5™ INTERNATIONAL SYMPOSIUM ON ROBOTICS AND AUTOMATION, SAN MIGUEL REGLA HIDALGO, MEXICO, AUGUST 25-28, 2006.

| SRA 2006

Efficient Extraction of Optimal, Temporally
Flexible Plans

Aisha Walcott and Brian Williams

Conmput er

Sci ence and Artificial
Massachusetts Institute of Technol ogy,

Intelligence Laboratory
Canbri dge, MA 02139 USA

{aisha,willians}@rit.edu

Abstract—Robots that operate in hazardous and dynamic
environments must be equipped with onboard reasonm
capabilities that enable them to autonomously genate mission
plans. To operate in such environments, the missiqgrlans must be
continuous and temporally flexible. For critical missions, such as
search and rescues, the success of the missionaglnot only on
the feasibility of the plan, but also on the qualyg of the plan.
Thus, to generate robust efficient, temporally fleible plans, a
measure of utility is required.

We introduce a novel, forward heuristic planner tha quickly
extracts the optimal, temporally flexible plan, gien a hierarchical
description of alternative contingency plans and atility function.
Contingency plans are encoded as Temporal Plan Nebrks
(TPNs). Our work presents two key innovations. Thdfirst is a
compact encoding of a TPN search state. The seconsl an
admissible and informative heuristic, TPN-Max. We enpirically
validate our solution on TPNs with increasing levebf difficulty.
Our results show that the TPN-Max heuristic performs
significantly better, for TPNs, than the Max heurigic used in the
forward heuristic planners [1].

I. INTRODUCTION

Today’'s emergencies, such as search and rescuesalna

disasters, and fires, continue to pose great cigdle and
threats to rescuers and emergency personnel (FIur&he
deployment of robots at the World Trade Center, site
example, highlighted the potential for robots td @ humans
in such. This work focuses on the development obmmoard

autonomous system that enables mobile robots tectsel

optimal mission plans. More specifically, we prdsziplanner
that searches for the best plan given the temporadtraints.

There is an extensive body of work on temporal ettees
that achieve robustness, by operating on a leastnitmnent
plan that leaves temporal flexibility. Temporalxilgility is
exploited by an executive to achieve robustnesteiaporal
disturbances. This is accomplished by dynamicalheduling
activities and projecting their consequences iht future, in
order to ensure correctness. The robustness bdeaks when
the temporal disturbances perturb the plan andecauplan
failure. In order to resolve such failures a slolanping
process must be invoked.

Research presented in [6] improves robustnessdo gian
failures by extending temporal planning and executo the
execution of contingent Temporally Flexible Plaig=ps).
These plans are encoded in a model called a Teinptaa

Network (TPN). TPNs are comprised of a nesting ¢

ISBN 970-769-070-4, ISRA 2006 Proceedings

alternative, temporally flexible sub-plans. Tempdiexibility
is achieved by generating plans without a fixedetsohedule.
The TPN planner presented in [6] adopts technicfoes
temporally flexible planners such as HSTS [8] akd@iET [7].
These planners adjust to varying execution timeactif/ities
by enforcing temporal constrains on the minimal sét
activities that ensure successful plan execution.

While TPNs have proven to be a robust approach to

contingent plan execution, the TPN planner preseme[6]
makes no guarantee on the quality of the executed im
terms of maximizing utility. That is, contingencgcatemporal
flexibility, while providing robustness, are insigfent for
critical missions where the cost executing thevas in the
plan affects the success of the plan.

This research extends TPNs to include a measunélioy,
and provides a novel online method for continuousdgating
the selection of the optimal TFP. We develop a &dv
heuristic TPN planner, and present two key innovesi The
first is a compact encoding of a TPN search sflte. second
is an effective, admissible heuristic called TPNxMM&ur
results show significant a reduction in both space time
using the TPN-Max heuristic for TPNs, as compam@dhe
Max heuristic introduced in [1], and a the unifocost search.

