

Notions of Safety with Uncertain Specifications

RSS 2019 Workshop on Combining Learning with Reasoning

Ankit Shah, Julie Shah {ajshah, arnoldj}@mit.edu

Motivation

- Linear temporal logic (LTL) formulas are an expressive means for specifying non-Markovian tasks.
- Prior research relies on LTL to automaton compilation for planning. However this is restricted to a single LTL formula.
- In many application there is an inherent uncertainty in specifications.^{[1],[2]}
- In general specifications are expressed as a belief $P(\varphi)$ over support $\{\varphi\}$.

Question 1: What does satisfying a belief $P(\varphi)$ mean?

Question 2: What are the implications of the answer to Q1?

Evaluation Criteria

Most Likely $\mathbb{1}([\alpha] \vDash \varphi^*)$ $\varphi^* = argmax_{\varphi \in \{\varphi\}} P(\varphi)$

Satisfy only the most likely formula.

Minimum Regret

$$\sum_{\varphi \in \{\varphi\}} P(\varphi) \mathbb{1}([\alpha] \models \varphi^*)$$

Maximize satisfaction weighted by probability.

Maximum Coverage

$$\frac{1}{|\{\varphi\}|} \sum_{\varphi \in \{\varphi\}} \mathbb{1}([\alpha] \vDash \varphi^*)$$

Satisfy the largest set of unique formulas.

Chance Constrained

$$\sum_{\varphi \in \varphi^{\delta}} P(\varphi) \mathbb{1}([\alpha] \vDash \varphi^*)$$

 δ is the maximum failure probability.

Dinner Table Setting: A LfD Case Study

- 30 demonstrations
- 25 unique formulas in the posterior distribution \bullet

Invalid action

. . .

- The robot honors the most restrictive task specification
- The ground-truth constraints are only 3rd most likely specification

[1] Shah, A., Kamath, P., Shah, J. A., & Li, S. (2018). Bayesian inference of temporal task specifications from demonstrations. In Advances in Neural Information Processing Systems (pp. 3804-3813). [2] Kim, J., Banks, C. J., & Shah, J. A. (2017, February). Collaborative planning with encoding of users' high-level strategies. In Thirty-First AAAI Conference on Artificial Intelligence.

Visit our website for more! http://interactive.mit.edu

