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Figure 1: Figures 1a and 1b depicts the table-setting task as demonstrated by the human and performed by the robot respec-
tively. Figure 1c depicts our active learning framework for unifying demonstrations and query assessments.
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1 INTRODUCTION AND RELATEDWORK
Imagine a future where a domestic robot ships with a state-of-the-
art learning from demonstrations (LfD) system to learn household
tasks. You would like the robot to set the dinner-table for you when
you get home at dinner time. After you demonstrate how to set the
dinner table a couple of times. Would you be confident that robot
will not try to place the saucer on top of the cup, or finish as much
of the task as possible if an object was missing?

Formal languages like linear temporal logic (LTL) are ideal for
specifying temporal properties pertaining to the dinner setting task
due to their unambiguous semantics and expressivity. However,
formal languages are an unwieldy tool for an untrained user. This
has lead to an interest in developing models to infer formal specifi-
cations from data provided through intuitive modalities. For exam-
ple, there exist models to infer LTL formulas from demonstrations
[16],[11], natural language instructions [15],[8], and preferences
elicited from multiple experts [10]. However these modalities are
inherently ambiguous and potentially mutually contradictory. Of-
ten, there is no ‘correct’ answer, and the task specification is best
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described as a belief over multiple LTL formulas P(φ). Our proposed
approach is to decompose the problem of training a robot into infer-
ring the specification [16] as a belief over candidate LTL formulas,
followed by computing policies that best satisfy this belief [17].
Further, I propose an interactive training framework (Figure 1c)
that allows the user to begin the robot training by providing demon-
strations, and later provide feedback on the acceptability of task
executions performed by the robot.

Argall et al. [1] and Chernova et al. [6] provide a comprehensive
survey of methods for robot learning from demonstrations (LfD).
Prior research into specification inference from demonstrations
[9, 12, 20, 21] generate a point estimate of the specifications; this
makes them unsuitable in scenario when multiple hypotheses are
equally valid. Our prior work on Bayesian specification inference
[16] computes the belief over candidate LTL formulas thus provid-
ing an estimate of the model’s (un)certainty.

Specification inference from a batch of demonstrations yields an
initial belief over specifications, however active learning can guide
further exploration to reduce the uncertainty of the distribution.
Cakmak et al. [3, 4] developed a taxonomy of types of queries that
can be asked to obtain a better understanding of task specifications.
Biyik et al. [2, 2] have designed inference models that learn the
reward function for a task based on queries that elicit the user’s
preference over multiple trajectories. However, the prior work has
largely focused on tasks with a Markovian reward function. Tem-
poral tasks that we consider do not satisfy the Markov assumption
as they require the entire state history to evaluate acceptability.
Our proposed research extends active learning to tasks that can be
described by formulas belonging to a well-defined segment of LTL.

Adopting LTL specifications as goal specifications would require
abandoning the Markov assumption. Algorithms for planning with
goals defined through LTL formulas have been proposed by sym-
bolic planning [5], hybrid controller synthesis [13] and reinforce-
ment learning [14, 19]. However these algorithms are not applicable
to tasks where the specifications are expressed as a beliefs over
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Figure 2: The average entropy (left; lower is better) of the
final posterior and the similarity of the posterior with the
ground truth formula (right; higher is better) for the four
training conditions. All error bars indicate 95% confidence
interval.
LTL formulas. Our prior work [17] addresses this by developing
algorithm to compile planning with uncertain LTL specifications
into an equivalent MDP formulation.

2 BAYESIAN SPECIFICATION INFERENCE
As a part of our prior research [16], we developed a probabilistic
model, inspired by Bayesian concept learning [18], to infer specifi-
cations given task demonstrations. In context of the table-setting
task, given a batch of demonstrations for setting a table {D} (Fig-
ure 1a), which objects need to be placed, and what are the allowable
placement orders? A single hypothesis for such specification can
be represented as an LTL formula φ and the robot’s belief over the
specification can be expressed as a conditional posterior P(φ | {D}).
We defined priors over a concept class of candidate LTL formulas
selected from a library of temporal properties defined by Dwyer
et al. [7]. Further, we proposed a domain independent approxima-
tion to the likelihood function that satisfies the size principle [18]
(the likelihood should favor the most restrictive hypothesis that
explains the observed data). We used a sampling-based algorithm
to compute an approximation to P(φ | {D}). We demonstrated the
efficacy of our model by inferring specifications for setting a dinner
table using demonstrations of people performing the task. The true
specification was one of the top-5 most likely formulas with as few
as 30 demonstrations, while with all 71 demonstrations, it was the
most likely formula.