Il. EXAMPLE SCENARIO

Consider an urban search and rescue mission, @dlarth-
and-Sense, in which an agile autonomous air vel@ohd/) is
deployed (Figure 1). The goals of the mission aredllect
images while exploring the environment and searoh f
victims. To explore the environment the robot mstigate a
corridor and search one of three places for victims Office,
Corridor-B, or the Lab.

Fig. 1. Example mission in which an autonomousvahicle searches a
building for victims.

| SRA 2006

In this mission, the cost of searching either tloeridor-B
or the Lab is much greater than the cost of expiptihe
Office. Additionally, the Office is closest to tH&AV, and the
most likely place where victims may be trapped. eadible
planner might select a sub-optimal plan that inegiGorridor-
B or the Lab, neglecting the Office where the widiare
located.

Search-and-Sense [15, 100]
Search-Office
[0,15]

b 4 20
<" Search-Corridor-B
[0, 15]

Search-Corridor-A
70 Tx-Raw-Data
Search-Lab [10,15
0, 15 = 4 10
Stereo-Vision 30 TX-CS?%EI?]ata
10, 30] - ;
25 [0, 20
Analyze-Data
1,5

Mono-Vision
[1.5]
20 10

Fig. 2. Example TPN for a Search-and-Sense mission

In this example, the feasible planner does notuttelthe
cost of executing activities when searching folanpthus, a
highly sub-optimal plan might be selected. Our gmalto
modify a temporally flexible planning model and angorate
the cost of executing activities. An example ofsthnodel,
called a Temporal Plan Network (TPN) is given iglfe 2.

I1l. TEMPORAL PLAN NETWORKS

Temporal Plan Networks were introduced in [6]. Thegw
from Temporal Constraint Networks [2] and Simplenperal
Networks [8]. TPNs support activities, simple temglo
constraints, predecessor and successor relatioms]
contingencies. TPNs are similar in structure to ivigt
Networks [5]; however TPNs support flexible timeubds,
concurrency, and mutex relations. Figure 3 and reigd
provide a subset of the TPN grammar and mappingsto
graphical equivalent. For a complete definitionT#fNs see
[6].

TPN- (Sequence TPN,,..., TPN,) | (Choose TPN,,...,
(Paral l el TPN,,..., TPN,) | Primitive

Primitive - Act i vi t y(cost) [lb,ub] | Wt h-Ti mi ng <TPN>[lb,ub]

TPN,)

Fig. 3. Grammar used to encode a Temporal Plawadilet

A TPN recursively combines the primitive&cti vity
andW t h- Ti mi ng, with the operatorSequence, Choose
and Par al | el
alternative contingency plans. Given a utility ftion, each
activity is parameterized with an associated cost.

Our algorithm operates on TPN graphs. The nodasTiRN

graph are callecevents and represent temporal events that

relate the start and end times of activities andr'BN sub-
graphs. The global start and end of a TPN are sJabtled
Start and End. Special events in the TPN creatdtidoghoose
operator are referred to dscision points (shown in Figure 5
with double circles). In Figure 5, events, d,, and d are
decision points. The arcs in a TPN are labeled Wikible

temporal bounds and impose an ordering betweentevan

¢

to represent a hierarchical description o

arc may have at most one activity. For exampleatioeb- ¢ is
labeled with the activity Search-Corridor-A witht@mporal
bound of [5,20], which implies that the activity stutake a
minimum of 5 units of time and a maximum of 20 ardf time
to execute. Events at the tail of an arc are calegkts. For
example, event ‘a’ has two targets: b and Hinally, a
sequence of continuous events and arcs a TPN lisdcal
thread. An example of a thread in Figure 5 isb- c— d».

[b, ub]

O—0O

Acti vi t y[lb, ub]

W t h- Ti i ng [Ib, ub]

Activity [Ib, ub]

Sequence TPN,,..., TPNy TPN, . TPN,
O—=0O—>0—0
Paral | el TPN,,..., TPN
Choose TPN,,..., TPNy

Fig. 4. Mapping from TPN grammar to TPN Graph.

