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ABSTRACT 

 

The United States Air Force strives to maximize human abilities in highly complex operational environments, and 

artificial intelligence (AI) affords opportunities to transform voluminous data into meaningful information to support 

human decision making. A Mission Analysis and Review System (MARS) was developed to explore how AI can 

automate current mission debrief processes and to visualize that information in a mission-specific context. The current 

effort explored the development of AI to assist Air Force mission commanders in evaluating the mission performance 

of a Large Force Exercise (LFE), which affords pilots the chance to hone their abilities to execute their individual role 

within a mission that may include dozens of aircraft.  

 

In an earlier but related effort, the research team developed AI to automatically label mission phases of a two-ship 

strike formation using entity state data of aircraft flown by human pilots in simulation. In the current effort, an LFE 

with 18 friendly aircraft was simulated using the Joint Semi-Automated Forces (JSAF) simulation engine. Models 

were created to score both individual aircraft behavior as well as overall mission objective success. Templates were 

used to determine if acceptable levels of key mission objectives are being estimated and evaluated. By enumerating 

the propositions included in the three temporal behaviors in the classification model, the behaviors the model deems 

necessary for evaluating the execution as acceptable were interpreted. Results showed that mission phases and their 

objectives could be correctly classified with an accuracy of .92 to .96 using a technique where mission objectives were 

encoded in a linear temporal logic (LTL) format.  

 

The findings suggest that AI can be used to make meaning of raw data for use by mission commanders to support LFE 

planning and debrief. The effort described is the first known application of AI to automatically score mission 

performance for an LFE.  
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INTRODUCTION 

 

Autonomous systems and robots are heavily emphasized in technology roadmaps for the United States Air Force 

(Dahm, 2010). In November 2015, the Deputy Secretary of Defense spoke about how the Defense Science Board 

Summer Study on autonomy concluded that we are at an inflection point for artificial intelligence (AI) and autonomy 

(Pellerin, 2015). There is recognition that currently developed technological systems can operate more intelligently 

and more independently than in the past, and their role in defense will soon become more prominent. As a result, these 

autonomous systems will disrupt current practices that have been honed for human-dominated actions. Even when 

technology ultimately passes the tipping point of transitioning from automation into autonomy, these systems are 

unlikely to replace human decision-making (Bradshaw, Hoffman, Woods, & Johnson, 2013; Murphy & Shields, 2012) 

because there are fundamental differences in the relative strengths of human versus machine cognition that make 

pairing them more powerful than using just one. As Bradshaw et al. describe, “there’s a need for the kinds of 

breakthroughs in human machine teamwork that would enable autonomous systems not merely to do things for people, 

but also to work together with people and other systems.” Thus, it is anticipated that smart technological systems will 

serve in an advisory capacity in collaboration with humans who have the final authority to act.  

 

The Observe-Orient-Decide-Act (OODA) loop was formulated by Colonel John Boyd and describes the process by 

which fighter pilots engage threats (Feloni & Pelisson, 2017). This framework has been extended to many more 

activities, including the Plan-Brief-Execute-Debrief (PBED) “Win Cycle” (see Figure 1). Pilots and practitioners of 

the win cycle are encouraged to find ways to get inside the OODA loop of an opponent through better information 

faster execution, etc. However, as the volume of available information relevant to a decision has increased, the human 

decision-maker has become more encumbered and is challenged to make decisions efficiently. Consequently, there is 

a desire to augment human decision-making though AI tools. The focus of the current work is on AI tools in the 

debrief process and tools that allow a commander to more rapidly process what occurred during mission execution 

and which lessons learned should be identified.  

 

 
Figure 1. The Mission "Win Cycle" 

In the Win Cycle the Air Tasking Order (ATO) is used to generate a mission plan, which constitutes the largest portion 

of time in the cycle. The plan is initially briefed, then executed, and then the flight elements participate in a debrief. 

