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Abstract

Domains such as high-mix manufacturing, domestic robotics, space exploration, etc., are
key areas of interest for robotics. In these domains, it is difficult to anticipate the exact
role of the robot apriori, therefore defining the robot specifications is challenging. This
presents a crucial hurdle to widespread adoption of robots in these domains. Developing
robots that can be re-programmed easily during deployment by domain experts, through the
modification of the task specifications, without requiring extensive programming knowledge
is a key research thrust of this dissertation.

I present a multi-modal framework for training a robot through demonstrations and
acceptability assessments provided by the teacher as per their intended task specification. I
adopt an online Bayesian approach, where the robot maintains a belief over the teacher’s
intended task specification, and each input provided by the teacher iteratively updates the
robot’s belief. Further, I enabled the robot to infer task specifications that require satisfaction
of temporal properties by utilizing a well-defined fragment of linear temporal logic (LTL).
Towards developing this framework, I address three key research questions.

I begin by presenting a novel approach to inferring formal temporal specifications from
labeled task executions, called Bayesian specification inference. This approach can learn
tasks expressed by an expressive but relevant fragment of LTL while modeling the ambiguity
of demonstrations as a belief distribution over candidate LTL formulas. We demonstrate
the utility of this approach in inferring task specifications for the representative multi-step
manipulation task of setting a dinner table. We also utilize this model to learn an assessment
model for multi-aircraft combat missions that shows a high degree of alignment with the
assessments provided by a domain expert.

Next, I present planning with uncertain specifications (PUnS), a novel formulation
that enables planning with a belief distribution over the true specification. I propose four
evaluation criteria that capture the semantics of satisfying a belief over logical formulas
and demonstrate the existence of an equivalent Markov decision process (MDP) for every
instance of a PUnS problem. We show that the robot policies produced through the PUnS
formulation demonstrate flexibility by generating distinct valid task executions and result in
a low error rate by simultaneously satisfying a maximal subset of the specifications in the
belief distribution.
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Finally, I present an integrated specification inference framework that interleaves
inference and planning through active learning. Our models for active learning allow
the robot to identify whether a task demonstration or an assessment of its task execution
provided by the teacher would be most beneficial in refining its belief. Further, we developed
algorithms that enable the robot to identify and perform the task execution that would be
most informative in refining its uncertainty. We explore the impact of different information
utility functions and the degree of teacher’s pedagogical selectivity on the robot’s learning
performance, and demonstrate that allowing the robot to select the ideal learning modality
allows it to overcome the limitations of a non-pedagogical teacher, and still converge to the
true task specification. We also demonstrate our framework through a study involving users
teaching a robot to set a dinner table with only five task executions.
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Chapter 1

Introduction

The promise of robotics and autonomous systems lies in deploying competent autonomous

robots for wide-ranging real-world applications. Tremendous recent progress in robotics

hardware capabilities, perception systems, and planning algorithms has made these goals

feasible, yet widespread real-world deployment has been elusive. A key feature in many

real-world domains is the difficulty in anticipating the autonomous system’s actual task

during deployment. The problem of task definition and assignment makes expert oversight

during deployment valuable, as the task and roles are defined and assigned on the fly. This

requisite flexibility is incompatible with the prevalent model of deploying automation, where

an automation engineer typically acts as an intermediary between task experts and the robot

(Figure 1-1a). This thesis envisions a paradigm of automation where the domain expert

directly trains the robot to perform the task and holds the ability to modify robot behavior

during deployment (Figure 1-1b), thus addressing the inability to program a robot to perform

a new task during deployment.

The guiding principle of this thesis is to empower users who may not have robotics

expertise to deploy robotic systems by allowing them to “program the task and not the robot”.

This concept of allowing users to train and deploy robotic systems directly was identified

as one of the key research directions in the comprehensive survey of industrial robotics

development by Sanneman, Fourie, and Shah [104]. Programming by demonstration [6, 31,

100] has been a promising approach towards this goal. There is also significant research

interest in using inputs such as preference elicitation through active learning [19, 18, 17, 102],
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(a)

(b)

Figure 1-1: Paradigms of automation.

corrections [11, 12, 87], or natural language commands [65], as teaching modalities available

to the teacher. However, the restriction to Markovian task specifications–specifications that

do not depend on the entire history of execution to determine satisfaction–has thus far

limited the complexity of tasks that the robot can learn. Enabling easy programming for

complex tasks with the temporal constraints widely prevalent in the real world was an

essential motivator for our research.

Conversely, prior research into specification mining for temporal tasks has primarily

focused on identifying a single valid specification that describes the observed data [67, 66,

141, 133, 129]. In an inductive learning setting where the majority of the data available is

acceptable and where limited data is available, multiple candidate specifications accurately

describe the observed demonstrations. In such settings, generating a point estimate requires

an implicit tie-breaking mechanism that favors one explanation over the others. To mitigate

that, we adopt a Bayesian approach inspired by cognitive models for concept learning

[125, 123] that maintain a belief over candidate specifications, and any valid hypothesis

might gain favorability as more observations become available.

The central contribution of this thesis is the development of a Bayesian framework for

robot training through specification inference depicted in Figure 1-2. The framework allows
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a robot learner to learn complex tasks through intuitive modalities–namely, demonstrations,

remote operations, and acceptability assessments. Further, it will enable the learner to reason

about its uncertainty over the task specification it must fulfill. Finally, it allows the learner

to guide its learning by selecting when and how to seek information from a domain expert.

These capabilities are valuable in real-world settings where the robot’s role is challenging to

define a priori. Concretely, this thesis addresses the following challenges towards developing

the framework depicted in Figure 1-2:

Bayesian specification inference: Formal languages are ideal for unambiguously

defining non-Markov task specifications. However, formal languages can be unwieldy

for a domain expert compared to providing task demonstrations. On the other hand, a

domain expert can readily provide new demonstrations of the task execution, or assess the

acceptability of the learner’s task execution. However, natural modalities are ambiguous as

a set of task executions can be described by many potential formal specifications. Our key

contribution was modeling the epistemic uncertainty (uncertainty due to lack of knowledge)

caused by this ambiguity as a belief over a set of unambiguous formal specifications within

a Bayesian formulation. We used this model to learn task specifications for applications

ranging from manipulation tasks to multi-aircraft simulated combat.

We used this model to learn task specifications for applications ranging from multi-

aircraft flight missions to multi-step manipulation tasks. The work on identifying mission

objectives for multi-aircraft flight missions is at the core of automated mission analysis and

review systems developed in collaboration with Lockheed-Martin. Automated evaluation

of flight missions generated by our system had over 95% agreement with the assessment

provided by an expert mission commander while learning from only 25 labeled examples.

In comparison, widely used sequence classification models struggled to perform better than

random predictions. Furthermore, the logical structure of the formulas enabled the mission

commander to interpret the model’s reasoning in case of disagreements. We formally define

the problem of Bayesian specification inference in Section 3.2.1.

Planning with uncertain specifications: Prior research into planning with formal

specifications has assumed the task specifications to be known unambiguously. However,

the inherent epistemic uncertainty over the true task specifications necessitated a novel

17



Figure 1-2: Bayesian Framework for Interactive Robot Training

approach. We developed planning with uncertain specifications (PUnS), a novel formalism

that allows the robot to reason about its uncertainty over task specifications. Further, we

demonstrated that every instance of a PUnS problem is equivalent to a provably minimal

Markov decision process making it compatible with MDP planning algorithms.

Admitting non-Markov specifications makes PUnS suitable for multi-step tasks with

multiple paths towards task completion commonly found within our domains of interest.

For example, in a manufacturing setting, a set of parts is assigned to a station, but the worker

decides the actual order of installation; everyday tasks for household assistance such as

setting a dinner table, clearing clutter on a table, and stocking the pantry require satisfaction

of temporal constraints. We chose the task of setting the dinner table, which retains the

temporal complexities of non-Markov specifications while being amenable to a laboratory

setting. The task policies computed using the PUnS formulation based on the specifications

inferred through just 30 demonstrations were estimated to have a low error rate of ≈ 0.01%

while demonstrating multiple unique sequences for setting the table. We have demonstrated

the efficacy of PUnS in generating policies that satisfy beliefs over task specifications for a

wide range of specifications. We formally define the problem of planning with uncertain

specifications in Section 3.2.2.