Search-and-Sense [15, 100]

© @

Stereo-\ision « Tx- Comp Datd
C 10, 30] 0, al)
25 o, 20]

Mono-Vision AnaJyze Data

‘(® [1 5] 0 ® lC5 @

Fig. 5. Bold sub-graph represents the optimaliliéaplan for the Search-
and-Sense mission.

Kim et. al. developed a TPN planner called Kirk. [B]rk
applies a modified network search algorithm in otdeextract
a feasible temporally flexible plan in a TPN [6]. A feasible
lan is acomplete andconsistent set of contiguous threads in a
PN.
A complete plan is a TPN sub-graph with three properties:
1) The sub-graph originates at the start eventeaus at
the end event.
2) The sub-graph contains only one thread extending
from each decision point in the sub-graph.
3) The sub-graph includes all threads extendingnfro
each non-decision event.
A consistent plan is a TPN sub-graph with one property:
1) The sub-graph does not violate any temporal
constraints. That is, the temporal constraintshef t
sub-graph are satisfiable [6] [8]. This is detechsd

| SRA 2006

applying a graph search algorithm to detect tempor®PChoices map to the same search state. The partial plan in

inconsistencies [8].

While the Kirk planner searches a TPN for a feasg#an, it
does not address planning problems for which thet ob
executing activities is critical to the successtlo mission.
Thus, we develop an optimal forward heuristic pEmthat
incorporates the costs of executing activities, aisgés an
admissible TPN heuristic, called TPN-Max, to effitily and
systematically explore the search space. Our ptaexigacts
the optimal TFP if, and only if, one exists. Thddsub-graph
in Figure 5 represents the optimal TFP for the Geand-
Sense mission. The optimal TFP is, in turn, useid@g to an
executive, which schedules and dispatches theitiesivn the
plan to the specified robot(s) [7] [8].

IV. OPTIMAL PLAN SELECTION

We formulate the problem of selecting the optifealsible
TFP as a state space search problem. We defingial péan,
present a compact encoding of a TPN search stai,
describe the search tree representing the TPN Fsesmarce.
Finally, the algorithms for the Expand functiontthaaps TPN
search states to successor states are given.

A. Partial Plan Encoding

The search space of an optimal planning problemsists of
all possiblepartial plans in a TPN. A partial plan is an
incomplete plan, comprised of threads in a TPN guaiph.
More specifically, a partial plan is a set of cgobus
concurrent threads in a TPN that originate at ttaet 2vent,
all threads have not been extended to the End ¢Fentre 6).
A partial plan satisfies two properties of a conglplan, that
is, properties 2) and 3).

We compactly encode a partial plpras a paikPPFringe,
PPChoices) where:

-PPFringe(p) = {eyn&,....&}, the set of un-extended

terminal events,;eA terminal event is the event at the end 10.

of a thread.
-PPChoices(p) = {(dy,&), (d2,§), ..., (d,&)} the set of pairs
of choices made at decision pointspia threads. Each pair
contains a decision point;,ind one target eveny ef the
decision point.
Figure 6 depicts a partial plan denoted by theoWaithg pair of
sets({i,t, End}, {(d1,€), (dz,p), (d3,0)}).

Fig. 6. Example of a partial plan from the Seamold-Sense TPN.

B. TPN Search Sate

Figure 6, for example, maps to the search statgef, (d.,p),
<d3!g>}
C. SearchTree

Our forward heuristic planner constructs a searek in
order to systematically explore the search spa@naiptimal
TFP problem. The search tree represents the sat ohique
possible search states.

M, di:o0

e @p] (@e @a| e dnldk dp] @k da]dk, o]
nll{d3}:125 IS NGg1s MHID0 150180 Ny

@9 <d3,j>| <dg,g>|1 <d3,j>| <d3,g>| <d3,j>|

N {135 Ng(145 Ng{185 Nyg{195 Nyq {140 Ny5{:150

Fig. 7. Complete search tree representing theclsespace of the Search-
and-Sense TPN. Leaf nodes are nodes with no chjldren; - nio.