For example, Nellis Air Force Base hosts RED FLAG, a realistic combat training exercise with United States and 
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allied forces. It was established in 1975, and provides an opportunity for a large group of mixed “blue” aircraft (attack, 

fighter, bomber, reconnaissance, electronic warfare, etc.) to fly missions against “red” air and ground threats (Nellis 

Air Force Base, 2012). At the conclusion of a training mission, the mission commander guides the participants through 

the mission to create a ground truth from which lessons can be learned. A mission commander must accurately process 

the activities of numerous manned (and unmanned) aerial platforms and link their mission execution to either 

accomplishing or failing to meet the mission objectives. At Red Flag the debrief includes the following sub-tasks:  

 

• Mission Complete: Pilot returns safely, followed by maintenance debrief & intel collection. 

• Mass Debrief Preparation (aka, Debrief Pre-mass): Pilots recreate truth data of specific actions during 

mission based on recorded data. 

• Mass Debrief: All flight elements combine truth data from each flight/formation to create a mission 

overview. In the Mass Debrief the mission commander also relays debrief focal points (DFPs). 

• Element Debrief: Flight lead identifies causal factors that relate to DFPs and the contributing roles of each 

pilot in the formation. Also, suggestions for instructional fixes are provided to the formation members. 

 

The goal of this research was to investigate how AI-enhanced technological tools could support the debrief process 

for large force exercise (LFE) training missions. Specifically, advanced classification methods can be used to 

automatically code the pilot’s actions in order to better match execution to objectives. Machine learning techniques 

can be used to model the process by which mission commander’s review mission execution and relate that to the 

mission objectives. This model can then be used to provide tailored feedback to pilots (human- or autonomous-

controlled) as part of the Mass Debrief to assist in ensuring that future missions are executed in accordance with 

objectives. 

 

The first phase of this research effort focused on developing the machine learning system to classify individual aircraft 

phase (level II) data based only on the TSPI (level I) data of those aircraft. We addressed the goal of the second phase 

by training a machine learning (ML) artificial intelligence (AI) system to predict a semantic label for the entire mission 

(level III) based on the observed level I and II data streams (see Table 1 for detailed descriptions of the levels of 

description). Additionally, the AI system calculated scores for achieving mission success or failure and this output 

was embedded in a debrief tool that could allow a mission commander to initiate an auto-scoring process that would 

have the AI system analyze raw mission execution data and display a properly segmented and scored mission for the 

mission commander’s verification.  

 
Table 1. Levels of Mission Description 

Level of Data Level Description 

Level I This first level of description uses time and space position information (TSPI) of an 

aircraft, also including heading, speed, roll, yaw, pitch, etc. This is the lowest level of 

description and includes discrete values for telemetry values of a single aircraft. 

Level II This level of description offers semantic labels that describe in which phase of the 

mission a single aircraft is currently. The Level II phase descriptions used were:  

• Ingress 

• Orbit 

• Threat Avoidance 

• Threat Engagement 

• Evasive Actions 

• On Target 

• Egress 

• Shot Down 

Level III This level of description provides a semantic label for the entire mission based on the 

Level I and Level II data of each aircraft in that mission. For the Offensive Counter-

Air (OCA) mission, we defined four different sequential phases that were: 

• (Phase 1) Escort Push 

• (Phase 2) Striker Push 

• (Phase 3) Time on Target (TOT) 

• (Phase 4) Egress 
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MATERIALS AND METHODS 

 

As there was no known mission execution data set that the research team had permission to use, a new data set was 

created for a Large Force Exercise. The method for creating the scenario design, implementing the scenario, running 

multiple instances of the scenario, and capturing and pre-processing the data are described in the following section.  

 

Task Scenario Design 

 

LFE scenarios were created with an Offensive Counter-Air (OCA) mission using 18 total friendly aircraft. Table 2 

shows the aircraft and armaments for the three elements in the 18-aircraft mission. The general mission timeline 

progressed from Escort Push to Egress (see Level III in Table 1) from Push to Safe. During the Escort Push Phase, the 

F-15s enter the threat airspace and begin targeting aerial threats. Next, the F-22s and SEAD aircraft enter ahead of the 

Strike aircraft and continue to establish air dominance be removing threat aircraft and known and popup ground-based 

threats. The Escort and SEAD aircraft establish their combat air patrol (CAP) patterns to protect the Strike package 

which begins ingress during the Striker Push Phase. After delivering their munitions during the Time on Target (TOT) 

Phase, the Strike element calls the “Millertime” contract to alert the other aircraft to begin egress. During the Egress 

Phase the Escort and SEAD aircraft maintain a defensive pattern and usher the Strike element to safety.  