Online Multi-Modal Robot Training: Our Bayesian framework (Figure 1-2) enables

combining specification inference and planning with uncertain specifications to iteratively

refine the learner’s belief over task specifications. Under this framework, the learner can

first decide what learning modality to learn from, i.e., choosing whether to ask the teacher

18



to demonstrate a task execution or perform a query execution and elicit an acceptability

label from the teacher. In developing the framework, we also explored the impact of a

pedagogically selective teacher, i.e., a teacher capable of providing teaching data that best

guides the learner to the desired task specification. We conducted simulation experiments

that demonstrated our proposed active learning framework, characterized the impact of

pedagogical selectivity on the learner’s performance, and evaluated different fixed and

adaptive learning modality schedules over a wide range of ground-truth task specifications.

We also deployed the framework in a user study based on the table-setting task with 18

participants with two different table configuration. All our participants could successfully

teach the robot to correctly set the table without errors with just five task executions. The

use of belief over logical formulas allowed the participants to train the robot through

multiple teaching modalities like physical demonstrations, tele-command of the robot, and

acceptability assessments of the robot’s task execution. This study provides evidence that

active learning for complex non-Markov tasks in a real-world setting like manufacturing

is viable in the near future. We formally define the problem of online multi-modal robot

training in Section 3.2.3.

1.1 Overview of the Thesis

The remainder of the dissertation is organized as follows: Chapter 2 surveys related research

and contextualizes the novelty of our approaches to the challenges described above. Chapter

3 first provides a brief summary of linear temporal logic (LTL) and Markov decision

processes (MDP), which are fundamental to the approaches we develop as a part of this

dissertation. This is followed by a formal statement of the technical problems formalized

and addressed in this dissertation.

Chapter 4 addresses the challenge of Bayesian specification inference described here.

The technical content in this chapter draws from the following works:

• Ankit Shah, Pritish Kamath, Julie A Shah, and Shen Li. Bayesian inference of

temporal task specifications from demonstrations. In Advances in Neural Information

Processing Systems 31, pages 3804–3813. 2018
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• Ankit Shah, Pritish Kamath, Shen Li, Patrick Craven, Kevin Landers, Kevin Oden,

and Julie Shah. Supervised Bayesian specification inference from demonstrations.

arXiv preprint arXiv:2107.02912, 2021

The Bayesian specification inference framework described in Chapter 4 was used as the

backend for the mission analysis and review system developed in collaboration with the

Lockheed Martin Corporation (Craven et al. [34], [35]). It has also been used to generate

contrastive plan explanations in symbolic planning domains in collaboration with Kim et al.

[64].

Chapter 5 addresses our approach to planning with uncertain specifications (PUnS),

a novel problem formulation that enables reasoning over epistemic uncertainty in task

specifications. We developed algorithms to automatically compile any PUnS problem into

an equivalent Markov decision process (MDP), thus enabling compatibility with state-of-

the-art planning and reinforcement learning algorithms in solving PUnS problems. The

technical content in this chapter is based on the following work:

• Ankit Shah, Shen Li, and Julie Shah. Planning with uncertain specifications (PUnS).

IEEE Robotics and Automation Letters, 2020

Chapter 6 addresses the problem of iteratively refining the learner’s belief over task

specifications by leveraging both actively sought demonstrations from the teacher and

acceptability assessments of the learner’s task execution provided by the teacher. The

technical content in this chapter is partly derived from the following work:

• Ankit Shah, Samir Wadhwania, and Julie Shah. Interactive robot training for non-

Markov tasks. arXiv preprint arXiv:2003.02232, 2020

Finally, Chapter 7 summarizes the thesis contributions and the key insights from the

research underlying this dissertation. We also describe the promising directions for future

work for advancing the theory and practice for empowering task experts to better train

robots.
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Chapter 2

Motivation

Deploying resilient and reliable robots in real-world domains such as flexible manufacturing

floors, space exploration, disaster response, and domestic robotics remains challenging. In

addition to unpredictable dynamics, defining the task of the autonomous system apriori is

not always possible. Often determining the tasks to be performed requires extensive input

from domain experts in an iterative fashion, such as in tactical planning for rover operations

described by Smith et al. [120]. The DARPA robotics challenge (DRC) also witnessed

competent robotic hardware performing the tasks at a lower autonomy level than anticipated

[8, 59, 122]. Successful teams relied on hierarchical supervisory control to accomplish the

tasks, but relied on operator expertise to generate high-level task plans. Thus, the cognitive

burden of task-planning and adopting to a novel environment fell on the human operator and

not the robot. Further, in the field of manufacturing, Sanneman, Fourie, and Shah [104] state

that the challenge of adapting a robotic system to perform a new task on a manufacturing

line led to difficulties in reusing existing robotic hardware. Further, their study identifies the

ease of programming robots as one of the critical enabling technological hurdles towards

greater adoption of robots in manufacturing.

In this chapter, we survey the prior work on formalisms for defining task specifications

and their expressivity, learning from human experts, paradigms, algorithms for robot

decision-making, and the work at the intersection of these fields. Based on the survey

of prior research, we identified research opportunities that informed the development of our

Bayesian framework (Figure 1-2).
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2.1 Temporal Logics for Robot Task Specifications

Successful completion of a task, in general, can be defined as a combination of two notions,

namely: maximizing a utility function over a given time horizon (optimizing tasks) and

performing within the bounds of given constraints within that horizon (satisfying tasks).

In this dissertation, we operate within the framework of satisfying tasks. As satisfaction

of constraints is binary, it can be modeled through the use of logical statements. Linear

temporal logic is a modal logic with time as the modality first introduced by Pnueli [93].

LTL formulas encode properties of the future path of atomic Boolean propositions used

to construct the formula. LTL is expressive enough to satisfy a wide range of temporal

properties relevant to robotics applications; however, there are limits to its expressive power,

particularly for branching-time properties [14, 33, 43]. Manna and Pnueli proposed a

hierarchy of temporal properties expressible in LTL [78].

The relationship between LTL formulas as automata is the basis of most works exploiting

temporal logics for control, symbolic planning, or reinforcement learning. Each LTL formula

can be translated to a Büchi automaton [132]; the resulting automata also differ qualitatively

(determinism, and nature of accepting conditions) based on the class of temporal hierarchy

to which a formula belongs [29]. Many useful fragments of LTL, such as GR(1) [92], and

syntactic (co-)safe LTL [72, 119] have been studied for their properties that make planning

tractable.

Another important line of work is proving the equivalence of and defining the translation

between various formalisms for expressing non-Markov task specifications. Recent work by

Camacho et al. [26] that defined the relationship between the ‘Obligations’ class from Manna

and Pnueli’s temporal hierarchy [78] and the reward machines [129, 128], is of particular

relevance to this dissertation. We restrict the formulas considered within this dissertation to

a well-defined fragment of LTL belonging to Manna and Pnueli’s [78] ‘Obligation’ class

of properties. We demonstrate how a belief over LTL formulas can be compiled into an

equivalent reward machine, as opposed to a single formula, thus enabling planning or

reinforcement learning algorithms to compute the decision policy.
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2.2 Learning from Human Experts

The primary motivation for our research is to empower domain experts to train robotics

systems to perform complex tasks directly. The first sub-problem we address is that of

learning passively from labeled task executions provided by the expert. We start by reviewing

the prior research in robot learning from demonstration, followed by the work in specification

mining from software execution traces–an analog of learning from demonstration for

software traces. Next, we summarize the progress in probabilistic programming languages

for Bayesian inference on arbitrary distributions described through probabilistic programs.

This motivates our approach of framing learning from labeled expert demonstrations as

Bayesian inference on the concept class of candidate LTL formulas.

2.2.1 Learning from Demonstrations

Argall et al. [6], Chernova et al. [31], and Ravichandar et al. [100] provide a comprehensive

survey of the research in LfD applied to robotics. The field can be broadly organized into

three major paradigms: imitating task demonstrations, learning task specifications, and

learning the modes of interaction with the environment. Each of these approaches is best

suited for learning distinct types of robot behaviors.