The tree is made up abdes andbranches that are uniquely
dabeled. A noden is labeled with a set a set of un-extended
terminal events denotefilinge(n). A branchb in the search
tree is labeled by a set of pairs of choices dehdteices(b).
The set of choices contain pairs of decision poaitis targets.
A path through the tree is a sequence of nodes and k¥anch
originating at the root. The complete search tree the
Search-and-Sense TPN is given in Figure 7.

rocedure Node_To_Partial _Pl an(Search-Tree tree, Node
, TPN tpn) returns a partial plan.
PPFringe « Fringe(n)
PPChoi ces ~ {}
t <« n, initialize search tree node
while Parent(t) # Root(tree) do
PPChoi ces ~PPChoi ces [Branch(t, Parent (t))

t « Parent(t)
endwhi | e
Create TPN sub-graph partial plan
Initialize visited of each TPN event to fal se

e ~ Start_Event(tpn)

p
n
1
2
3
4.
5
6
7
8
9

11. stack ~ {}

12. Push(stack, e)

13. while not (Enpty(stack)) do

14. e ~ Pop(stack)

15. if not(Visited(e))then

16. Visited(e) « true

17. if Decision_Point(e) == true then

18. target ~ Get_Target (e, PPFringe)

19. arcs — arcs O {Get_TPN Arc(tpn,e,target)}
20. events ~ events O {target}

21. Push(st ack, target)

22. el se

23. for t, Otargets(e) and not(Visited(t,)) do
24. arcs ~ arcs O{Get_TPN_ Arc(tpn,e, t,)}
25. events — events O{t}

26. if t, O PPFringe then

27. Push(stack,t,)

28. endf or

29. endwhile

30. return Partial_Plan(arcs, events)

Fig. 8. Procedure to map a search tree node égjitvalent partial plan.

The root of the tree represents the initial stdtan optimal

The choicesPPChoices, in a partial plan are used to denotergp proplem. The root is a partial plan which isnpoised of

a TPN search state. All partial plans with equimglsets of

a set of threads that originate at the Start exedteither at the

| SRA 2006 4

first decision point reached or the End event. Thet is converged at an eveng if e is in either in the set

encoded as follows: selected_events(n) or in the set of selected events of an
-PPFringe(root) = {e;, &, ..., &}, where each event;és ancestor of node ofn. For example, in Figure 7,
either a decision point or the end event of the TPN selected events(ny) = {Start, End, a, b, ¢ d} and
-PPChoices(root) = {}. selected_events(ny) = {e, f, &, i, 0, w, p, t, v}, where threads

dieno in Figurg 4 is the root node that correspond$i¢o t conyerge at events w and End (Figure 10c).
partial plan comprised of three threads: 1) Start. b d;, 2)
Start-a-b-c-d,, and 3) Start. End; Noden, is compactly or ocedur e Ext end- Event s(Node n. TPN tpn) returns
encoded aé{d 1,d2,End}, {}) updated n, if tenporally consistent; otherw se fal se.
The search tree is constructed by applying theaBap 1- StZCk (;f{}'
function to the least-cost leaf node in the treee We an o ated fringe - {}
. . . X or each event f, O fringe(n) do
evaluation function, as in A* search, to determitie Push(f,, stack)
estimated cost of a feasible plan through a node, @ V\G’lls: Legg{ .()E ~tt(rgteack)) do
determine the order in which leaf nodes are expaif@e The e . Pop(;pagk)
evaluation function is the sum of the path cosh),g(and a
heuristic,H(n). The path cost of each node is shown in Figurg

