← arcs ∪ {Get_TPN_Arc(tpn,e,target)}
20. events ← events ∪ {target}
21. Push(stack,target)
22. else
23. for ti ∈ targets(e) and not(Visited(ti)) do
24. arcs ← arcs ∪ {Get_TPN_Arc(tpn,e,ti)}
25. events ← events ∪ {ti}
26. if ti ∉ PPFringe then
27. Push(stack,ti)
28. endfor
29. endwhile
30. return Partial_Plan(arcs, events)
__

Fig. 8. Procedure to map a search tree node to its equivalent partial plan.

d1

e f
d3

g h

i

p t
b c d2

a

EndStart

PPFringe

PPChoices

Fig. 6. Example of a partial plan from the Search-and-Sense TPN.

〈d1,e〉, 〈d2,r〉

n2 {d3}:175 n3{d3}:135 n4{}:130 n5{} :180 n6{}:140

n0 {d1, d2}: 80

n7{}:135 n8{}:145 n9{}:185 n10{}:195 n11 {}:140 n12{}:150

n1 {d3}:125
〈d1,e〉, 〈d2,q〉 〈d1,k〉, 〈d2,p〉 〈d1,k〉, 〈d2,q〉 〈d1,k〉, 〈d2,r〉〈d1,e〉, 〈d2,p〉

〈d3,g〉 〈d3,j〉〈d3,g〉 〈d3,j〉 〈d3,g〉 〈d3,j〉

Fig. 7. Complete search tree representing the search space of the Search-
and-Sense TPN. Leaf nodes are nodes with no children, eg. n7 - n12.

ISRA 2006 4

first decision point reached or the End event. The root is
encoded as follows:

-PPFringe(root) = {e1, e2, …, en}, where each event ei is
either a decision point or the end event of the TPN.
-PPChoices(root) = {}.

 Node n0 in Figure 4 is the root node that corresponds to the
partial plan comprised of three threads: 1) Start→a→b→d1, 2)
Start→a→b→c→d2, and 3) Start→End; Node n0 is compactly
encoded as 〈{d1,d2,End}, {} 〉.
 The search tree is constructed by applying the Expand
function to the least-cost leaf node in the tree. We use an
evaluation function, as in A* search, to determine the
estimated cost of a feasible plan through a node, and to
determine the order in which leaf nodes are expanded [9]. The
evaluation function is the sum of the path cost, g(n), and a
heuristic, H(n). The path cost of each node is shown in Figure
7. We describe the equation for computing H(n) in Section 4.
 A node in the search tree maps to a unique partial plan p in
the TPN. The procedure is given in Figure 8, and consists of
two main steps. The first step is to construct the encoding of p
as 〈PPFringe(p), PPChoices(p)〉 (Lines 1-7). The second step
is to map the encoding to its actual partial plan in the TPN
(Lines 8-28).

D. Search Tree Expansion

 To construct the search tree the Expand function is applied
to the least-cost leaf node in the current tree. The Expand
function is comprised of two procedures: 1) Extend threads
(Figure 9) and 2) Generate child nodes (Figure 11).

 1) Extend Threads: To extend threads of partial plan
corresponding to a node n, threads from each event in
fringe(n) are extended until either a decision point is reached
or the end event is reached along each thread. This is
accomplished by applying a modified version of a Depth-First
Search (DFS) algorithm (Figure 9). As threads are extended
during the modified DFS, activity costs are added to the
current path cost, g(n), of node n. When an event ti is reached
during DFS, two cases are checked.
 -Case 1 (Lines 10-11): ti is a decision point signaling a
choice between possible threads. At this point ti, is not
extended further, and fringe(n) is updated to include the event
ti. For example, the fringe of search tree node n1, fringe(n1), is
set to {e,p}. The threads of n1, originating from events e and p
are extended, as illustrated in Figure 10. First, e is extended
along the thread e→f→d3. The event d3 is a decision point,
and thus, is not extended further (Figure 8a). Then DFS is
continued, extending the thread e→i→o→w→End. At this
point, two threads in the partial plan that corresponds to n1
have converged at the End event (Figure 10b). To detect when
threads converge Case 2 is applied.