When LfD is framed as a problem of imitating motion level trajectories, the task objective

is to minimize a distance metric between the demonstrated trajectories and the trajectory

generated by the learner. This objective may be achieved using techniques such as dynamic

motion primitives [105], generalized cylinders [2], or an inference based approach to learning

and motion planning [97]. A recent method proposed by Billard et al., [16], and Figueroa et

al. [44] leverage dynamical systems theory and non-parametric priors to learn the sequence

of stable controllers from demonstration while guaranteeing performance while allowing

robot compliance to ensure safe interactions. These approaches are best suited for cloning

the demonstrated motions. The objective is to learn motion-level paths for the robot, and

therefore, the training curriculum for the robot comprises learning the task one skill at a

time.
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The next class of LfD models lies at the intersection of policy imitation and specification

inference, namely, the problem of inverse reinforcement learning (IRL). Here demonstrations

are provided as state-action tuples. Algorithms for IRL are designed to best align the learned

policy with the demonstrator’s policy in a given system state. The task specification is

implicitly encoded through a ‘reward’ function for performing the task. IRL was first

introduced by Ng and Russel [86] and Abbeel and Ng [1] as an optimization problem to

identify a reward function that optimally explains the observed demonstrations. Ziebart et al.

[143] developed algorithms for computing an estimate of the policy function that satisfies

the maximum-entropy criterion. Hadfield-Menell et al. [53] propose a Bayesian approach

to reward inference in a Markov setting. Finally, recent works by Chen et al. [30], and

Brown et al. [22, 22] utilize ranking information or addition of synthetic noise to generate

counterfactual trajectories to learn a reward function that performs better than noisy human

demonstrations towards accomplishing the actual task.

These works frame IRL in a setting where the underlying decision process is a Markov

decision process (MDP) where the Markov policy only considers the current state in selecting

the action. Konidaris et al. [69], Niekum et al. [87], Ranchod et al. [98], and Michini and

How [79] attempt to frame the IRL problem in semi-Markov settings, where the policy

decided between primitive actions that last for a single time step or temporally abstracted

skills that can last for multiple time steps. The notion of temporally abstracted skills is

important for learning decompositions of the demonstrated tasks as these skills can be

combined in different ways to perform variants of the task. The learned skills might even be

a part of performing an entirely different task. This set of approaches relies on representing

the task specification through reward functions or policies. Finally, Unhelkar and Shah [131]

introduced the Agent Markov Model. This hierarchical approach models demonstrator’s

policy as piece-wise Markov with discrete latent control modes that are inferred using a

non-parametric prior. Indeed Arnold et al. [7] challenge the notion of expressing task

specifications as a reward function due to its difficulty in aligning optimal behavior with

the user’s intention (the problem of value alignment.) However, the choice of a suitable

formalism for task specifications remains an open problem.

Some works directly use task specification as an intermediary between the teacher and
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the learner. The learner does not directly learn ‘how’ to perform the task from the teacher

but infers a binary function that indicates whether a task execution is successful or not.

Final poses of objects [126], hierarchical task networks [54], a finite set of tasks [21], or a

sequence of relative poses between the robot and objects [91, 85] are various approaches

to represent task specifications. While these works capture the notion of separating the

definition of the task from methods of performing the task, the formats used to state the

specifications are limited in their expressivity.

Finally, another set of works relevant to the problem of LfD deal with learning the

environment interaction models from demonstrations. Konidaris et al. [68] present an

approach to construct high-level symbolic representations of continuous domains through

exploration. Pasula et al. [90] and Xia et al. [137] present methods for constructing factored

transitions models for actions in high-dimensional state spaces. These works provide a

crucial link to modeling complex environments in terms of discrete symbols that can then

construct a logical specification. While this dissertation focuses on inferring specifications

formed through compositions of pre-specified propositions through temporal operators,

these works focus on learning the nature of the symbols themselves.

2.2.2 Specification Inference over Temporal Logics

Mining specifications of a software program from its execution traces are analogous to LfD

in the software domain. Jha and Seshia [58] provided a theoretical analysis of the problem

of inductive synthesis from examples and counterexamples. In the context of software

systems, Gabel and Su [47] and Chivilikhin et al. [32] proposed algorithms to mine temporal

specifications from execution traces. Lemieux et al. [75] proposed an algorithm to mine all

formulas that satisfy a given formula template based on an output log. Here each line of the

log is considered a unique proposition. Similarly, Camacho et al. [27], and Kim et al. [64]

addressed the problem of learning LTL-based logical classifiers for execution traces.

In the context of sequential decision making, Kasenberg and Scheutz [62] and Xu et al.

[140] proposed algorithms to mine properties of decision-making agents acting in a Markov

decision process. Our approach intends to infer specifications based only on the observed

states rather than state-action tuples. Xu et al. [138] developed a specification inference
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approach for learning unique specifications using an integer programming approach.

The most closely related work to ours is by Kong et al. [67], [66], and Yoo and Belta

[141]. These works proposed algorithms for simultaneously mining STL propositions and

formulas based on the parametric STL grammar that they define. Recent work by Vazquez-

Chanlatte et al. [133] proposes a maximum likelihood framework for specification inference

with a maximum entropy estimate of the likelihood function that aligns with our approach

of defining a likelihood function under certain conditions as described in Section 4.2.2.

Another approach towards learning non-Markov task specification infers the underlying

automaton directly, rather than inferring a logical formula. Toro-Icarte et al. [129], and Xu

et al. [139] adopt a learning approach based on reward machines as the hypothesis space for

task specifications. By contrast, Araki et al. [5] model specifications inferred from noisy

and ambiguous demonstrations as probabilistic automata.

2.2.3 Opportunity: Bayesian Inference of Complex Task Specification

We identified two key challenges in inferring specifications from demonstrations that are

not addressed in prior research. The, first is the ambiguity of the demonstrations, where

there may be multiple candidate LTL formulas that are all satisfied by the demonstrations

observed. While longer and more numerous demonstrations might alleviate the problem,

disambiguated data is not always guaranteed. We propose adopting a Bayesian concept

learning [125, 123] approach towards specification inference, where the learner can encode

the ambiguity over multiple specifications as a belief over candidate LTL formulas, thus not

being restricted to infer a single LTL formula. The second key challenge is the recursive

grammar used to define all possible LTL formulas. The relevant formulas require generating

many LTL grammar branches, and most formulas generated are not relevant or vacuous. We

propose leveraging probabilistic programming approaches combined with template-based

hypothesis spaces defined using a subset of templates identified by Dwyer et al. [39]. This

allows us to generate prior distributions that maintain support over relevant formulas without

requiring a sample path with many branches.

Leveraging probabilistic programming languages is the key to our approach. The

idea of a universal probabilistic programming language was formalized by Freer et al.
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[46], and Goodman et al. [49]. These ideas have resulted in the development of Turing-

complete probabilistic programming languages such as Church [49], webppl [50], and Gen

[37]. Probabilistic programming languages have been instrumental in enabling a Bayesian

approach to grammatical inference [38] by allowing the composition of modular inference

algorithms over arbitrary distributions. Ellis et al. [42, 41] have demonstrated the success of

probabilistic programming approaches to inferring graphics programs and language rules.

Silver et al. [116] demonstrated the utility of such an approach towards learning robotic

manipulation policies.

2.3 Robot Behavior Generation

In a general case, the robot learning operating in the environment can be modeled as a

hybrid (continuous and discrete) stochastic dynamical system with partial observability

of the environment state [60]. There are many commonly used abstractions for robot

planning that relax some of these assumptions. The Markov decision process (MDP)

[13] formalism stresses the probabilistic transitions in the system while assuming full

observability of the state. The symbolic planning abstraction [45, 48] allowed for factored

state representation, but with deterministic and sparse transitions. Finally, non-deterministic

symbolic planning formulations allow for factored state representation while allowing for

sparse non-determinism in the state transitions [28]. We begin by surveying how planning

to fulfill goals and constraints expressed in temporal logic has been studied in prior work.

2.3.1 Decision-Making with Temporal Logic Constraints

The approaches to decision-making with temporal logics can be categorized into automata-

based methods, optimization-based methods, and reinforcement learning or planning-based

approaches.

LTL formulas can be translated into automatons that naturally induce a discrete controller.