NN

if Threads_Converge(e) and
not (Tenporal | y_Consistent(e)) then
return fal se

7. We describe the equation for computiihgn) in Section 4. 10. el se if Decision-Point(e) = true then

A node in the search tree maps to a unique paiaalp in 1 o suPdated_fringe - updated_fringe O e
the TPN. The procedure is given in Figure 8, andsigts of 3. for each t, O targets(e,tpn) do
two main steps. The first step is to constructe¢heoding ofp 14 if not(Visited(t;)) then
as(PPFringe(p), PPChoices(p)) (Lines 1-7). The second stepig' ?n(zi)tgd(%()”) - tcrous;(e' t)
is to map the encoding to its actual partial plarthie TPN 1. selected_events - sel ected events O{t}
(Lines 8-28). 18. Push(stack, t,)

19. endf or
D. Search Tree Expansion 20 Cndwhile

To construct the search tree the Expand funcsaapplied 2%- r;lt Bgﬁ(ﬂ) ~ updated_fringe
to the least-cost leaf node in the current treee Hxpand '
function is comprised of two procedures: 1) Exteéhcbads
(Figure 9) and 2) Generate child nodes (Figure 11).

1) Extend Threads: To extend threads of partial plan
corresponding to a nodae, threads from each event in
fringe(n) are extended until either a decision point i<heal
or the end event is reached along each thread.s iBhi S »En) Sa
accomplished by applying a modified version of gpieFirst 1 550 _”@,v@ lfb 0
Search (DFS) algorithm (Figure 9). As threads atergled &% _ @
during the modified DFS, activity costs are addedthie I Rjrw \(11
current path cosg(n), of noden. When an evertt is reached @
during DFS, two cases are checked.

-Case 1 (Lines 10-11):t; is a decision point signaling a Fig. 10. lllustration of extending threads of nodeshown in bold. The gray
choice between possible threads. At this pdintis not threads were extended by nade
extended further, anfilinge(n) is updated to include the event 2) Generate Child Nodes: Once a search tree nodehas
ti. For example, the fringe of search tree nogddringe(n,), is peen extended, its fringe either is empty or costaiecision
set to {e,p}. The threads of, originating from events e and p points. If the fringe is empty then the node cqueesls to a
are extended, as illustrated in Figure 10. Firss extended omplete plan. Otherwise, the targets of the deigoints in
along the thread -ef - ds. The event dis a decision point, fringe(n) are used to generate new child nodes in the Isearc
and thus, is not extended further (Figure 8a). TD&S is o0 This is done by creating the set of all paiesthoices by

co_ntinued, Exter(;dir!g tEe thre_ach'rquoTwqund_ At this computing the cross-product between the targettevafreach
point, two threads in the partial plan that cor@sfs ton, decision point in theringe(n) (Figure 11, Lines 1-6). For

have converged at the End event (Figure 10b). Tectiahen example, the root nodeg has two decision points in its fringe

threads converge Case 2 is applied. ; . .
-Case 2 (Lines 8-9)1; is an event where two or more threadsdl and d. The event dhas two target choices, either e or k;

have re-joined and converged. This case serveptnposes: and g has 'Fhree target choices, p, g, orr. Thus, thesesix
1) to avoid redundant extension of threads, antb 2pst for sets of choices that result from performing thessrproduct
temporal consistency, as done in [6]. To detectntieeads between thektargetks of 1kdmd EQ: Ee,k}x{p,q,r} = {{e.n}
converge, we maintain a table that maps each sé@emode {e,lq}, {e.r} { p} { ,.q.},. {_ - ac set represents a new
to its corresponding set of selected events ipaial plan, ch_|Id node, w_h|ch is initialized and inserted ithe search tree
denotedselected events. The selected events of a nadare (Figure 11, Lines 7-13) as new leaves.

the events reached during expansion of nmd€hreads have

Fig. 9. Procedure to extend the fringe events séarch tree node. This is
the first step of the Expand function.

Threads Conver é(é"' s
[/ /

At

(©)

| SRA 2006

procedure Gener at e- Chi | d- Nodes(Sear ch- Tr ee- Node n,
Search-Tree tree) inserts child nodes into tree.