 
Table 2. Mission Details 

Element / Role Aircraft Armaments 

Escort BUICK (BK) F-22 x4 AMRAAM x6 

Sidewinder x2 

M50  480 rounds 

CHEVY (CY) F-15C x4 

  

 

Sidewinder x1 

AMRAAM x7 

M50  940 rounds 

SEAD HARLY (HY) F-16CJ x4 

NITRO (NO) F-16CJ x4 

 

HARM  x2 

AMRAAM x3 

Sidewinder x1 

M50  540 rounds 

Strike THUD (TD) F-16 x1 

HUN (HN) F-16 x1 

GBU31B x2 

AMRAAM x3 

Sidewinder x1 

M50  540 rounds 

 

This description of the scenario represents an ideal execution, but not all missions will be executed flawlessly. For 

Mission Analysis and Review (MARS) tools to be able to provide mission commanders with relevant feedback on 

achieving mission and tactical objectives, the training data set needs to include execution that deviate from flawless 

performance. Thus, in consultation with a mission commander with Red Flag experience, several scenario variations 

were created.  

 

The scenario variations and the expected impact to how a mission commander would score the mission are listed in 

Table 3. Each of the variations were given a letter ID so that our mission commander wouldn’t be biased in his 

interpretation. Scenarios were then developed in our constructive environment (detailed below) and executed twice in 

that environment and appropriately marked. Both executions of the same variant were shown successively to the 

mission commander in the following order: J, A, K, B, N, F, H, G, C, I, L, M. During the second execution of running 

the A scenario in our constructive environment the B scenario was inadvertently executed instead, so our mission 

commander ended up scoring three executions of the B variant and one of A. All the other variants were run and 

scored twice. It was determined that the inclusion of one more B and one less A would likely have a negligible 

influence in biasing the learning model, so all the data in the training set were used to train the model. 

 

 



 
 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

2019 Paper No. 19372 Page 6 of 13 

Table 3. Scenario Variations 

ID Description and Scenario Design Expected Violation(s) 

A SEAD and/or Escort don't hear "Millertime."  

Extended Escort and SEAD CAP time so they egress late 

Contract violation 

B Fumble is called, but no ack from escort and it leaves the area (confuses it with 

Millertime). AI loops back and drops bombs round 2, but Escort and SEAD 

egress at normal time 

Contract violation 

C Base Scenario with no variations.  None 

F Loss of > 50% of escort, abort called and executed. Improve red 

numbers/competence/strategic position or decrease blue competence; Pause 

scenario, force egress on everyone, resume 

MO violation 

Contract fulfilled 

G 

 

Loss of > 50% of escort, abort not called. Improve red 

numbers/competence/strategic position or decrease blue competence; no abort 

MO violation 

Contract violation 

H Delay in clearing air threats, spin called x 3, Strike not delivered in TOT. Add 

red air/ground, strikers orbit ~7min while Escort/SEAD clear the area 

Contract fulfilled 

MO violation for TOT 

I Spin called but air threats still present in strike zone and they fire at Strike. Add 

red air/ground, strikers orbit and then proceed early getting caught in cross-fire 

Escort TO violation 

J Spin is called (once), strike is delivered TOT. Add a few red air/ground, strikers 

orbit (~3min) but still deliver in TOT 

None 

K Lean called and followed (could be part of one of the other scenarios, maybe the 

fumble). Move red CAP or SA to inside strike route, strike route leans out 

None 

L Lean contract called for strike, but not followed. Move red CAP routes to inside 

strike route, strike doesn't avoid 

Contract violation 

M Not solid ID - non-military target shot down. Add an unknown non-military jet 

into the strike route that gets shot down by Escort/SEAD 

MO violation of 100% 

valid ID 

N Strike delivered to incorrect target. Change Striker(s) to target something on the 

ground other than the target 

MO Violation 

Strike TOT Violation 

 

Constructive Environment: Joint Semi-Automated Forces (JSAF) 

 

The LFE mission described earlier was used as the outline for the scenarios that were created in JSAF. Overlays were 

created for starting positions, ingress and egress paths, combat air patrol (CAP) routes, targets and transition lines. For 

each friendly aircraft in the scenario, the correct model was selected and placed in the scenario at its starting position. 