Thus an approach to planning would be to compose local continuous state controllers with

discrete mode controllers induced by LTL as proposed by Kress-Gazit et al. [70]. Such

controllers are verifiably correct if certain assumptions on the continuous system dynamics
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hold. Camacho et al. [28] leverage this conversion to an automaton with symbolic planners

whose state spaces are defined with planning domain description languages (PDDL).

A second approach is to translate LTL formulas into mixed-integer constraints and use

them along with SAT solvers or optimization frameworks to generate plans that satisfy the

specifications. Karaman and Frazzoli [61] provide a mixed-integer encoding for LTL

formulas and use those techniques for vehicle routing problems. Raman et al. [94]

propose a model predictive control scheme that encodes STL specifications as mixed-integer

constraints. Sadigh and Kapoor [103] proposed an approach to encode nondeterministic

constraints expressed in probabilistic STL to ensure that the specifications are satisfied under

a chance-constrained framework.

Finally, temporal logic formulas can also be leveraged to define non-Markovian rewards

in the reinforcement learning setting. Littman et al. [77] propose Geometric LTL (G-

LTL), a variant of LTL with temporal semantics that are allowed to expire after a finite

time length controlled by a geometric distribution. This is akin to the idea of discounting

cumulative rewards to stabilize temporal difference learning. LTL formulas are converted to

a specification MDP (Spec-MDP) with well-defined terminal states in this approach. A cross

product of Spec-MDP with the original system MDP is used with a traditional reinforcement

learning algorithm. The modified semantics nudge the system behavior towards satisfying

the LTL specification for the time scales where the formulas hold. A second approach is to

treat non-Markovian rewards as piecewise Markovian. Toro-Icarte et al. [127] propose an

algorithm to systematically decompose LTL formulas into a curriculum of reward functions

based on possible progressions of the formula and using curriculum learning approaches to

compute an optimal policy. Toro-Icarte et al. [128, 127] and Camacho et al. [26] further

proposed a unified framework called reward machines, along with a suite of reinforcement

learning algorithms that exploit their structure to specify non-Markov properties. Finally,

Oh et al. [88] have developed a system to translate natural language commands to temporal

logic specifications with propositions grounded to an object-oriented MDP, thus allowing a

robot to generate behaviors conforming to a language command.

Yet another area of prior work deals with the problem of expressing LTL specifications

as rewards. While the G-LTL [77] and the LPOPL framework allow only for binary rewards
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representing satisfaction or non-satisfaction of LTL constraints, Aksaray et al. [3] proposed

using variants of STL with quantitative semantics as the reward function in an MDP setting.

Bacchus et al. [9] defined temporally extended reward functions (TERF) over a set of past-

tense LTL formulas, thus modeling rewarding behaviors as preferences of LTL formulas.

2.3.2 Reward Design for User Intent

Prior research into planning and learning for MDPs has indicated great promise at addressing

challenging domains. The breakthroughs have addressed large dimensional state-spaces

such as Atari games ([84]), continuous action spaces [83], sparse rewards ([40, 116]), or all

these challenges together ([135]). However, these successes have been limited to domains

with a clear reward function. The problem of value alignment with the user’s intention is

well-known [7, 82].

This has led to studies in reward design and models for handling uncertainty in the

actual reward function to better align with the user’s objectives. This problem has primarily

been studied in the context of Markov reward functions. Singh et al. [118] first defined the

problem of optimal reward design for a distribution of target environments. Ratner et al. [99]

and Hadfield-Menell et al. [53] defined inverse reward design as the problem of inferring

the true desiderata of the task from proxy reward functions provided by the users for a set

of task environments. Regan and Boutillier [101] proposed algorithms for computation of

robust policies that satisfy the minimax regret criterion rather than the expected reward.

2.3.3 Opportunity: Accounting for Uncertainty in Task Specifications

Prior research into handling epistemic uncertainty in task specifications has been primarily

restricted to the Markov setting. In this dissertation, we address planning with a belief

over task specifications expressed as LTL formulas. We introduce a novel formulation

called planning with uncertain specifications (PUnS). Towards this, our key contributions

involve identifying evaluation criteria that capture the semantics of satisfying a belief over

logical formulas. Further, we demonstrate that every PUnS problem can be compiled

into an equivalent reward machine [128], making PUnS compatible with any planning or
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reinforcement learning algorithm that accepts an MDP problem definition.

2.4 Interactive Approaches to Robot Learning

The research opportunities described thus far treat the problem of specification inference

and planning independently as the learner is expected to learn passively from labeled task

execution data. However, approaching these problems in a unified setting permits the learner

to actively guide its learning by deciding which data points to learn from and deciding what

modality to learn from. Such a learner is closer to a human apprentice who learns not just

by observing but also by asking questions and actively seeking information.

Yet another aspect that is of interest to us is that the robot can be trained by the task

expert through multiple modalities apart from demonstrations, provided that the robot’s

representation of the task specifications has the appropriate abstraction. When multiple

learning modalities are available, deciding which modality to learn from is yet another

choice available to the learner. In this section, we survey prior works that aim to develop an

active learning agent by selecting what data points are most suitable to guide its learning

and asserting a choice over what learning modality to use.

2.4.1 Active Learning for Robotics

In an active learning setting, the learning agent can interactively query an information source

to annotate new data points. An active learning algorithm relied on acquisition functions,

i.e., an estimator for the utility gained through annotating a given data point. Settles [106]

surveyed a wide range of active learning paradigms prevalent in machine learning research.

Recently, there has been considerable interest in developing active learning algorithms

for sequential decision-making tasks relevant to robotics. One expected benefit of an active

approach is that the learner can guide the teacher’s feedback to impact the learner’s behavior

optimally. Cakmak et al. [25, 24] developed a taxonomy of queries that allow a learner to

refine its understanding of the task specifications. Sadigh et al. [102] proposed an active

learning framework for sequential decision-making problems that relies upon pairwise

preference between candidate trajectories selected according to a maximum volume removal
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heuristic; Biyik et al. [18] then extended this to generate queries using maximum information

gain criterion. Biyik and Sadigh [19] proposed a batch-active framework for preference-

based learning wherein multiple queries are generated simultaneously instead of one at a

time. Cui and Niekum [36] proposed an active learning model based on information gain

that operates on individual state-action pairs, allowing segments of the trajectory to be

labeled “esirable” and “undesirable.” However, present research into active learning for

robotics has primarily focused on formulations representing the underlying task as a Markov

decision process (MDP), with the state space known a priori.

2.4.2 Intuitive Training Modalities for Robots

A second thrust for prior research has been into identifying intuitive training modalities for

robots. The natural first modality is learning from demonstrations as surveyed in Section

2.2.1. However in addition modalities such as natural language instructions, [51, 88];

corrections [11, 11]; preference elicitation [19, 18, 17, 102]; or even from a simple stop

command [53]. Particularly notable is the work by Jeon et al. [57] on modeling teacher-

learner interaction as that of the teacher providing a reward-rational implicit choice among

alternatives as a teaching input. This motivates a unifying framework where all teacher

inputs are treated as means to alter the learner’s belief over task parameters. In such a setting,

a learner that models the teacher’s inputs can estimate the value of each of the learning

modalities available to it and select the most fruitful one–also described as meta-choice.

Parallel to this work is the problem of modeling rational teaching behavior. Humans

act differently when simply performing a task in contrast to teaching a task to a novice

[73, 96]. Brown et al. [23] developed algorithms for pedagogical sampling, and in turn,

adopted it to refine the likelihood model for a learner, resulting in an inverse reinforcement

learning algorithm that learned faster than a naive learner. Milli et al. [80] also demonstrated

the utility of assuming teacher’s pedagogical selectivity. However, Milli and Dragan [81]

performed studies that indicated that while peak performance for models that assumed

pedagogical reasoning is better, this is brittle when used in conjunction with teachers with

an unknown degree of pedagogical selectivity. A common thread in these works is the

Bayesian pedagogical reasoning framework formalized by Shafto et al. [107, 108, 109]. The
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benefit of enabling pedagogical reasoning for robots and the appropriate cognitive models

for pedagogical reasoning is an active research area.