1. targets_sets ~{}

2. for each decision-point d, O Fringe(n) do
3. choices, « {t;[{t; O Targets(d)}

4. targets_sets ~ targets_sets O {choices;}
5. endfor

6. conbinations ~ Cross_Product(targets_sets)
7. for each set cset, O conbinations do

8. chi | d_node

9. Parent (child_node) ~ n

10. Fringe(child_node) ~ cset,

11. g(child_node) ~ g(Parent(child_node))
12. Insert(tree, child_node)

13. endfor

Fig. 11. Procedure to generate and insert newshode the search tree.

This is the second and final step of the Expandtfan.

V. TPNHEURISTIC

To efficiently focus the search towards the optifiaP, we
develop heuristic equations applied to TPN evedésoted
h(e), and the heuristic used for search tree nodesotdd
H(n). The heuristic cost of each TPN event is comppigar
to the search for the optimal TFP. We present trauation

function f(n) which represents the estimated cost of a seai h(p;)

tree noden. The estimated cost of a search tree node an
underestimate of the actual cost ofaution throughn. A
solution is feasible temporally flexible plan. Otorward
heuristic TPN planner finds the optimal feasibléugon by
expanding the leaf nodes in order of their estichatest.

A. Heuristic for TPN Events

To efficiently focus the search towards the optifiaP, we
adopt a strategy similar to that of forward heigigtanners,
such as HSP [1] and FF [4]. These planners defipkaraning
problem as a state space search problem, and teléagstics
from the encoding of the problem. The heuristi@xsracted

cost of d (Figure 5), for example, is the thread with the
minimum cost to the End everti(d;) = mint(k) + c(dy,k),
h(e) +c(d,e)) = min(30,35) = 30.

Targetsy; U targetsé)

Fig. 12. Example of a TPN sub-graphs with disjiuecsub-goals.

h.. €)= min (cost (ei,tj)+h(tj)) 1)

t;Otargets(e;)
A conjunction of sub-goals in a TPN is representsd
multiple threads extending from a non-decision ¢eemhese
are constructed by thear al | el operator. In this case, all
threads frome must be selected. To compute the heuristic cost
of a non-decision event with multiple target thrgade apply
the HSP Additive heuristic [1], given in Equation 2

Multiple Gounting
TN .

(b)

Fig. 13. Example of a TPN sub-graphs with conjivecsub-goals. (a)
Shows a TPN sub-graph ending at event x. (b) ShW#$N sub-graph
ending at event y. If the additive heuristic is lgggpdirectly then the cost of
the thread from x to y is counted multiple timessulting in an inadmissible
heuristic.

he €)= (coste,t,) +h(t,))

t;Otargetde;)

(@)

The additive heuristic is admissible if threadseexiing
from a non-decision point converge at an event ks no

from therelaxed version of the problem. A relaxed planningtargets, as shown in Figure 13a. However, if theeatls

problem is a simpler version of the problem. Weirdefa
relaxed TPN as one in which the temporal conssaané not
considered; thus, backtracking to a consistent psamot
required. With a relaxed TPN, the optimal pre-plagn
problem is reduced to a shortest path problem @& TRN
search space, where the shortest path is thedesistomplete
plan.

We apply the three heuristics, Min, Additive and xyla
presented in [1], to compute an exact estimateet@nts in a
TPN. The Min heuristic is applied to a disjunctiminsub-goal,
and the Additive and Max heuristics are applied &o

converge at an event with at least one target, tieidditive
heuristic is inadmissible, as shown in Figure 1Bhis is the
result of counting the cost of a thread multiplees. For
example, in Figure 13 the heuristic cob(s,), h(ty),...h(t,)
each include the co$t(x). Thus, if the Additive heuristic is
used, then the cos(p;) would be overestimated, and thus, is
inadmissible heuristic.