3 PLANNINGWITH UNCERTAIN
SPECIFICATIONS (PUNS)

Next, we considered the problem of computing the robot policy
that best adheres to a belief over the true specification P(φ | {D})
instead of a single formula φ∗. We first proposed four evaluation
criteria that captured the semantics of satisfying a distribution
over LTL formulas. We demonstrated that each of these evaluation
criteria is equivalent to optimizing a non-Markov reward function.
Next we developed algorithms to construct a minimal finite state
machine (FSM) that simultaneously tracks the (dis)satisfaction of all
the formulas in P(φ | {D}). The reformulation as anMDP allows the
agent to use a suite of popular reinforcement learning algorithms to
compute an optimal policy for the learner. As depicted in Figure 1b,
a robot trained using the PUnS formulation for the table setting
task was able to reliably set the dinner table with a very small error
rate (∼ 10−4 as estimated through simulations).

4 PROPOSED RESEARCH
Bayesian specification inference and PUnS can be used in conjunc-
tion with each other to allow a robot to learn a task given a batch
of demonstration data. However, the initial belief P(φ) and the min-
imal FSM constructed for PUnS allow the learner to identify a task
execution whose acceptability is the most uncertain. This execution
can then be demonstrated back to the user to ascertain whether it
acceptable or unacceptable (Q represents the query and the user’s
assessment). Given Q , the learner can once again apply Bayesian
specification inference; this time using P(φ) as the prior to compute
a posterior P(φ | Q) in an active learning setting.

In preliminary experiments, we compared the performance of
this approach (termed ‘Active’), interactions with random query
generation (termed ‘Random’) and a heuristic query generation
baseline (termed ‘Base’) based on modifying only the most likely
formula in P(φ). We also compared it against belief computed by
directly providing the robot with just an equal number of demon-
strations (termed ‘Batch’). We conducted 200 simulated trials. For
each trial, we sampled a ground truth formula and automatically
generated demonstrations that satisfied it. The three query based
models were initialized with P(φ) generated using specification in-
ference conditioned on two demonstrations. This was then followed
by sequentially updating the belief as per the responses provided
by the ground truth based oracle to the generated queries to yield
Pf inal (φ). In the ‘Batch’ case, the final posterior was generated
conditioned on the same number of demonstrations as the total
number data points in the query based cases. We compared the
Entropy of final distribution indicating the confidence of the model,
and the expected value of the similarity metric measured as an
intersection-over-union of the clauses included in the candidate
formula compared to the ground truth.

The results of the simulation experiment (Figure 2) indicate that
the ‘Batch’ and the ‘Active’ approach had the lowest entropy val-
ues compared to ‘Base’ and ‘Random’ indicating high confidence
distributions. However the higher similarity score for the ‘Active’
approach indicates that it demonstrates better convergence to the
true specification compared to ‘Batch’. While the preliminary re-
sults are promising, we would like to repeat this experiment as
a human-participant study where the participant provides both
demonstrations and assessments. Besides the objective metrics eval-
uated here, we would also like to assess subjective measures for
how well the participant’s perception of the robot’s competence
aligns with the objective metrics.

5 CONCLUSION
In conclusion we propose an active learning framework that accepts
user’s input through both demonstrations and query assessments
for temporal tasks.We hypothesize that initializing the robot’s belief
through demonstrations followed by refining it through demonstrat-
ing the most informative query would result in lower uncertainty
in the resulting belief and better alignment with the ground truth
specification. Our preliminary simulation experiments support his
hypothesis, and we propose to conduct human-participant studies
to evaluate the alignment of participants’ subjective perceptions
with objective measures.
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