2.4.3 Opportunity: Deciding How to Learn–A Multi-modal approach

Prior work in online and multi-modal learning for robots has primarily focused on the Markov

setting. In contrast, the complex, multi-step tasks that are a focus for this dissertation are

not amenable to a naive Markov representation. We propose developing the ideas of active

learning, pedagogical human input, and meta-choice in a scenario with non-Markov task

specifications. The contribution of this dissertation towards this includes developing the

complete Bayesian framework for inferring task specifications from different teacher inputs,

including demonstrations and assessments of the learner’s task execution, and generating

the robot policy while accounting for the uncertainty in task specification; in addition to

this, we develop active-learning models that first addresses the problem of meta-choice–i.e.,

what input modality to learn from next–and identifying and performing an informative task

execution to best refine the learner’s own belief over the true task specifications.
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Chapter 3

Problem Statement

We formalize the problem of training a robot learner to competently perform an intended

task through the lens of Bayesian concept learning [123, 125]. We study the setting where

the teacher intends to teach the learner a specific task that they intend the learner to perform.

Following a Bayesian approach, the learner always maintains a belief over its intended task

specification, its interactions with the teacher serve as evidence to update the learner’s belief

as per the Bayes’ rule. One of the contributions of this thesis is enabling robot training for

non-Markov task specifications–where the execution history is required to determine the

satisfaction of the specifications. We rely on linear temporal logic (LTL) [93] as our chosen

specification language due to its well-studied expressivity [78, 132], and its widespread use

in algorithms for synthesis [70, 94, 95, 71]. Further, we intend to deploy the robot learners

in non-deterministic domains; therefore, we rely on the Markov decision process formalism

to describe the robot environment.

In this chapter we begin with a short introduction to LTL, its safe, and co-safe fragments,

along with the definition of the Markov decision process (MDP) formalism in Section 3.1.

We then define the problems of Bayesian specification inference, planning with uncertain

specifications, and iterative refinement of belief over task specifications in Section 3.2.
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3.1 Preliminaries

3.1.1 Linear Temporal Logic

Linear temporal logic (LTL), introduced by Pnueli [93], provides an expressive grammar

for describing temporal behaviors. An LTL formula is composed of atomic propositions

(discrete time sequences of the truth values of Boolean propositions) and both logical and

temporal operators, and is interpreted over traces [𝛼] of the set of propositions, 𝛼 . The

notation [𝛼], t |= ϕ indicates that ϕ holds at time t. The trace [𝛼] satisfies ϕ (denoted as

[𝛼] |= ϕ) iff [𝛼],0 |= ϕ . The minimal syntax of LTL can be described as follows:

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | Xϕ1 | ϕ1Uϕ2. (3.1)

Here, p is an atomic proposition, and ϕ1 and ϕ2 represent valid LTL formulas. The

operator X is read as “next” and Xϕ1 evaluates as true at time t if ϕ1 evaluates to true at

t + 1. The operator U is read as “until” and the formula ϕ1Uϕ2 evaluates as true at time

t1 if ϕ2 evaluates as true at some time t2 > t1 and ϕ1 evaluates as true for all time steps t,

such that t1 ≤ t ≤ t2. We also use the additional propositional logic operators ∧ (and) and 7→

(implies), as well as other higher-order temporal operators: F (eventually) and G (globally).

Fϕ1 evaluates to true at t1 if ϕ1 evaluates as true for some t ≥ t1. Gϕ1 evaluates to true at t1

if ϕ1 evaluates as true for all t ≥ t1.

The “safe” and “co-safe” subsets of LTL formulas have been identified in prior research

([72], [132], [78]). A “co-safe” formula can always be verified by a trace of a finite length,

whereas a finite trace can always falsify a “safe” formula. Any formula produced by the

following grammar is considered “co-safe”:

ϕco−sa f e ::=> | p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | Xϕ | Fϕ | ϕ1Uϕ2. (3.2)

Similarly, any formula produced by the following grammar is considered “safe”:

ϕsa f e ::=⊥ | p | ¬p | ϕ1∨ϕ2 | ϕ1∧ϕ2 | Xϕ |Gϕ | ϕ1Rϕ2. (3.3)
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A formula expressed as ϕ = ϕsa f e∧ϕco−sa f e belongs to the Obligation class of formulas

presented in Manna and Pnueli’s [78] temporal hierarchy.

Finally, a progression Prog(ϕ,αt) over an LTL formula with respect to a truth assignment

αt at time t is defined such that ∀[𝛼]: [𝛼], t |= ϕ iff [𝛼, t + 1] |= Prog(ϕ,αt). Thus, a

progression of an LTL formula with respect to a truth assignment is a formula that must

hold at the next time step in order for the original formula to hold at the current time step.

Bacchus and Kabanza [10] defined a list of progression rules for the temporal operators in

Equations 3.1, 3.2, and 3.3.

3.1.2 Markov Decision Processes

A Markov decision process (MDP) is a planning problem defined as a tuple M= 〈S,A,T,R〉,

where S represents the set of all possible states; A is the set of actions available to the learner;

T := P(s′ | s,a) is a probability distribution over the next state s′ ∈ S given current state

s ∈ S, and the action a ∈ A executed at the current time step; and R : S→ R is the reward

function that returns a scalar value given the current state.

Watkins and Dayan proposed Q-learning [136], an off-policy, model-free algorithm to

compute optimal policies in discrete MDPs. The Q-value function Qπ(s,a) is the expected

discounted value under a policy π(a | s). In a model-free setting, the transition function is not

known to the learner, and the Q-value is updated by the learner acting within the environment

and observing the resulting reward. If the Q-value is updated while not following the current

estimate of the optimal policy, it is considered “off-policy” learning. Given an initial estimate

of the Q-value Q(s,a), the agent performs an action a from state s to reach s′ while collecting

a reward r and a discounting factor γ ∈ [0,1). The Q-value function is then updated as

follows:

Q(s,a)← (1−α)Q(s,a)+α(r+ γ max
a′∈A

Q(s′,a′)). (3.4)
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Figure 3-1: The scope of this thesis involves scenarios where a teacher attempts to teach a
learner how to act in an environment as per an intended task specification. The teacher only
interacts with the learner through two natural modalities: demonstrations of acceptable task
executions, and assessments of executions performed by the learner.

3.2 Robot Training through Specification Inference

This thesis deals with specification inference and behavior generation in the face of epistemic

uncertainty in task specifications. Figure 3-1 depicts our problem setting that involves a

teacher and a learner. The teacher intends to teach a desired task to the learner through two

natural modalities–demonstrations of task executions that are considered acceptable as per

the intended task specifications and acceptability assessments of task executions performed

by the learner.

Following a Bayesian approach, the learner maintains a belief distribution over the

teacher’s intended task specification, and all inputs provided by the teacher serve to update

the learner’s belief. The teacher’s intended task specification is encoded by a linear temporal

logic (LTL) [93] formula, ϕ∗. We restrict the hypothesis space of the task specifications to a

template-based distribution described in Section 4.1.

The task is performed within the scope of an environment MX = 〈X,A,TX〉. Further, we

assume that a set of nprop Boolean propositions 𝛼 ∈ {0,1}nprop is sufficient to evaluate the

truth value of the task specification ϕ∗. A task execution performed by either the teacher or

the learner is represented by a sequence of environment states [x]. This sequence is mapped

injectively to a sequence of truth values of the propositions, 𝛼, through a pre-defined labeling

function 𝛼= f (x). We further assume that the environment state is fully observable by the

learner; thus, 𝛼 at any given time can be readily determined by the learner.

This thesis tackles three sub-problems of teaching a robot to perform tasks while

reasoning about and refining the epistemic uncertainty in task specifications. First, we

consider the problem of inferring a belief over task specifications purely from observation
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Figure 3-2: Bayesian specification inference problem setting where the learner infers the
task specifications passively from observed executions data.

of a teacher’s task executions. Next, we consider the problem of planning with uncertain

specifications, where we define the semantics of maximally satisfying a distribution over

logical formula and develop algorithms to compute the learner’s policy. Finally, we develop

a unified iterative approach combining specification inference and planning to rapidly

infer and refine beliefs over task specifications using both teacher’s demonstrations and

assessments of the learner’s task executions as learning modalities.