To address the issue of multiple counting [1] sstgé¢he
Max heuristic (Equation 3). While the Max heuristg an
admissible heuristic for problems with dependemt-goals, it
often severely underestimates and not very infaumaRecall,

conjunction of sub-goals. disunction of sub-goals is a set of in a TPN dependent sub-goals are threads thatnrejod

goals where only one is selectedcayjunction of sub-goals is
a set of goals where all the goals are selectadisjinction of
sub-goals in a TPN is represented by decision goinhere
only one thread is selected. The Min heuristic T&Ns is
given in Equation 1, and also applies to the TPMhitives
Activity andWth-Ti m ng (Figure 12). The heuristic

converge at the same event.
hmax (ei) = maX (COSt (ei ! ti) + h(tj))
t;Otargets(e;)
We propose an exact heuristic for TPN sub-graphh wi

dependent sub-goals, called TPN-Additive given gqudtion
4. This equation takes advantage of the constmucti@a TPN,

®3)

| SRA 2006

where there is a start and end event for each mphgreated

and space complexity as the problem difficulty @ages, for

by thePar al | el operator. The start event is referred to athe TPN-Additive heuristic as compared to HSP Max.
the parallel_start and the end event is referred to as the On average, as the problems become more diffithé,

parallel_end. For example, in Figure 13 the eventip the
parallel_start and the event x is thmarallel_end. With known
parallel start and end events, we can lookup tret ob a
parallel_end and subtract out the times that it is multiple
counted (Equation 4).

I’hc)nadd (e|) =
he @) —[(targetde)| 1) Oh(parallel_end e

Our forward heuristic TPN planner computes the isdar
costs of each TPN event by traversing backwards ftiee
TPN End event to the Start event. At each eventdjmamic
programming principle is applied (see Equation1®)]]

h(ei) — {hmin (ei)a

htpnadd (ei)-
B. Search Tree Node Evaluation Function

During optimal TFP search, we use the heuristitscosthe
events to compute the estimated cost of a soldutioough a
search tree node The heuristic cost af, H(n), is computed
from the heuristic costs of the TPN events infitiege(n). If
H(n) is computed as the sum of the heuristic costsach of
event in its fringe, then the cost of a shared guodl-might be
counted multiple times. For example, in Figurehi& search
tree nodeny contains decision points dnd @ and any thread
extending from ¢ or d will converge at the event w. If
Ntpnacd(d1) and hipnaga(dz) are summed, thehgnag(w), their
shared sub-goal, would be counted twice. To avdid t
remaining element of multiple counting, we defii@) to be
the maximum over the events fringe(n) (Equation 6). We
call H(n) TPN-Max. The evaluation function for a searcletre
node is given in Equation 7. For exampl@ny)=80 +
max(h(d,), h(d,)) = 80 + max(20,30)=110.

)] (4)

e isadecision point or hasonetarget
e isaparallel _start (5)

H (n) = ng_a>(<)(h(ei)) ()
f(n) = g(n) + H (n) ©)

In short, the heuristic cost of all events in a THN
computed a priori. The TPN-Max heuristic is adntiksi but
approximate, because it computes the cost of xe@ldPN
ignoring the temporal constraints. Our essentiatrioution is
that the TPN-Additive estimate is much more infotirethan
that of the HSP Max heuristic.

VI. EXPERIMENTAL RESULTS

LT3
Nane A\

R

b4

ok ol

@ i i ..
i
Q
@ . i z ‘Q
Decision Poim

2 4 6..12

Fig. 14. Example TPN structure used in experimétsiristic functions were
compared for TPNs of this form with increasing nemsbof decision points.

Optimal Planner Performance Tests

No

LCL' . Heuristic

e}

c 30

§ . HSP
In| M ax
8 = /

2 / TPN
8 / Additive
* o /

d’ ’,Jf

z w

—

7 2 s s T 1w
Problem Difficulty (#decision points)
(a)

Fig. 15.
function

Results comparing the average numberatié ¢o the Expand
when using each heuristic.