-Case 2 (Lines 8-9): ti is an event where two or more threads
have re-joined and converged. This case serves two purposes:
1) to avoid redundant extension of threads, and 2) to test for
temporal consistency, as done in [6]. To detect when threads
converge, we maintain a table that maps each search tree node
to its corresponding set of selected events in its partial plan,
denoted selected_events. The selected events of a node n are
the events reached during expansion of node n. Threads have

converged at an event e, if e is in either in the set
selected_events(n) or in the set of selected events of an
ancestor of node of n. For example, in Figure 7,
selected_events(n0) = {Start, End, a, b, d1, d2} and
selected_events(n1) = {e, f, d3, i, o, w, p, t, v}, where threads
converge at events w and End (Figure 10c).

2) Generate Child Nodes: Once a search tree node n has
been extended, its fringe either is empty or contains decision
points. If the fringe is empty then the node corresponds to a
complete plan. Otherwise, the targets of the decision points in
fringe(n) are used to generate new child nodes in the search
tree. This is done by creating the set of all possible choices by
computing the cross-product between the target events of each
decision point in the fringe(n) (Figure 11, Lines 1-6). For
example, the root node n0 has two decision points in its fringe
d1 and d2. The event d1 has two target choices, either e or k;
and d2 has three target choices, p, q, or r. Thus, there are six
sets of choices that result from performing the cross product
between the targets of d1 and d2: {e,k}×{p,q,r} = {{e,p},
{e,q}, {e,r}, {k,p}, {k,q}, {k,r}}. Each set represents a new
child node, which is initialized and inserted into the search tree
(Figure 11, Lines 7-13) as new leaves.

__
procedure Extend-Events(Node n,TPN tpn) returns
updated n, if temporally consistent; otherwise false.
1. stack ← {}
2. updated_fringe ← {}
3. for each event fi ∈ fringe(n) do
4. Push(fi,stack)
5. Visited(fi) ← true
6. while not(Empty(stack)) do
7. e ← Pop(stack)
8. if Threads_Converge(e) and
 not(Temporally_Consistent(e)) then
9. return false
10. else if Decision-Point(e) = true then
11. updated_fringe ← updated_fringe ∪ e
12. else
13. for each ti ∈ targets(e,tpn) do
14. if not(Visited(ti)) then
15. g(n) ← g(n) + cost(e,ti)
16. Visited(ti) ← true
17. selected_events ← selected_events ∪ {ti}
18. Push(stack,ti)
19. endfor
20. endwhile
21. endfor
22. Fringe(n) ← updated_fringe
23. return n
__

Fig. 9. Procedure to extend the fringe events of a search tree node. This is
the first step of the Expand function.

d1

e f d3

p
b c d2

a

EndStart

d1

e f d3

p
b c d2

a

EndStart

oi

w

d1

e f d3

p
b c d2

a

EndStart

o
i

w
t

v

Threads Converge

(a) (b) (c)

Fig. 10. Illustration of extending threads of node n1 shown in bold. The gray
threads were extended by node n0.

ISRA 2006 5

V. TPN HEURISTIC

To efficiently focus the search towards the optimal TFP, we
develop heuristic equations applied to TPN events, denoted
h(ei), and the heuristic used for search tree nodes, denoted
H(n). The heuristic cost of each TPN event is computed prior
to the search for the optimal TFP. We present the evaluation
function f(n) which represents the estimated cost of a search
tree node n. The estimated cost of a search tree node n is an
underestimate of the actual cost of a solution through n. A
solution is feasible temporally flexible plan. Our forward
heuristic TPN planner finds the optimal feasible solution by
expanding the leaf nodes in order of their estimated cost.