3.2.1 Bayesian Specification Inference

This sub-problem deals with inferring task specifications passively from labeled task

executions performed by the teacher. Each task execution is represented as a sequence

of environment states [x] that is injectively mapped to a sequence of truth values of the

propositions [𝛼]. For this thesis, we restrict the specifications that the learner can infer

to a fragment of LTL formulas that represent conjunctive compositions of three temporal

behaviors among those identified by Dwyer et al. [39]. These behaviors include the

satisfaction of a constraint, ϕglobal , the eventual completion of a subtask, ϕeventual , and

mutual ordering among the subtasks, ϕorder, defined as follows:

ϕ = ϕglobal ∧ϕeventual ∧ϕorder. (3.5)

We further consider two forms of inference problems: the batch learning setting, where

the learner begins with no previous task-specific information, the and iterative learning

setting, where the learner receives the teacher’s inputs iteratively.

1. Batch Learning: In the batch learning setting, the learner begins with a prior belief
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over task specification that has non-zero support over all possible LTL formulas that

conform to a the template defined in Eq 3.5. The teacher provides a set of task

executions along with the boolean acceptability labeled, D= {〈[𝛼]1,L1〉,〈[𝛼]2,L2〉,

. . .}. Here Li ∈ 0,1 is a binary acceptability label for the trace [𝛼]i. The learner

updates its belief by computing the Bayesian posterior P(ϕ |D).

2. Iterative Learning: In the iterative learning setting, the learner updates its belief

iteratively one trajectory at a time, i.e. the dataset, D, consists of a single labeled

trajectory. The belief at end of iteration i is represented by P(ϕ)i. The learner observes

the sequence of propositions and an acceptability label, D= 〈[𝛼]i,Li〉. The learner

must then compute the updated posterior belief P(ϕ | D;P(ϕ)i). In the following

iteration, the belief P(ϕ |D;P(ϕ)i) becomes the prior belief P(ϕ)i+1.

In both these settings, the belief distribution is approximated by a discrete probability

distribution over a finite, but a very large set of candidate LTL formulas with the probability

mass function P : {ϕ}→R. The success of the learning is assessed using two quantitative

metrics. The certainty of the learner’s belief is evaluated using the entropy [114] of the

belief distribution. For the learner’s belief P(ϕ)i, this is computed as follows:

H(ϕ)i = ∑
ϕ∈{ϕ}

−P(ϕ)i log(P(ϕ)i). (3.6)

We assess the accuracy of the inferred specification by computing the similarity to

the LTL formula representing the ground truth task specification. Note that we restrict

the scope of candidate specifications to conjunctively composed LTL formulas. Consider

two formulas, ϕ1 and ϕ2 that are conjunctive compositions of the clauses contained within

sets 𝐶1 and 𝐶2 respectively. We define the similarity between these formulas using an

intersection-over-union as follows:

L(ϕ1,ϕ2) =
|𝐶1∩𝐶2 |
|𝐶1∪𝐶2 |

. (3.7)

Therefore, given a belief distribution P(ϕ)i and the ground-truth specification encoded

by the formula ϕ∗, we compute the similarity to the ground-truth as follows:
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Figure 3-3: Planning with uncertain specifications (PUnS) problem setting

Lϕ∗(P(ϕ)i) = EP(ϕ)iJL(ϕ,ϕ∗K (3.8)

Chapter 4 focuses on the problem of Bayesian specification inference from passive

observations of the teacher.

3.2.2 Planning with Uncertain Specifications

This sub-problem deals with learner behavior generation in the face of epistemic uncertainty

of its task specifications as depicted in Figure 3-3. The robot is deployed to act in the

environment domain MX, and it has a belief over its intended task specification P(ϕ). The

robot must compute a stochastic policy, π(a | x;P(ϕ)), such that the resulting task executions

are diverse–i.e. demonstrate many valid paths towards completing the task–and satisfy the

belief over logical formulas. Here a ∈A, and x ∈ X. Our contributions towards this novel

problem formulation and algorithms for compiling it into an equivalent Markov decision

process (MDP) are described in Chapter 5.

3.2.3 Online Multi-Modal Robot Training

The Bayesian specification inference formulation is agnostic to whether the task executions

are generated by the teacher acting independently in the task environment, the teacher

commanding the learner’s action within the environment, or the learner completing its own

task executions. Leveraging that along with the algorithms developed for PUnS problem

formulation, we tackle the problem of making the learner an active decision-maker in guiding

its task learning through an interactive training model. Figure 3-4 depicts the Bayesian
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Figure 3-4: Online multi-modal Bayesian interactive training framework.

interactive specification inference framework that allows the robot to learn both from labeled

task executions passively, and it also enables the robot to guide its learning by generating

informative task executions. Formally, this involves solving the following problems:

1. Determining optimal informative query execution: Given the learner’s current

belief P(ϕ)i over its task specification, the robot must compute a policy πquery(a |

x;P(ϕ)), that when executed results in a task execution trace [𝛼] for which an accept-

ability label L ∈ 0,1 provided by the teacher would be most informative.

2. Determining learning modality for the next iteration: Given the learner’s current

belief, it must decide what modality to learn from next. Either the learner can choose

between asking the teacher for an additional demonstration that satisfies the teacher’s

intended task specification, or the learner can perform a query task execution and elicit

an acceptability label from the teacher. Thus the learner must compute a meta policy

π(P(ϕ)i) that maps to a binary variable that encodes the next learning modality.

As in the Bayesian specification inference setting, the learner’s success is determined

by comparing the inferred task specification to the ground-truth task specification. The

learner’s certainty of its learned specification is measured using the entropy of the posterior

distribution. Chapter 6 focuses on our proposed approaches to the problems described here.
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Chapter 4

Bayesian Specification Inference

This chapter introduces our Bayesian approach to inferring task specifications from demonst-

rations defined formally in Section 3.2.1. Temporal logics have been used as a specification

language to describe desirable system behaviors. The compositional nature of temporal

logics allows for expressing complex task specifications through logical and temporal

comopsition of simpler properties, thus allowing for a very expressive language.

However, the flexibility and expressivity of LTL in specifying behaviors also represent a

key challenge concerning specification inference due to a large hypothesis space. Inferring

the intended task specification requires sampling from the space of candidat LTL formulas

to identify ones that best explain the observed behavior. However, relevant specifications

only form a small fraction of naïvely sampled valid LTL formulas. We address this by

defining a template-based prior over a small but relevant fragment of LTL. A second key

challenge is the ambiguity inherent in learning from demonstration. Given a set of labeled

task executions–particularly if the learner observes only acceptable task executions–multiple

candidate LTL formulas are satisfied by all the demonstrated executions. We address this

ambiguity by framing the inference problem as Bayesian concept learning [123, 125] where

the learner maintains a belief over the true task specification and updates it conditioned on

the observed task executions.

We demonstrate the efficacy of our proposed model in the inductive learning setting

in both a synthetic domain that allows for easily modifying the ground truth formulas

and in inferring the specifications for the task of setting a dinner table, where the inferred
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specifications align with the ground truth specification with greater than 90% similarity.

We also demonstrate the utility of our model in automatically evaluating mission objective

completion for simulated multi-aircraft air combat exercises. The model’s predictions

were well-aligned with the expert’s evaluation of the mission objectives. The formula’s

logical structure allowed for an interpretable representation of the model’s decision-making.

This model is a part of the Intelligent mission analysis and review system developed in

collaboration with the Lockheed Martin Corporation [34, 35].

4.1 Defining the Expressivity of Candidate Specifications

A large number of tasks comprised of multiple subtasks can be represented by a combination

of three temporal behaviors among those defined by Dwyer et al. [39]–namely, global

satisfaction of constraints, the eventual completion of a subtask, and temporal ordering

between subtasks. With ϕglobal , ϕeventual , and ϕorder representing LTL formulas for these

behaviors, the task specification is written as follows:

ϕ = ϕglobal ∧ϕeventual ∧ϕorder. (4.1)

Recall from Section 3.2.1 that 𝛼 represents the set of Boolean propositions necessary

to evaluate the successful completion of the candidate task. We adopt a template-based

approach towards expressing the scope of the candidate task specifications. The three

templates that we consider for the scope of this thesis are as follows:

1. Global satisfaction: Let T be the set of candidate propositions to be globally

satisfied, and let 𝜏 ⊆ 𝑇 be the actual subset of propositions to be globally satisfied.