Tasks for each aircraft were decided by the role of the aircraft. For Escort aircraft, a sequence of ingress followed by 

CAP, followed by egress was defined where transitions were decided by control measures (i.e., a line overlay 

indicating when to transition from ingress to CAP) or by duration of time. Similar sequences were defined for SEAD 

(Ingress->SEAD->CAP->Egress) and Strikers (Ingress->Attack Target->Egress). Depending on the scenario lean, 

fumble, spin, and others were scripted as well. 

 

Enemy aircraft were added in a similar fashion. Most of them stay in CAP for the duration of the scenario, but some 

were scripted to join the active regions of the scenario later than others, depending on what the scenario prescribed. 

In the scenarios, outcomes would change simply by adding additional enemy aircraft at specific times to elicit different 

behaviors from friendly forces. 

 

JSAF was setup in conjunction with a data reporting and replay tool called Caber. Caber provided a way to record 

each mission execution in JSAF without degrading performance. Caber provides the ability to play back a mission in 

JSAF and to report out the time and space information (TSPI) data needed for replay in the MARS Tools as well as 

processing by the AI. We executed each of the 12 scenarios twice which resulted in 24 missions that could be scored 

by our mission commander. 

 

Mission Review and Scoring 

 

The mission execution phase labels were manually identified and logged by an F-22 pilot who had experience serving 

as a mission commander multiple times at Red Flag large force training exercises. This expert reviewed each mission 
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execution using the Mission Analysis and Review (MARS) tool in order to segment the mission into four separate 

time blocks of Level III labels (see Table 1). 

 

The playback controller and bookmarking interface combine to give users a toolset to annotate each scenario. 

Individual aircraft phase labels and callsigns show up for each unit during playback. Yellow highlights help designate 

phase changes; red highlights are used for phase transitions where the end transition is “DOWN” (meaning shot down). 

Contract calls and time on target (TOT) timespan both have times associated with them and are displayed above the 

time scrubber in the timeline controller. All these elements combine to provide a good visual breakdown of the 

scenario. During the annotation portion of this project, pilots can review the scenario with the bookmarks already 

displayed. As they go through the scenario using the playback positions and phases as guides, they can add bookmarks 

for phase transitions and any tactical objective or contract failures. Phases show up on the timeline as spans (see the 

Timeline Controller widget in Figure 2), while contract or tactical objective failures associated with a time are 

displayed as tick marks. Double-clicking on these spans forces the current time in playback to jump to the associated 

time. The overall phase of the mission is displayed at the top of the web interface along with the last contract that was 

called. 

 

 
Figure 2. Mission Analysis and Reviews System (MARS) for scoring and reviewing missions 

Additionally, the mission commander completed a questionnaire for each mission execution where he scored success 

or failure of overall mission objectives, success or failure of flight element tactical objectives, and marked whether 

contracts were called and followed. Questions were asked for each of the four phases of the mission and for each of 

the flight elements (Escort, SEAD, Strike). 

 

RESULTS 

 

The data from the scenario executions were organized for easier ingestion by the ML training algorithms. The survey 

data was converted into a text file and verified for completeness. Additionally, Level II data was automatically coded 

using a logical algorithm that used the aircraft’s TSPI data and pre-defined mission parameters to code the aircraft 

behavior. This method offered similar output to what the ML model produced in Phase 1 of this research, but because 

we were using JSAF instead of pilot-flown missions we were unable to use the earlier ML model to encode Level II 

data. Nevertheless, the logical algorithms we created produced reasonable accuracy and were verified by inspection 

by the research team as well as by our mission commander while he coded the Level III data. 
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For the AI system to be able to learn from the training data, the mission objectives needed to be constructed as a set 

of simple Booleans and operationalized based on mission execution data. The expressions that were used to 

operationalize these objectives are listed in Table 4. 

