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Abstract—Reward engineering is crucial to high performance
in reinforcement learning systems. Prior research into reward
design has largely focused on Markovian functions representing
the reward. While there has been research into expressing non-
Markovian rewards as linear temporal logic (LTL) formulas, this
has been limited to a single formula serving as the task speci-
fication. However, in many real-world applications, task specifi-
cations can only be expressed as a belief over LTL formulas. In
this paper, we introduce planning with uncertain specifications
(PUnS), a novel formulation that addresses the challenge posed
by non-Markovian specifications expressed as beliefs over LTL
formulas. We present four criteria that capture the semantics of
satisfying a belief over specifications for different applications,
and analyze the implications of these criteria within a synthetic
domain. We demonstrate the existence of an equivalent markov
decision process (MDP) for any instance of PUnS.

I. INTRODUCTION AND RELATED WORK

Consider the act of driving a car along a narrow country
road or in a cramped parking garage. While the rules of the
road are defined for all jurisdictions, it may be impossible to
follow all of those rules in certain situations; however, even
if every single rule cannot be adhered to, it remains desirable
to follow the largest possible set of rules. The specifications
for obeying the rules of the road are non-Markovian and
can be encoded as linear temporal logic (LTL) formulas
[6]. There has been significant interest in incorporating LTL
formulas as specifications for reinforcement learning ([[1], [14],
[23])); however, these approaches require specifications to be
expressed as a single LTL formula. Such approaches are not
sufficiently expressive to handle a scenario like the one above,
where the task specifications can, at best, be expressed as a
belief over multiple LTL formulas.

In this paper, we introduce a novel problem formulation for
planning with uncertain specifications (PUnS), which allows
task specifications to be expressed as a distribution over
multiple LTL formulas. We identify four evaluation criteria
that capture the semantics of satisfying a belief over LTL
formulas and analyze the nature of the task executions they
entail. Finally, we demonstrate the existence of an equivalent
MDP reformulation for all instances of PUnS, allowing any
planning algorithm that accepts an instance of a MDP to act
as a solver for instances of PUnS.

Prior research into reinforcement learning has indicated
great promise in sequential decision-making tasks, with break-
throughs in handling large-dimensional state spaces such as
Atari games ([L6]), continuous action spaces ([17], [10]),
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sparse rewards ([Sl], [21]), and all of these challenges in com-
bination ([25]]). These were made possible due to the synergy
between off-policy training methods and the expressive power
of neural networks. This body of work has largely focused on
algorithms for reinforcement learning rather than the source
of task specifications; however, reward engineering is crucial
to achieving high performance, and is particularly difficult in
complex tasks where the user’s intent can only be represented
as a collection of preferences ([9]) or a belief over logical
formulas inferred from demonstrations ([20]).

Reward design according to user intent has primarily been
studied in the context of Markovian reward functions. Singh
et al. [22] first defined the problem of optimal reward design
with respect to a distribution of target environments. Ratner et
al. [19] and Hadfield-Menell et al. [8] defined inverse reward
design as the problem of inferring the true desiderata of a task
from proxy reward functions provided by users for a set of task
environments. Sadigh et al. [4]] developed a model to utilize
binary preferences over executions as a means of inferring
the true reward. However, all of these works only allow for
Markovian reward functions; our proposed framework handles
uncertain, non-Markovian specification expressed as a belief
over LTL formulas.

LTL is an expressive language for representing non-
Markovian properties. There has been considerable interest
in enabling LTL formulas to be used as planning problem
specifications, with applications in symbolic planning ([9],[3])
and hybrid controller synthesis ([1L1l]). There has also been
growing interest in the incorporation of LTL specifications
into reinforcement learning. Aksaray et al. [1]]proposed using
temporal logic variants with quantitative semantics as the
reward function. Littman et al. [14] compiled an LTL formula
into a specification MDP with binary rewards and introduced
geometric-LTL, a bounded time variant of LTL where the time
horizon is sampled from a geometric distribution. Toro-Icarte
[23]] proposed a curriculum learning approach for progressions
of a co-safe LTL ([[12]) specification. Lacerda et al. [13] also
developed planners that resulted in maximal completion of
tasks for unsatisfiable specifications for co-safe LTL formulas.
However, while these works are restricted to specifications
expressed as a single temporal logic formula, our framework
allows for simultaneous planning with a belief over a finite set
of LTL formulas.