The LTL formula that specifies this behavior is written as follows:

ϕglobal =

(∧
τ∈𝜏

(G(τ))

)
. (4.2)

Such formulas are useful for specifying that some constraints must always be met –

for example, a robot must avoid collisions while in motion, or an aircraft must avoid
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no-fly zones.

2. Eventual completion: Let Ω be the set of all candidate subtasks, and let 𝑊1 ⊆Ω be

the set of subtasks that must be completed if the conditions represented by pw;w∈𝑊1

are met. ωw are propositions representing the completion of a subtask. We define the

LTL formula that specifies this behavior as follows:

ϕeventual =

( ∧
w∈W1

(pw→ Fωw)

)
. (4.3)

3. Temporal ordering: Every set of feasible ordering constraints over a set of subtasks

maps to a directed acyclic graph (DAG) over nodes representing these subtasks. Each

edge in the DAG corresponds to a binary precedence constraint. Let 𝑊2 be the set of

binary temporal orders defined by 𝑊2 = {(w1,w2) : w1 ∈𝑉 ,w2 ∈Descendants(w1)},

where 𝑉 is the set of all nodes within the task graph. Thus, the ordering constraints

include an enumeration of the edges in the task graph and all descendants of a given

node. For subtasks w1 and w2, the ordering constraint is written as follows:

ϕorder =

 ∧
(w1,w2)∈W2

(pw1 → (¬ωw2Uωw1))

 . (4.4)

This formula states that if conditions for the execution of w1 i.e. pw1 are satisfied, w2

must not be completed until w1 has been completed.

The set of propositions α is constructed from a union of three sets: 𝑇 , the set of candidate

constraints that must always be satisfied; {pw : ∀ w ∈Ω}, the set of conditional propositions

that control the necessity of completion subtasks w ∈ Ω; and {ωw : ∀ w ∈ Ω}, the set of

propositions representing the completion of the subtasks in the set Ω. There may be a

non-empty intersection between the subtask propositions {ωw} and the set of constraints 𝑇 ,

but these must be disjoint from the conditional propositions {pw}.

Under these assumptions, and more generally in a template-based setting, the problem

of inferring the correct formula is equivalent to identifying the correct subsets, 𝜏 , 𝑊1 and

𝑊2.
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4.2 Specification Learning as Bayesian Inference

Bayes’ theorem is the cornerstone of our approach to specification inference. Let 𝜙 represent

the set of all LTL formulas that conform to the template represented by eq 3.5. Following a

Bayesian approach, the learner holds an initial belief distribution with the probability mass

function P : 𝜙→ [0,1]. Given some observed data D, and the prior belief, Bayes’ theorem

is applied as follows:

P(ϕ |D) =
P(ϕ)P(D | ϕ

∑ϕ∈𝜙P(ϕ)P(D | ϕ)
. (4.5)

Here P(D | ϕ) represents the likelihood model of observing the observed labeled

trajectories given the ground truth specification. It is usually computationally intractable to

compute the denominator of eq 4.5 exactly; therefore, we employ approximate sampling-

based inference algorithms to estimate the posterior distribution.

Our key technical contributions was developing an inference model based on universal

probabilistic programming languages that allow for a modular inference approach over

complex. The second key contribution was defining a domain-independent approximation

of the likelihood function that enables our model to be widely applicable.

4.2.1 Prior Definitions

While sampling candidate formulas as per the template depicted in Equation 4.1, we treat

the sub-formulas in Equations 4.2, 4.3, and 4.4 as independent to each other. As generating

the actual formula, given the selected subsets, is deterministic, sampling ϕglobal and ϕeventual

is equivalent to selecting a subset of a given finite universal set. Given a set A, we define

SampleSubset(A,p) as the process of applying a Bernoulli trial with a success probability of

p to each element of A and returning the subset of elements for which the trial was successful.

Thus, sampling ϕglobal and ϕeventual is accomplished by performing SampleSubset(𝑇 , pG)

and SampleSubset(Ω, pE). Sampling ϕorder is equivalent to sampling a DAG, with the

nodes of the graph representing subtasks. Based on domain knowledge, appropriately

constraining the DAG topologies would result in better inference with fewer demonstrations.
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Here, we present three possible methods of sampling a DAG, with different restrictions on

the graph topology.

Linear chains: A linear chain is a DAG such that all subtasks must occur within a single,

unique sequence out of all permutations. Sampling a linear chain is equivalent to selecting

a permutation from a uniform distribution. It is achieved via the following probabilistic

program: for a set of size n, sample n−1 elements from that set without replacement, with

uniform probability.

Sets of linear chains: This graph topology includes graphs formed by a set of disjoint

sub-graphs, each of which is either a linear chain or a solitary node. The execution of

subtasks within a particular linear chain must be completed in the specified order; however,

no temporal constraints exist between the chains. Algorithm 1 depicts a probabilistic

program for constructing these sets of chains. In line 2, the first active linear chain is

initialized as an empty sequence. In line 3, a random permutation of the nodes is produced.

For each element a ∈ 𝑃 , line 5 adds the element to the last active chain. Lines 6 and 8

ensure that after each element, either a new active chain is initiated (with a probability of

ppart) or the old active chain continues (with a probability of 1− ppart).

Algorithm 1 SampleSetsOfLinearChains
1: function SAMPLESETSOFLINEARCHAIN(Ω,ppart )
2: i← 1; 𝐶𝑖← []
3: 𝑃 ← random permutation(Ω)
4: for a ∈𝑃 do
5: 𝐶𝑖.append(a)
6: k← Bernoulli(ppart )
7: if k = 1 then
8: i = i+1; 𝐶𝑖← []

9: return 𝐶𝑗 ∀ j

Forest of sub-tasks: This graph topology includes forests (i.e., sets of disjoint trees).

A given node has no temporal constraints with respect to its siblings, but must precede all

its descendants. Algorithm 2 depicts a probabilistic program for sampling a forest. Line

2 creates 𝑃 , a random permutation of the subtasks. Line 3 initializes an empty forest. In

order to support a recursive sampling algorithm, the data structure representing forests is

defined as an array of trees, F . The ith tree has two attributes: a root node, F [i].root,

and a ‘descendant forest,’ F [i].descendant, in which the root node of each tree is a child

of the root node defined as the first attribute. The length of the forest, F .length, is the
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number of trees included in that forest. The size of a tree, F [i].size, is the number of

nodes within the tree (i.e., the root node and all of its descendants). For each subtask

in the random permutation 𝑃 , line 5 inserts the given subtask into the forest as per the

recursive function InsertIntoForest defined in lines 7 through 13. In line 8, an integer

i is sampled from a categorical distribution, with {1,2, . . . ,F .length+1} as the possible

outcomes. The probability of each outcome is proportional to the size of the trees in the

forest, while the probability of F .length+1 being the outcome is proportional to Nnew, a

user-defined parameter. This sampling process is similar in spirit to the Chinese restaurant

process [4]. If the outcome of the draw is F .length+1, then a new tree with root node a is

created in line 10; otherwise, InsertIntoForest is called recursively to add a to the forest

F [i].descendants, as per line 12.

Algorithm 2 SampleForestofSubtasks
1: function SAMPLEFORESTOFSUBTASKS(Ω,Nnew)
2: 𝑃 ← random permutation(Ω)
3: F ← []
4: for a ∈𝑃 do
5: F =InsertIntoForest(F ,a)
6: return F
7: function INSERTINTOFOREST(F , a)
8: i← Categorical([F [1].size,F [2].size, . . . ,F [F .length].size,Nnew])
9: if i = F .length+1 then
10: Create new tree F [F .length+1].root = a
11: else
12: F [i].descendants = InsertIntoForest(F [i].descendants, a)
13: return F

4.2.2 Likelihood Function

The likelihood distribution, P(D | ϕ), is the probability of observing the trajectories

within the dataset given the candidate specification. It is reasonable to assume that the

demonstrations are independent of each other; thus, the total likelihood can be factored as

follows:

P(D | ϕ) = ∏
i∈{1,2,...,ndemo}

P(ϕ)P(〈[𝛼]i,Li〉 | ϕ) (4.6)

The probability of observing a given trajectory demonstration depends on the underlying

dynamics of the domain, the characteristics, and the policy of the agents producing the
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demonstrations. In the absence of this knowledge, our aim is to develop an informative,

domain-independent proxy for the true likelihood function based only on the properties

of the candidate formula; we call this the ‘complexity-based’ (CB) likelihood function. A

second choice for a likelihood function, inspired by Shepard et al. [115], is defined as the

SIM model by [123]; we call this the ‘complexity-independent’ (CI) likelihood function.