 
Table 4. How the Mission Objectives Were Operationalized 

Mission Objective Objective Operationalized 

MO1 Gain and maintain air superiority MO1.1 Enemy attrition 50%, 75%, 100% 

MO1.2 Striker shot down 

MO1.3 Striker shot upon 

MO1.4 Area sanitization (multiple ways of defining areas) 

MO2 Suppression of enemy IADS 

 

MO2.1 SAM attrition rates 50%, 75%, 100% (Will compute as per 

detonation times) 

MO3 Destroy ATO assigned target 

within TOT: 

MO3.1 Weapon release 

MO3.2 Striker on target phase (both planes) 

MO3.3 Correct target hit (detonation of the last munition) 

MO4 Blue force attrition < 25% MO4.1 Self attrition rates 25%, 50%, 75%, 100% 

 

AI Model Creation 

 

As indicated above, the focus of this phase of research was on developing machine learning models capable of 

automatically predicting the mission phase segmentation (Phase III) and the mission objective evaluation of the entire 

mission trajectory. We demarcate the level III data by independently representing mission phase segmentation and 

evaluation of successful execution. The success evaluation is further demarcated into mission objectives, tactical 

objectives per flight group, and mission phase and appropriate calling of pre-defined contracts. We defined two 

classification research goals; a) predicting mission phase (Escort Push, Striker Push, Time on Target (TOT), and 

Egress), and b) predicting the mission objective (see Table 4). Treating the two prediction problems separately allows 

us to identify three classifier architectures that may be used to develop the prediction model. The overall architectures 

are defined by different combinations of recurrent neural network-based time-series classifiers and temporal logic-

based classifier inferred using Bayesian specification inference (Shah, Kamath, Li, & Shah, 2018). The overall 

architectures are briefly defined as follows (and explained in greater detail in (Oden et al., 2019)) 

 

Problem 1: Predicting Mission Phases 

We define two kinds of long short-term memory (LSTM) classifiers for Problem 1, the decoupled classifiers (LSTM 

(Level-II) and Bi-LSTM (Level II), and the coupled classifiers (we label these as LSTM Coupled and Bi-LSTM 

Coupled).  

 

The decoupled classifiers take the Level-II phase labels for each of the friendly aircraft as inputs and return the 

predicted phase labels at each time step as the output. They are both recurrent neural networks that use the output of 

a module at a given time step as an input of the module at the next time step. The LSTM (Level-II) classifier uses the 

long- and short-term memory modules to construct the recurrent net. The Bi-LSTM (Level-II) classifier operates on 

the time-data in both forward and backward direction, thus allowing it to model correlations of the current time instant 

with both past and future data. By comparison, the LSTM module only models the correlations with past data.  

 

The next set of classifiers (LSTM Coupled and Bi-LSTM Coupled) are coupled classifiers that are provided the Level-

II phase labels and the Boolean propositions (see Table 4) and return both the predicted Level-III phase labels and the 

evaluations of mission objectives. Thus, these networks are single input multi-output.  

 

The network’s predictions for Problem 1 are obtained considering the Phase Labels output provided for these 

networks. The rationale for using a coupled architecture is that this would force the model to share parameters and 

intermediate values of the network to optimize for all objectives, potentially resulting in better performance on each 

of the individual objectives. These networks are trained to simultaneously optimize the accuracy of phase predictions 

and mission objective evaluation. 
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Problem 2: Predicting the Mission Objectives 

We consider three types of classifiers for Problem 2. The first is a decoupled recurrent neural network (RNN)-based 

classifier (we label them as LSTM (propositions), and Bi-LSTM (propositions) respectively); next is a coupled RNN-

based classifier (these are the same ones used in Problem 1 but using the other output channels); lastly, we use 

Bayesian specification inference (Shah et al., 2018), a model developed as a part of this project to generate predictions 

for Problem 2. 