A. Heuristic for TPN Events

To efficiently focus the search towards the optimal TFP, we
adopt a strategy similar to that of forward heuristic planners,
such as HSP [1] and FF [4]. These planners define a planning
problem as a state space search problem, and extract heuristics
from the encoding of the problem. The heuristic is extracted
from the relaxed version of the problem. A relaxed planning
problem is a simpler version of the problem. We define a
relaxed TPN as one in which the temporal constraints are not
considered; thus, backtracking to a consistent plan is not
required. With a relaxed TPN, the optimal pre-planning
problem is reduced to a shortest path problem in the TPN
search space, where the shortest path is the least-cost complete
plan.

We apply the three heuristics, Min, Additive and Max,
presented in [1], to compute an exact estimate for events in a
TPN. The Min heuristic is applied to a disjunction of sub-goal,
and the Additive and Max heuristics are applied to a
conjunction of sub-goals. A disjunction of sub-goals is a set of
goals where only one is selected. A conjunction of sub-goals is
a set of goals where all the goals are selected. A disjunction of
sub-goals in a TPN is represented by decision points, where
only one thread is selected. The Min heuristic for TPNs is
given in Equation 1, and also applies to the TPN primitives
Activity and With-Timing (Figure 12). The heuristic

cost of d1 (Figure 5), for example, is the thread with the
minimum cost to the End event: h(d1) = min(h(k) + c(d1,k),
h(e) +c(d1,e)) = min(30,35) = 30.

()
())t()t,e()e(jji

etargetst
imin min

ij

hcosth +=
∈

 (1)

A conjunction of sub-goals in a TPN is represented by
multiple threads extending from a non-decision event ei. These
are constructed by the Parallel operator. In this case, all
threads from ei must be selected. To compute the heuristic cost
of a non-decision event with multiple target threads, we apply
the HSP Additive heuristic [1], given in Equation 2.

()
()

∑
∈

+=
ij etargetst

jjii)t()t,e()e(hcosthadd (2)

The additive heuristic is admissible if threads extending
from a non-decision point converge at an event that has no
targets, as shown in Figure 13a. However, if the threads
converge at an event with at least one target, then the Additive
heuristic is inadmissible, as shown in Figure 13b. This is the
result of counting the cost of a thread multiple times. For
example, in Figure 13 the heuristic costs h(t1), h(t2),…h(tn)
each include the cost h(x). Thus, if the Additive heuristic is
used, then the cost h(pi) would be overestimated, and thus, is
inadmissible heuristic.

To address the issue of multiple counting [1] suggests the
Max heuristic (Equation 3). While the Max heuristic is an
admissible heuristic for problems with dependent sub-goals, it
often severely underestimates and not very informative. Recall,
in a TPN dependent sub-goals are threads that rejoin and
converge at the same event.

()
()

())t()t,e(e jji
etargetst

imax max
ij

hcosth +=
∈

 (3)

We propose an exact heuristic for TPN sub-graphs with
dependent sub-goals, called TPN-Additive given in Equation
4. This equation takes advantage of the construction of a TPN,

pi
x

t1
t2

tn

. . .

. . .
. . .

. . .
h(pi)

c(d
1
,t 1

)
h(t1)

h(x)

(a)

pi
x y

t1
t2

tn

. . .

. . .
. . .

. . .
h(pi)

c(p
i,t 1

)

h(t1)

h(x)
h(y)c(x,y)

(b)

Multiple Counting

Fig. 13. Example of a TPN sub-graphs with conjunctive sub-goals. (a)
Shows a TPN sub-graph ending at event x. (b) Shows a TPN sub-graph
ending at event y. If the additive heuristic is applied directly then the cost of
the thread from x to y is counted multiple times, resulting in an inadmissible
heuristic.