Optimal Planner Performance Tests

g

g

&

/TPN
/Additive

g

Avg. max nodes in queue
8

g8

,
12

0

n point:
Fig. 16. Results comparing the average of the maximum nodége queue
for expansion.

TPN-Additive explores makes less calls to the Expan

4 é 8
Problem Difficulty (#decisio

function than HSP Max (Figure 15), a reduction in

We generate experiments with TPNs containing sulgomputation time. For example, with 12 decisionnpousing

graphs created by all three of the operators tdligigt the
performance of each heuristic (Figure 14). Thevégticosts
and temporal constraints are randomly generatedindfease
the level of difficulty by increasing the number décision
points from 2 to 12, and thus, increasing the nunalbetates.
Our results show a significant reduction in compatatime

no heuristic resulted in a mean of 492 calls, HS# kesulted
in a mean of 275 calls, and TPN-Additive resultechimean
of 169 calls. TPN-Additive had 39% fewer calls qgared to
HSP Max. Similar results are shown when comparimg t
average of the maximum number of nodes in the ipyior
gueue, which corresponds to space complexity (Eig). In

| SRA 2006

this case, with 12 decision points TPN-Additiverstb 35%
fewer nodes than HSP Max.

VIl. DISCUSSION

Our TPN plan executive adopts techniques inherent t
heuristic search planners that can solve probletthsdurative
actions. We formulate our problem as a state sgaegch,
extract a heuristic from the problem encoding drmehtapply
A* search or other optimal state space search itthgas. This
is similar to other planners, such as FF [4], HEPahd SAPA
[3].

To summarize, we propose a novel solution to optpten
selection through temporal plan networks. We predica
compact encoding of a TPN search state along with a
informative heuristic based on the encoding of &NTBiven
these two contributions, we develop a systemadst, forward
heuristic planner. The major computation occursimduthe
Expand function. The Extend Threads procedure rums
¢ xO(nm), where n is the number of events, m is tirabrer of
arcs in the TPN, and c is the number of times tsea
converge. In the worst case, all possible feasidas are
generated before the least-cost plan is selectad.ig a result
of backtracking to the next best node in the setmeh if the
current node being expanded corresponds to a tehpor
inconsistent partial plan. Empirical analyses shbat our
heuristic, TPN-Additive, considerably out-perforriee HSP
Max heuristic when applied to TPNs.

ACKNOWLEDGMENT

This research was supported by the Lucent CRFP
Fellowship Program, and in part by MURI Airforceagt.

REFERENCES

[1] Bonet, B. and Geffner, H. 2001. Planning as hearisarchAlJ: Sp.
Is. Heuristic Search, 129:5-33.

[2] Dechter, R., Meiri, I., Pearl, J., 1991. Temporan€traint Networks.
Avrtificial Intelligence, 49:61-95.

[3] Do, M. and Kambhampati, S. 2002. Planning Graptedbadeuristics
for Cost-sensitive Temporal PlanningPS.

[4] Hoffman, J. and Nebel, B. 2001. The FF planningesys Fast plan
generation through heuristic seardaurnal of Artificial Intelligence
Research, 14:253-302.

[5] Elmaghraby. S. E. 1964. An Algebra for the AnalysfsGeneralized
Activity Networks. Management Science.

[6] Kim, P. Wiliams, B. and Abrahmson, 2001. ExecutiRgactive,
Model-based Programs through Graph-based TemplarahiRg.|JCAI.

[7] Lemai, S. and Ingrand, 2004 Interleaving Temporal Planning and
Execution in Robotics DomainsAAAIl. AAAI Press, Menlo Park,
California.

[8] Muscettola, N., Morris, P. and TsmardionsKR, 1998. Reformulating
temporal plans for efficient execution.

[9] Nilsson, N. 1971. Problem-Solving Methods in Adiél Intelligence.
McGraw-Hill, New York.

[10] Walcott, A. 2004. Unifying Model-Based Programmimgd Path
Planning Through Optimal Search. S.M. Thesis, Masssetts Institute
of Technology.