 

The LSTM (Propositions) and Bi-LSTM (Propositions) classifiers take the previously defined Boolean proposition 

values and returns the evaluations of the mission objectives as the output. The architecture is like the LSTM (Level-

II) and Bi-LSTM (Level-II) networks respectively, with the difference being the shape of the input channel and the 

number and shape of the output channel. These networks have four output channels. There is one output each for 

mission objectives 1 through 4, and each output is a scalar value that represents the belief of the model that the mission 

objective was achieved by the model. The LSTM (Coupled) and Bi-LSTM (Coupled) are the same networks as those 

defined for Problem 1 and are trained simultaneously on classifying both Problem 1 & 2. The output channels 

corresponding to the mission objectives are used for Problem 1. 

 

Bayesian specification inference (Shah et al., 2018) was developed as a part of the project and proposes a probabilistic 

model for inferring the linear temporal logic (LTL) specifications that best explain an observed valuation of a Boolean 

time series along with a label representing the acceptability of the execution that the time series represents. The 

hypothesis space of the model consists of formulas that are composed as a conjunction of three temporal behavior 

templates; namely global satisfaction, eventual completion and temporal ordering. The complete specification can 

then be described as a conjunction of these three templates.  

 

𝜑 = 𝜑𝑔𝑙𝑜𝑏𝑎𝑙 ∧ 𝜑𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙 ∧ 𝜑𝑜𝑟𝑑𝑒𝑟  

 

Thus, the input to the probabilistic model is the set of time series of the Boolean propositions and the label of whether 

that execution is acceptable or not and a partitioning of the propositions into candidates for global satisfaction and 

eventual completion respectively. An execution is determined to be successful if the mean of the evaluation of all 

formulas in the support of the model’s distribution weighted by the posterior probability of the candidate formula. As 

an estimate, the model evaluates an execution as successful if 𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙) ≥ 0.5. However, the model can be 

adjusted to report evaluations only if they exceed a confidence threshold. 

 

Amongst the previously defined Boolean propositions, the four propositions in MO4.1 pertaining to friendly force 

attrition and MO1.2 and MO1.3 pertaining to whether the strike aircrafts have been attacked are included as candidates 

for global satisfaction (the set 𝑻). The rest of the propositions are candidates for eventual completion (the set 𝛀). 
 

RESULTS 

 

The following experiments were set up to evaluate the accuracy of the classification architectures described above: 

 

Problem 1: The segmentation was performed by either an RNN trained to optimize classification accuracy of Level-

III phase labels with Level-II phase labels as data features, or it was performed by an RNN jointly trained to optimize 

the classification accuracy of both Level-III phase labels and mission objective evaluations with both Level-II labels 

and Boolean propositions as inputs. For both these classifiers, we performed leave-one-out cross validation (LOOCV) 

where one scenario was held separate as validation data, the classifier was trained on the remaining scenarios and 

tested on the validation scenario. 

 

Problem 2: As the deep nets are data intensive, the RNN based models for mission objective classification were also 

evaluated with leave-one-out cross validation. For specification inference, we first performed a fourfold cross 

validation, where the data set was partitioned into four equal validation sets, and for each held out validation set, the 

classifier was trained on the remaining three sets and tested on the held-out set. We inferred LTL specifications for 

the complete dataset as the training set. 

 

Problem 1 Results 
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The descriptive statistics for the LOOCV are shown in Table 5. LOOCV statistics for RNN models for Problem 1. 

The statistics reported include the mean and median values of the test accuracy for each of the 24 left out scenarios. 

We also report the maximum and the minimum test accuracies observed. 

 
Table 5. LOOCV statistics for RNN models for Problem 1 

Classifier Mean Median Maximum Minimum 

LSTM (level II) 0.900 0.914 0.994 0.694 

Coupled LSTM 0.915 0.935 0.982 0.696 

Bi-LSTM (level II) 0.909 0.930 0.984 0.748 

Coupled Bi-LSTM 0.923 0.95 0.982 0.733 

 

Problem 2 Results 

 

For Problem 2, the RNN models were evaluated with LOOCV and the specification inference models were evaluated 

with a four-fold cross validation. The mean classification accuracy is reported for each of the mission objectives (see 

Table 5). Each of the four models [LSTM (propositions), Coupled LSTM, Bi-LSTM (propositions), and Coupled Bi-

LSTM] were shown to have identical accuracies. The reason for this is that the RNN learned to predict the most 

frequent outcome for all scenarios. Thus, for all the models always predicted ‘Achieved’ for MO1 and all the model 

always predicted ‘Failed’ for MO2.  