__

procedure Generate-Child-Nodes(Search-Tree-Node n,
Search-Tree tree) inserts child nodes into tree.
1. targets_sets ← {}
2. for each decision-point di ∈ Fringe(n) do
3. choicesi ← {tj|{tj ∈ Targets(di)}
4. targets_sets ← targets_sets ∪ {choicesi}
5. endfor
6. combinations ← Cross_Product(targets_sets)
7. for each set cseti ∈ combinations do
8. child_node
9. Parent(child_node) ← n
10. Fringe(child_node) ← cseti

11. g(child_node) ← g(Parent(child_node))
12. Insert(tree,child_node)
13. endfor
__

Fig. 11. Procedure to generate and insert new nodes into the search tree.
This is the second and final step of the Expand function.

ei

t1

Targets tj ∈ targets(ei)

t2

tn

. t
start end

ei

Fig. 12. Example of a TPN sub-graphs with disjunctive sub-goals.

ISRA 2006 6

where there is a start and end event for each sub-graph created
by the Parallel operator. The start event is referred to as
the parallel_start and the end event is referred to as the
parallel_end. For example, in Figure 13 the event pi is the
parallel_start and the event x is the parallel_end. With known
parallel start and end events, we can lookup the cost of a
parallel_end and subtract out the times that it is multiple
counted (Equation 4).

() ()[])e(_1)e(targets)e(

)e(

iii

i

endparallelhh

h

add

tpnadd

∗−−

=
 (4)

Our forward heuristic TPN planner computes the heuristic
costs of each TPN event by traversing backwards from the
TPN End event to the Start event. At each event the dynamic
programming principle is applied (see Equation 5) [10].





=
(5) _aise),e(

targetonehasorpointdecisionaise),e(
)e(

ii

iimin
i startparallelh

h
h

tpnadd

B. Search Tree Node Evaluation Function

During optimal TFP search, we use the heuristic costs of the
events to compute the estimated cost of a solution through a
search tree node n. The heuristic cost of n, H(n), is computed
from the heuristic costs of the TPN events in the fringe(n). If
H(n) is computed as the sum of the heuristic costs of each of
event in its fringe, then the cost of a shared sub-goal might be
counted multiple times. For example, in Figure 7, the search
tree node n0 contains decision points d1 and d2 and any thread
extending from d1 or d2 will converge at the event w. If
htpnadd(d1) and htpnadd(d2) are summed, then htpnadd(w), their
shared sub-goal, would be counted twice. To avoid this
remaining element of multiple counting, we define H(n) to be
the maximum over the events in fringe(n) (Equation 6). We
call H(n) TPN-Max. The evaluation function for a search tree
node is given in Equation 7. For example f(n0)=80 +
max(h(d1), h(d2)) = 80 + max(20,30)=110.

()
())e()(i

fe
max
i

hnH
nringe∈

= (6)

)()()(nHngnf += (7)

In short, the heuristic cost of all events in a TPN is
computed a priori. The TPN-Max heuristic is admissible, but
approximate, because it computes the cost of a relaxed TPN
ignoring the temporal constraints. Our essential contribution is
that the TPN-Additive estimate is much more informative than
that of the HSP Max heuristic.

VI. EXPERIMENTAL RESULTS

 We generate experiments with TPNs containing sub-
graphs created by all three of the operators to highlight the
performance of each heuristic (Figure 14). The activity costs
and temporal constraints are randomly generated. We increase
the level of difficulty by increasing the number of decision
points from 2 to 12, and thus, increasing the number of states.
Our results show a significant reduction in computation time

and space complexity as the problem difficulty increases, for
the TPN-Additive heuristic as compared to HSP Max.

On average, as the problems become more difficult, the

TPN-Additive explores makes less calls to the Expand
function than HSP Max (Figure 15), a reduction in
computation time. For example, with 12 decision points using
no heuristic resulted in a mean of 492 calls, HSP Max resulted
in a mean of 275 calls, and TPN-Additive resulted in a mean
of 169 calls. TPN-Additive had 39% fewer calls compared to
HSP Max. Similar results are shown when comparing the
average of the maximum number of nodes in the priority
queue, which corresponds to space complexity (Figure 16). In

2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

500

A
vg

. #
C

al
ls

 to
 E

xp
an

d
F

n.