II. PRELIMINARIES
A. Linear Temporal Logic (LTL)

Linear temporal logic (LTL), introduced by Pnueli [18],
provides an expressive grammar for describing temporal be-
haviors. An LTL formula is composed of atomic propositions
(discrete time sequences of Boolean literals) and both logical
and temporal operators, and is interpreted over traces [a] of
the set of propositions, « . The notation [a],t |= ¢ indicates
that o holds at time ¢. The trace [«] satisfies ¢ (denoted as
[a] E @) iff [a],0 = ¢. The minimal syntax of LTL can be
described as follows:

pu=p| e |1V | Xer | p1Ups €]

p is an atomic proposition, and ¢; and o represent valid
LTL formulas. The operator X is read as “next” and X,
evaluates as true at time ¢ if ¢; evaluates to true at ¢ + 1.
The operator U is read as “until” and the formula ¢; U,
evaluates as true at time t; if @9 evaluates as true at some
time to > t1 and (7 evaluates as true for all time steps ¢, such
that ¢; <t < t9. In addition to the minimal syntax, we also
use the additional propositional logic operators A (and) and
— (implies), as well as other higher-order temporal operators:
F (eventually) and G (globally). Fy; evaluates to true at ¢1
if (p; evaluates as true for some ¢ > t1. G evaluates to true
at t1 if 7 evaluates as true for all ¢ > ¢;.

The “safe” and “co-safe” subsets of LTL formulas have
been identified in prior research ([12], [24], [15]). A “co-safe”
formula is one that can always be verified by a trace of a finite
length, whereas a “safe” formula can always be falsified by
a finite trace. A formula expressed as ¢ = Qgafe N Peo—safe
belongs to the Obligation class of formulas presented in Manna
and Pnueli’s [[15] temporal hierarchy.

Finally, a progression Prog(y,«;) over an LTL formula
with respect to a truth assignment «; at time ¢ is defined
such that V[a]: [a],t E ¢ iff [a,t + 1] E Prog(e, a:).
Thus, a progression of an LTL formula with respect to a truth
assignment is a formula that must hold at the next time step
in order for the original formula to hold at the current time
step. Bacchus and Kabanza [2] defined a list of progression
rules for all the logical and temporal operators defined above.

In this paper, we define the specification of our planning
problem as a belief over LTL formulas. A belief over LTL
formulas is defined as a probability distribution with support
over a finite set of formulas with the density function P :
{¢} — [0,1]. The distribution represents the probability of a
particular formula being the true specification. In this paper,
we restrict ¢ to the Obligation class of formulas.

B. Markov Decision Process (MDP)

A Markov decision process (MDP) is a planning problem
formulation defined by the tuple M = (S, A, T, R), where S
is the set of all possible states, A is the set of all possible
actions, and T := P(s’ | s,a) represents the transition
probabilities. R : S — R represents the reward function that
returns a scalar value given a state.

III. PLANNING WITH UNCERTAIN SPECIFICATIONS

The problem of planning with uncertain specifications
(PUnS) is formally defined as follows: The state representation
of the learning and task environment is denoted by = € X,
where X is a set of features that describe the physical state
of the system. The agent has a set of available actions, A.
The state of the system maps to a set of finite known Boolean
propositions, a € {0, 1}"rrer, through a known labeling func-
tion, f : X — {0, 1}"»ror=. The specification is provided as a
belief over LTL formulas, P(y); ¢ € {¢}, with a finite set of
formulas in its support. The expected output of the planning
problem is a stochastic policy, 7y,} : X x A — [0, 1], that
satisfies the specification.

A single LTL formula can be satisfied, dissatisfied or
undecided; however, there is no single definition for satisfying
a belief over logical formulas. In this work, we present four
criteria for satisfying a specification expressed as a belief over
LTL, and express them as non-Markovian reward functions.
Next, using an approach inspired by LTL-to-automata com-
pilation methods ([7]), we demonstrate the existence of an
MDP that is equivalent to PUnS. The reformulation as an MDP
allows us to utilize any reinforcement learning algorithm that
accepts an instance of an MDP to solve the corresponding
instance of PUnS.

A. Satisfying beliefs over specifications

We propose four evaluation criteria to capture the semantics
of satisfying a belief over distributions.

1) Most likely: This criteria entails executions that satisfy
the formula with the largest probability as per P(p). As
a reward, this is represented as follows:

J([ad; P(¢)) = L[a] = ¢7)
where p* = arg max P(¢) 2)
de{e}

where

1(jo] o) = {1’ if lo] = 3

otherwise

2) Maximum coverage: This criteria entails executions
that satisfy the maximum number of formulas in support
of the distribution P(y). As a reward function, it is
represented as follows:

J(el: P(p) = D el =) “

oe{p}

3) Minimum regret: This criteria entails executions that
maximize the hypothesis-averaged satisfaction of the for-
mulas in support of P(y). As a reward function, this is
represented as follows:

J(al: P(e)) = Y Ple)llalEw) ()

pe{p}



4) Chance constrained: Suppose the maximum probability
of failure is set to 4, with cp‘s defined as the set of
formulas such that 3° s P(¢) > 1—4d; and P(p') <
P(p) V ¢’ ¢ @, ¢ € °. This is equivalent to selecting
the most-likely formulas until the cumulative probability
density exceeds the risk threshold. As a reward, this is
represented as follows:

J(la: P(p)) = Y P@)L(la] E )

pEPS

(6)

Each of these four criteria represents a “reasonable” in-
terpretation of satisfying a belief over LTL formulas, with
the choice between the criteria dependent upon the relevant
application. maximum coverage is best suited for specifications
derived from preference elicitation. minimum regret is suitable
for specifications inferred as a belief, and most likely or chance
constrained is best suited for applications where computational
resources are constrained.

B. Specification-MDP compilation

We demonstrate that an equivalent MDP exists for all
instances of PUnS. We represent the task environment as an
MDP sans the reward function, then compile the specification
P(y) into a finite state automaton (FSA) with terminal reward
generating states. The MDP equivalent of the PUnS problem is
generated through the cross-product of the environment MDP
with the FSA representing P(y).

Given a single LTL formula, ¢, a finite state automaton
(FSA) can be constructed which accepts traces that satisfy the
property represented by the ¢ [24]. An algorithm to construct
the FSA was proposed by Gerth et al. [/]. The automata are
directed graphs where each node represents a LTL formula
' that the trace must satisfy from that point onward in order
to be accepted by the automaton . An edge, labeled by the
truth assignment at a given time o, connects a node to its
progression, Prog(y’, o). Our decision to restrict ¢ to the
Obligation class of temporal properties (Psafe A Peo—safe)
ensures that the FSA constructed from ¢ is deterministic and
will have terminal states that represent T, L, or @qfe [L3.
When planning with a single formula, these terminal states
are the reward-generating states for the overall MDP, as seen
in approaches proposed by Littman et al. [14] and Toro-
Icarte et al. [23]. A single LTL formula can be represented
by an equivalent deterministic MDP described by the tuple
M, = ({¢'},{0,1}"rer T, R), with the states representing
the possible progressions of ¢ and the actions representing the
truth assignments causing the progressions ([14]], [23]).

The reward function R is a function of the MDP state, and
defined as follows:

1, if @IZTOI‘ @lz(psafe
1, i =1

0, otherwise

Ry(¢") = (7)

For an instance of PUnS with specification P(y) and
support {}, a deterministic MDP is constructed by computing

the cross-product of MDPs of the component formulas. Let
(") = (p,...¢™); Vo' € {p} be the progression state
for each of the formulas in {¢}; the MDP equivalent of {¢}
is then defined as My = ({{®’)},{0, 1}"rror, Ty y, Rypy)-
Here, the states are all possible combinations of the component
formulas progression states, and the actions are propositions
truth assignments. The transition is defined as follows:

1, if ¢4 = Prog(¢f, a)Vi
P2 gyt @) (8)

0, otherwise

T{@}(<‘Pl1>7 <90,2>a a) = {

This MDP reaches a terminal state when all of the formulas
comprising {¢} have progressed to their own terminal states.
The reward is computed using one of the criteria represented
by Equations or [} with 1(...) replaced by R, (¢").
Note that while 1(...) has two possible values (1 when the
formula is satisfied and —1 when it is not) R, (¢’) has three
possible values (1 when ¢ has progressed to T or @gqfe, —1
when ¢ has progressed to L, or 0 when ¢ has not progressed
to a terminal state). Thus, the reward is non-zero only in a
terminal state.

In the worst case, the size of the FSA of {p} is ex-
ponential in |{e}|. In practice, however, many formulas
contained within the posterior may be logically correlated.
For example, consider the formula Fa A Fb, with its FSA
states being {Fa,Fb, T,Fa A Fb}; and the formula Fb,
with FSA states representing F'b, T. The cross product, FSA,
can have a maximum of eight unique states; however, a
state such as (Fa A Fb, T) can never exist. Thus, the ac-
tual, reachable states for this cross product are {(Fa A
Fb,Fb), (Fa, T), (Fb,Fb),and(T,T)}. To create a minimal
reachable set of states, we start from (@) and perform a
breadth-first enumeration.