 
Table 6. LOOCV mean accuracy for RNN models for Problem 2 

Classifier MO1 MO2 MO3 MO4 

Mean accuracy (for all four models) 0.667 0.583 0.667 0.625 

 

Using specification inference, we performed a four-fold cross validation and tested the accuracy after training on the 

complete data set. The results are shown in Table 7. The accuracy for MO2 is not reported as it was not possible to 

operationalize the propositions for surface-to-air threats from the JSAF data accurately. 

 
Table 7. Four-fold cross validation results for Problem 2 

Classifier MO1 MO2 MO3 MO4 

Specification Inference (four-fold) 0.667  0.708 0.875 

Specification Inference (full data set) 0.958  0.917 

 

0.958 

 

Interpretability of Bayesian Specification Inference 

 

By enumerating the propositions included in the three temporal behaviors in the classification model, we can interpret 

which behaviors the model deems necessary for evaluating the execution as acceptable.  

 

MO1: Gain and maintain air superiority 

The propositions included for global satisfaction included MO4.1, MO1.2 and MO1.3. This indicates that the model 

believes that to maintain air superiority, the self-attrition should never exceed 25% and that the strikers should never 

be shot upon. The propositions included in eventual satisfaction included MO3.1, MO3.2 and MO1.1. This indicates 

that eventually the strikers should release their weapon, and at least 75% of the enemy aircrafts must be shot down. 

Note that this does not require the strikers to attack the correct target, simply release their weapons. Finally, the 

ordering constraints were found between MO1.1 and MO3.1 indicating that the model expected at least 50% enemy 

aircraft attrition before the strikers released their weapons. 

 

MO3: Destruction of ATO assigned target within TOT 

The propositions included for global satisfaction included MO4.1, MO1.3. This indicates that for MO2, the model 

will tolerate up to 50% friendly attrition, and it does not enforce that the strikers are never shot upon, just that they are 

never shot down. The propositions included in eventual completion include MO3.1, MO3.2, MO1.1, and MO3.3. The 
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requisite enemy attrition rate was 100% (contradictory to global constraints); like MO1, this model also expects the 

weapons to the eventually released, but, more crucially, it expects correct targeting by the strikers represented by 

MO3.3. The ordering constraints also enforce complete enemy attrition before TOT close, which seems unnecessary. 

Thus, the model is transparent about the extraneous requirements it imposes on the execution, and these requirements 

can be examined and removed by simply deleting the conjunctive clauses where they are included. 

 

MO4: Self attrition < 25% 

The propositions included for global satisfaction include MO4.1, MO1.2 and MO1.3; correctly predicting <25% 

friendly attrition and strikers never being shot down. For eventual completion it also includes, MO3.1, MO3.2, MO1.1 

requiring 75% enemy attrition. There are no orders enforced by it. We note that the model for this includes elements 

of successful completion of MO1 and 3 as well. 

 

Selection of the overall classification architecture 

 

Defining an overall architecture involves selecting a classifier for both problems; because we have four options for 

Problem 1 and five options for Problem 2, there are 20 possible combinations. The average accuracies on the five 

classification problems for each architecture choice are show in Table 8. Since some of these combinations resulted 

in identical accuracy scores, the four types of LSTM-based Problem 2 classifiers are listed on the same row.  

 
Table 8. Architecture permutations and the expected accuracies. Note that the accuracies for specification inference are 

reported for training on the full dataset. 

