

Motivation

Specifications for setting a dinner table:

- Necessity of object placements
- Correct object positions
- No collisions
- Placement orders

Not Markovian in object poses

Expressible in Linear temporal logic (LTL), a flexible specification language used in:

- Synthesis of verifiable controllers^[1]
- Reinforcement learning^[2]
- Goal description in symbolic planning^[3]

Aim: Infer task specifications from demonstrations

Approach: Bayesian specification inference for task specifications as LTL formula

Bayesian Formulation

$$P(\varphi|\boldsymbol{D}) = \frac{P(\varphi)P(\boldsymbol{D}|\varphi)}{\sum_{\varphi \in \boldsymbol{\varphi}} P(\varphi)P(\boldsymbol{D}|\varphi)}$$

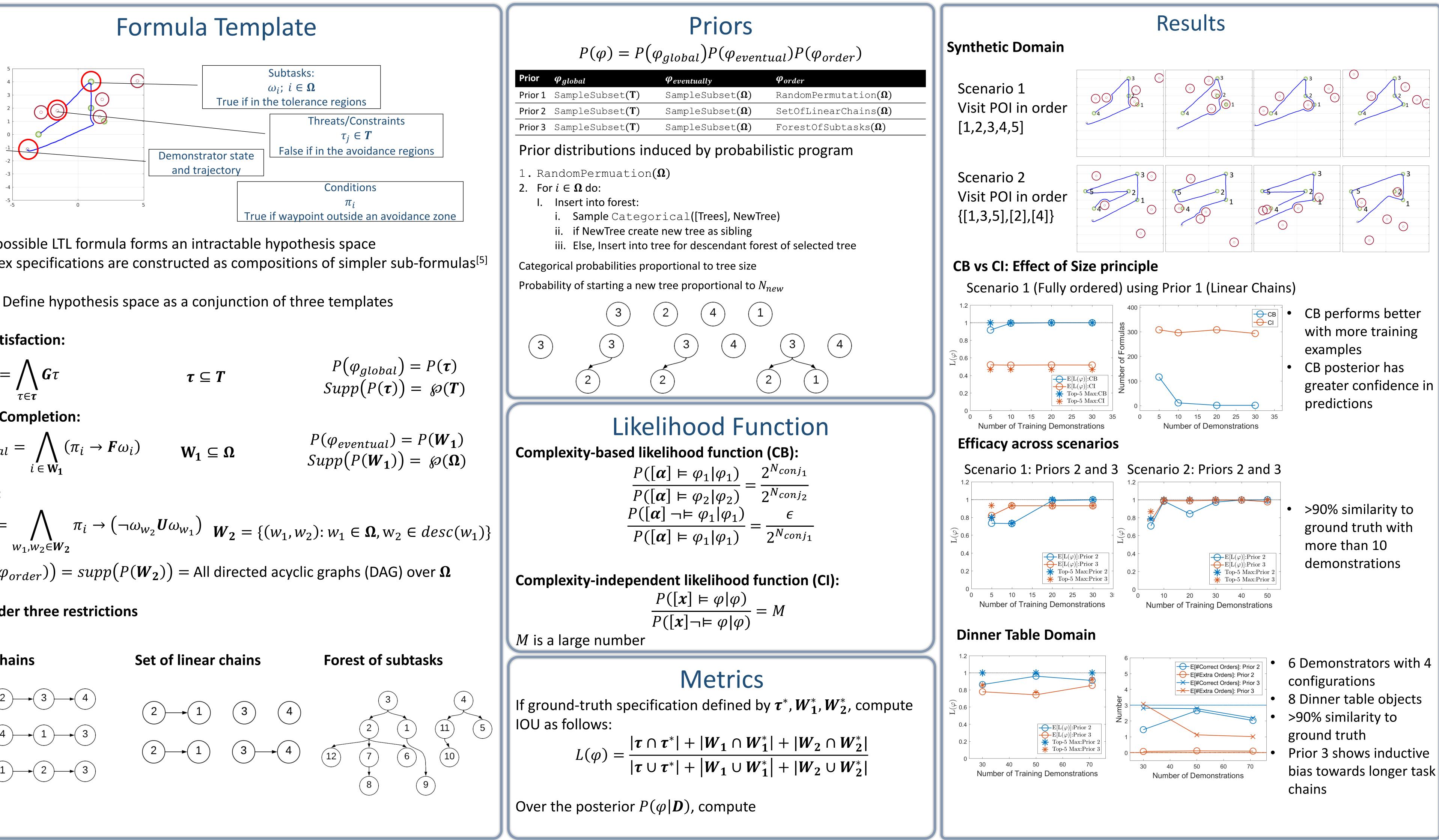
- $P(\varphi)$ must have positive support over all relevant formulas.
- $P(\mathbf{D}|\varphi)$ is the likelihood distribution that honors the size principle:
 - Large likelihood for complex formula.
 - Small likelihood for simple formula
 - Number of conjunctions a measure of formula complexity
- Probabilistic programming languages for sampling based inference^[4]

References

"Temporal-Logic-Based Reactive Mission and Motion Planning," in IEEE 11 H. Kress-Gazit, G. E. Fainekos and G. J. Pappas. Transactions on Robotics, vol. 25, no. 6, Dec. 2009

[2] X. Li, C. I. Vasile and C. Belta, "Reinforcement learning with temporal logic rewards," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC.

[3] Camacho, A., Triantafillou, E., Muise, C.J., Baier, J.A. and McIlraith, S.A., "Non-Deterministic Planning with Temporally Extended Goals: LTL over Finite and Infinite Traces", AAAI 2017


[4] Goodman, N.D. and Stuhlmüller, A., 2014. The design and implementation of probabilistic programming languages [5] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in property specifications for finite-state verification. In Proceedings of the 21st international conference on Software engineering (ICSE '99). ACM, New York, NY, USA.

Acknowledgements

This research was funded in part by Lockheed Martin Corporation and the Air Force Research Laboratory. Approved for Public Release: distribution unlimited, 88ABW-2018-2502, 16 May 2018

Bayesian Inference of Temporal Task Specifications from Demonstrations

Ankit Shah, Pritish Kamath, Shen Li, Julie Shah {ajshah, pritish, shenli, arnoldj}@mit.edu

- Every possible LTL formula forms an intractable hypothesis space
- Complex specifications are constructed as compositions of simpler sub-formulas^[5]

Key Idea: Define hypothesis space as a conjunction of three templates

Global satisfaction:

$$\varphi_{global} = \bigwedge_{\tau \in \tau} \mathbf{G}\tau \qquad \mathbf{\tau} \subseteq \mathbf{T} \qquad P(\varphi_{global}) = P(\tau) \\ Supp(P(\tau)) = \mathcal{P}(\tau)$$

Eventual Completion:

 $\varphi_{eventual} = / (\pi_i \to F \omega_i)$

Ordering:

$$\varphi_{order} = \bigwedge_{w_1, w_2 \in W_2} \pi_i \to \left(\neg \omega_{w_2} U \omega_{w_1}\right) \quad W_2 = \{(w_1, w_2) : w_1 \in \Omega, w_2 \in des\}$$

 $Supp(P(\varphi_{order})) = supp(P(W_2)) = All directed acyclic graphs (DAG) over <math>\Omega$

We consider three restrictions

Linear Chains $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4$ $2 \rightarrow 4 \rightarrow 1 \rightarrow 3$ (4)→→(1)→→(2)→→(3)

- Prior 3 shows inductive bias towards longer task