We represent the task environment as an MDP without
a reward function using the tuple Mx = (X, A, Tx).
The cross product of Mx and /\/l{q,} results in an MDP:
Mspee = ({{¢")} x X, A, Tspec, Ripy). The transition func-
tion of M,y is defined as follows:

Tspec({{p1), 1), ({92), 22), a) = Ty (1), (P2), fla2))x
Tx (21, 72,a)

(©))

IV. EVALUATIONS

The choice of the evaluation criterion impacts the executions
it entails based on the nature of the distribution P(¢p).
depicts examples of different distribution types. Each figure
is a Venn diagram where each formula ¢; represents a set
of executions that satisfy ;. The size of the set represents
the number of execution traces that satisfy the given formula,
while the thickness of the set boundary represents its prob-
ability. Consider the simple discrete environment depicted in
there are five states, with the start state in the center
labeled ‘0’ and the four corner states labeled ‘7T°0°, ‘W0’
‘W1, and ‘W2’. The agent can act to reach one of the four



(a) Case 1 (b) Case 2

(

(c) Case 3 (d) Case 4

Fig. 1: Comparisons between different types of distributions over specifications. In each case , the size of the set is proportional to the
number of executions satisfying the specification, and the thickness of the boundary is proportional to the probability mass assigned to that

specification.

(b) Case 3:

(a) Task MDP likely gret

ORIy

most (¢c) Case 3: min re- (d) Case 3: chance (e) Case 4: max cov-
constrained

erage (f) Case 4: min regret

Fig. 2: depicts the transition diagram for the example MDP. Figures and [2¢| depict the exploration graph of
agents trained with different evaluation criteria for distributions with an intersecting set of satisfying executions. Figures [2¢]

and [2f] depict the exploration graph of agents trained with different evaluation criteria for distributions without an intersecting

set of satisfying executions.

corner states from any other state, and that action is labeled
according to the node it is attempting to reach.

Case 1: represents a distribution where the most
restrictive formula of the three is also the most probable.

All criteria will result in the agent attempting to perform
executions that adhere to the most restrictive specification.

Case 2: represents a distribution where the most
likely formula is the least restrictive. The minimum regret and
maximum coverage rewards will result in the agent produc-
ing executions that satisfy (3, the most restrictive formula;
however, using the most likely criteria will only generate
executions that satisfy ;. With the chance-constrained policy,
the agent begins by satisfying (3 and relaxes the satisfactions
as risk tolerance is decreased, eventually satisfying (o1 but not
necessarily 2 or ¢s.

Case 3: Case 3 represents three specifications that share
a common subset but also have subsets that satisfy neither
of the other specifications. Let the scenario specification be
{¢} ={G-TOAFWO0,G-TOAFW1, G-T0ANFW2} with
assigned probabilities to each of [0.4,0.25,0.35], respectively.
These specifications correspond to always avoiding “7°0” and
visiting either “W0”, “W1”, or “W2”. For each figure of merit
defined in Section the Q-value function was estimated
using v = 0.95 and an e-greedy exploration policy. A softmax
policy with temperature parameter 0.02 was used to train
the agent, and the resultant exploration graph of the agent
was recorded. The most likely criterion requires only the first
formula in {¢} to be satisfied; thus, the agent will necessarily
visit “W0” but may or may not visit “W1” or “W2”, as
depicted in With either maximum coverage or
minimum regret serving as the reward function, the agent
tries to complete executions that satisfy all three specifications

simultaneously. Therefore, each task execution ends with the
agent visiting all three nodes in all possible orders, as depicted
in Finally, in the chance-constrained setting with
risk level § = 0.3, the automaton compiler drops the second
specification; the resulting task executions always visit “WW0”
and “TW2” but not necessarily “T¥1”, as depicted in [Figure 2d|

Case 4: Case 4 depicts a distribution where an intersecting
subset does not exist. Let the scenario specifications be {¢} =
{G-TONG-W2AFW1,G-TOANG-W2AFW1, G-TOA
FIW2, with probabilities assigned to each of [0.05,0.15,0.8],
respectively. The first two formulas correspond to the agent
visiting either “W1” or “W0” but not “W2”. The third
specification is satisfied when the agent visits “W¥2”; thus, any
execution that satisfies the third formula will not satisfy the
first two. Optimizing for max coverage will result in the agent
satisfying both the first and the second formula but ignoring
the third, as depicted in However, when using
the minimum regret formulation, the probability of the third
specification is higher than the combined probability of the
first two formulas; thus, a policy learned to optimize minimum
regret will ignore the first two formulas and always end an

episode by visiting “WW2”, as depicted in

V. CONCLUSION

In this work, we formally define the problem of planning
with uncertain specifications (PUnS), where the task specifi-
cation is provided as a belief over LTL formulas. We propose
four evaluation criteria that define what it means to satisfy
a belief over logical formulas, and discuss the type of task
executions that arise from the various choices. We also present
a methodology for compiling PUnS as an equivalent MDP
using LTL compilation tools adapted to multiple formulas.
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