P ro b le m D if f ic u lty (# d e c is io n p o in ts)

N o
H e u r is t ic

O p tim a l P la n n e r P e r fo rm a n c e T e s ts

H S P
M a x

T P N
A d d it iv e

(a)

Fig. 15. Results comparing the average number of calls to the Expand
function when using each heuristic.

2 4 6 8 10 12
0

100

200

300

400

500

600

700

A
vg

. m
ax

 n
o

de
s

in
 q

ue
u

e

P rob lem D iff icu lty (#dec is ion po in ts)

O p tim al P lanner Perfo rm ance T ests

N o
H euristic

H SP
M ax

T PN
A dd itive

(b)

Fig. 16. Results comparing the average of the maximum nodes in the queue
for expansion.

. . .

. . .

. . .

.

. . .

Decision Points

2 4 6 … 12

Fig. 14. Example TPN structure used in experiments. Heuristic functions were
compared for TPNs of this form with increasing numbers of decision points.

ISRA 2006 7

this case, with 12 decision points TPN-Additive stored 35%
fewer nodes than HSP Max.

VII. DISCUSSION

Our TPN plan executive adopts techniques inherent to
heuristic search planners that can solve problems with durative
actions. We formulate our problem as a state space search,
extract a heuristic from the problem encoding and then apply
A* search or other optimal state space search algorithms. This
is similar to other planners, such as FF [4], HSP [1] and SAPA
[3].

To summarize, we propose a novel solution to optimal plan
selection through temporal plan networks. We provided a
compact encoding of a TPN search state along with an
informative heuristic based on the encoding of a TPN. Given
these two contributions, we develop a systematic, fast forward
heuristic planner. The major computation occurs during the
Expand function. The Extend Threads procedure runs in
c ×O(nm), where n is the number of events, m is the number of
arcs in the TPN, and c is the number of times threads
converge. In the worst case, all possible feasible plans are
generated before the least-cost plan is selected. This is a result
of backtracking to the next best node in the search tree if the
current node being expanded corresponds to a temporally
inconsistent partial plan. Empirical analyses show that our
heuristic, TPN-Additive, considerably out-performs the HSP
Max heuristic when applied to TPNs.

ACKNOWLEDGMENT

This research was supported by the Lucent CRFP
Fellowship Program, and in part by MURI Airforce grant.

REFERENCES

[1] Bonet, B. and Geffner, H. 2001. Planning as heuristic search. AIJ: Sp.
Is. Heuristic Search, 129:5-33.

[2] Dechter, R., Meiri, I., Pearl, J., 1991. Temporal Constraint Networks.
Artificial Intelligence, 49:61-95.

[3] Do, M. and Kambhampati, S. 2002. Planning Graph-based Heuristics
for Cost-sensitive Temporal Planning. AIPS.

[4] Hoffman, J. and Nebel, B. 2001. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence
Research, 14:253-302.

[5] Elmaghraby. S. E. 1964. An Algebra for the Analysis of Generalized
Activity Networks. Management Science.

[6] Kim, P. Williams, B. and Abrahmson, 2001. Executing Reactive,
Model-based Programs through Graph-based Temporal Planning. IJCAI.

[7] Lemai, S. and Ingrand, F. 2004. Interleaving Temporal Planning and
Execution in Robotics Domains. AAAI. AAAI Press, Menlo Park,
California.

[8] Muscettola, N., Morris, P. and Tsmardions, I. KR, 1998. Reformulating
temporal plans for efficient execution.

[9] Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, New York.

[10] Walcott, A. 2004. Unifying Model-Based Programming and Path
Planning Through Optimal Search. S.M. Thesis, Massachusetts Institute
of Technology.