Problem 1 Problem 2 Level-III Phase MO1 MO2 MO3 MO4 

LSTM (Level-II) LSTM (all four) 0.900 0.667 0.583 0.667 0.625 

LSTM (Level-II) Specification Inference 0.900 0.958  0.917 0.958 

Bi-LSTM (Level-II) LSTM (all four) 0.909 0.667 0.583 0.667 0.625 

Bi-LSTM (Level-II) Specification Inference 0.909 0.958  0.917 0.958 

LSTM Coupled LSTM (all four) 0.915 0.667 0.583 0.667 0.625 

LSTM Coupled Specification Inference 0.915 0.958  0.917 0.958 

Bi-LSTM Coupled LSTM (all four) 0.923 0.667 0.583 0.667 0.625 

Bi-LSTM Coupled Specification Inference 0.923 0.958  0.917 0.958 

 

DISCUSSION 

 

We note that the RNN based models reported very high accuracy for labeling Level-III mission phases. The bi-

directional model performed better than the simple LSTM models. This is to be expected as the bi-directional models 

can also model correlation between a given time instant and future outcomes, whereas simple models are restricted to 

modeling correlations with only past observations.  

 

Further, we note that the combined models trained with both Level-II labels and propositions perform better than the 

decoupled model. This could be either due to propositions being informative for mission phase labeling or it could be 

due to influence of simultaneous training on multiple objectives. Verifying the cause of better performance of 

combined models is a possible future research direction. 

 

Next, we note that the RNN models perform very poorly for mission objective assessment and their predictions 

collapse to the most frequently observed state of the system. This indicates that RNN-based models are not suitable 

for this task, with only a few trajectories in the training set. Whether this is due to the limited size of the training set 

or due to limitations of the expressive power of neural nets for logical functions is another direction for future research. 

 

Finally, we note that Bayesian specification inference produces equivalent or higher accuracy with smaller training 

data sets. Additionally, with a larger training set, there is an improvement the confidence of the model as measured 

by the number of formulas in the support of the posterior probability distributions and the observation that these 

posterior probability distributions are more ‘peaky.’ 
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Based on the accuracies, the final classification model for the MARS tools would include a Level-III mission phase 

predictor based on only that output for the coupled Bi-LSTM model with access to both Level-II phase data and the 

propositions and mission objective evaluation using the model inferred by Bayesian specification inference. 

 

During execution of the program the research team developed an improved understanding of the role of ‘contracts’ 

among pilots. At the start of this phase it was envisioned that contracts would be part of the evaluation of mission 

execution. It came into sharper focus, however, that contracts are both an evaluation measure of sorts as well as 

contextual input (Level I data). Contracts are called verbally, and when a pilot calls the contract it should serve as 

contextual data that is shared with the AI model. Contracts may not be perfectly communicated, however, and other 

pilots may misinterpret, misremember, or otherwise fail to act properly on the calling of the contract. These deviations 

in expected performance need to be accounted for as part of the debrief process.  

 

Related future work should focus on expanding the AI’s ability to accurately predict achieving tactical objectives for 

the individual flight elements. This was not feasible in the current study because of the limited model training data 

set. While the training data was sufficient for achieving a high accuracy in predicting mission objectives, there was 

insufficient examples to correctly model the variability of tactical objectives. A larger training set that includes 

variability in tactical objective outcomes would likely allow the model to successfully handle this level of mission 

description. 

 

Another extension of this work would be the creation of a generative AI in which, rather than just labeling missions, 

the encoded representation of aircraft behaviors is used to create realistic mission executions for a given mission type. 

Given that mission success can be encoded in a logical specification, this can allow for a more rapid creation of a 

constructive in JSAF or similar environment based on mission level descriptions rather than the lower level tailoring 

of behaviors performed in this study. This capability could be used as part of mission briefing to illustrate a successful 

execution of a mission based on its objectives and timeline.  

 

Finally, although this effort was focused on an offensive counter-air (OCA) mission, this approach can also be used 

to automate the scoring of other mission types such as close air support (CAS), defensive counter air (DCA), air 

interdiction (AI), strategic attack, and combat search and rescue. Models for these different mission types would need 

to be generated using the same process as was used on this effort. Modeling these other mission types may also pave 

the way towards greater levels of abstraction of mission objectives.  
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