We define these likelihood functions as follows:

1. Complexity-based (CB): The CB likelihood function is founded upon the classical

interpretation of probabilities championed by Laplace [74], and on the size principle

described by Tenenbaum [123]. The classical interpretation of probability involves

computing probabilities in terms of an enumerated set of equally likely outcomes.

In contrast, the size principle states that the likelihood odds must favor the more

restrictive of the two hypotheses for given observed data that conforms to two

hypotheses. Here we demonstrate that approximating the likelihood of generating

the observed set of demonstrations using the classical interpretation of probability

naturally satisfies the size principle.

Let there be Ncon j conjunctive clauses in ϕ ; there are then 2Ncon j possible outcomes in

terms of the truth values of the conjunctive clauses. In the absence of any additional

information, we assign equal probabilities to each of the potential outcomes. Then,

according to the classical interpretation of probability, for candidate formula ϕ1

(defined by subsets 𝜏1,𝑊11 , and 𝑊211) and ϕ2 (defined by subsets 𝜏2,𝑊12 , and

𝑊22) the likelihood odds ratio for an acceptable demonstration is defined as follows:

P(〈[𝛼],L= 1〉 | ϕ1)

P(〈[𝛼],L= 1〉 | ϕ2)
=


2Ncon j1

2Ncon j2
, [𝛼] |= ϕ2

2Ncon j1
ε

, [𝛼] 2 ϕ2.

(4.7)

Here, a finite probability proportional to ε is assigned to a demonstration that does

not satisfy the given candidate formula. With this likelihood distribution, a more-

restrictive formula with a low prior probability can gain favor over a simpler formula

with higher prior probability given a large number of observations that would satisfy

it. However, suppose the candidate formula is not the true specification. In that case, a
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larger set of demonstrations is more likely to include non-satisfying examples, thereby

substantially decreasing the posterior probability of the candidate formula.

Similarly following the classical probability argument as before for demonstrations

deemed unacceptable (L= 0), with Ncon j conjunctive clauses in a candidate formula,

there are 2Ncon j −1 truth evaluations of the individual clauses, that would result in the

given demonstration not satisfying the candidate formula. Thus the likelihood odds

for unacceptable demonstrations are defined as follows:

P(〈[𝛼],L= 0〉 | ϕ1)

P(〈[𝛼],L= 0〉 | ϕ2)
=


2Ncon j1 (2Ncon j2−1)

2Ncon j2 (2Ncon j1−1)
, [𝛼] 2 ϕ2

2Ncon j1

(2Ncon j1−1)ε
, [𝛼] |= ϕ2.

(4.8)

Chanlatte-Vazquez et al. [134] also proposed a maximum-likelihood model for

inferring specifications expressed in formal logics. Their approach of approach results

in a likelihood function that is proportional to the ratio of the observed satisfaction

rate of a specification to the satisfaction rate under an assumed random behavior.

While the initial approaches were published simultaneously, the proposed likelihood

functions are aligned, assuming a highly competent teacher.

2. Complexity-independent (CI): This likelihood model does not follow the size

principle; therefore, it equally favors any two hypotheses that are supported by the

observed data. In case of acceptable demonstrations, the CI likelihood odds ratio is

defined as follows:

P(〈[𝛼],L= 1〉 | ϕ1)

P(〈[𝛼],L= 1〉 | ϕ2)
=

1− ε, if [𝛼] |= ϕ

ε, Otherwise.
(4.9)

CI likelihood function for unacceptable demonstrations is defined as follows:

P(〈[𝛼],L= 0〉 | ϕ1)

P(〈[𝛼],L= 0〉 | ϕ2)
=

1− ε, if [𝛼] 2 ϕ

ε, Otherwise.
(4.10)
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4.2.3 Inference Algorithms

We implemented our probabilistic model in webppl ([50]), a Turing-complete probabilistic

programming language. The posterior distribution of candidate formulas is constructed using

webppl’s Markov chain Monte Carlo (MCMC) sampling algorithm from 10,000 samples,

with 100 samples serving as burn-in. The posterior distribution is stored as a categorical

distribution, with each possibility representing a unique formula. The maximum a posteriori

(MAP) candidate represents the best estimate for the specification as per the model. We ran

the inference on a desktop with an Intel i7-7700 processor.

Table 4.1: Prior definitions and hyperparameters.

Prior ϕOrder Hyperparameters

Prior 1 RandomPermutation(Ω) pG, pE
Prior 2 SampleSetsOfLinearChains(Ω, ppart ) pG, pE , ppart
Prior 3 SampleForestofSubTasks(Ω,Nnew) pG, pE ,Nnew

Batch Inference: In the batch inference mode, the learner is assumed to have no

task specific knowledge at the beginning of the learning phase. The priors are defined

as per one of the probabilistic programs defined in Section 4.2.1. The hyperparameters,

including those defined in Table 4.1 and ε , were set as follows: pE , pG = 0.8; ppart = 0.3;

Nnew = 5; ε = 4× log(2)× (|𝑇 + |Ω|+0.5|Ω|(|Ω|−1)). These values were held constant

for all evaluation scenarios. The value of ε was chosen so that evidence of a single non-

satisfying demonstration would negate the contribution of four satisfying demonstrations to

the posterior probability.

Iterative Inference: In the iterative inference mode, the posterior distribution of the

previous iteration is set as the prior for the subsequent iteration. Thus the prior in interactive

mode will always be a discrete categorical distribution over a finite set of LTL formulas.

Here the Bayesian inference can either be computed exactly.
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4.3 Experiments

In this chapter, we focus only on the batch inference model; Chapter 6 focuses on the

iterative mode of Bayesian specification inference operating in conjunction with the PUnS

formulation presented in Chapter 5. We evaluated the performance of the proposed

model across three different domains. First, we developed a synthetic domain with a

low dimensional state-space where we can easily vary the ground-truth task specifications

and readily generate satisfying task demonstrations. We utilized this domain to evaluate the

performance of the model on ground-truth formulas with different temporal dependencies.

We also demonstrated that the complexity-based (CB) likelihood function is more suitable to

our model than the complexity-independent (CI) concept learning models initially proposed

by Shepard et al. [115].

We also applied our model to a real-world task of setting a dinner table–a task often

incorporated into studies of learning from demonstration [126]. This task has a large

state-space incorporating the poses of the objects included in the domain. This domain

demonstrates the benefits of using propositions to represent task specifications. The

complexity of the problem depends upon the number of Boolean propositions and not

the dimensionality of the raw state-space. Note that both the synthetic and table-setting

domains represent scenarios where the ground-truth specification is already known. Note

that we only consider these domains in the context of inductive learning, i.e., learning only

from acceptable task demonstrations.

Finally, we also applied our inference model to the large-force exercise (LFE) domain.

Large-force exercises are simulated air-combat games used to train combat pilots. We

developed simulation environments using joint semi-automated forces (JSAF), a constructive

environment for generating examples of LFE executions, and used our model to infer

specifications for successful completion of mission objectives. In this domain, the true

specifications are not known. We only have annotations of the demonstrated scenario from a

subject matter expert (in this case, the mission commander who designs the scenario and

debriefs participating pilots).
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4.3.1 Synthetic Domain

An agent navigates within a two-dimensional space in our synthetic domain that includes

points of interest (POIs) to visit and threats to avoid. The state of the agent 𝑥 represents the

position of that agent within the task space.

Let 𝜏 = {1,2 . . . ,nthreats} represent a set of threats positioned at 𝑥Ti ∀ i∈ 𝜏 , respectively.

A proposition τi is associated with each threat location i ∈ 𝜏 such that:

τi =

true, ‖𝑥−𝑥Ti‖ ≥ εthreat

false, otherwise.
(4.11)

The proposition τTi holds if the agent is not within the avoidance radius εthreat of the

threat location.

Let Ω= {1,2, . . . ,nPOI} represent the set of POIs positioned at 𝑥Pi ∀ i∈Ω. A proposition

ωi is associated with each POI such that:

ωi =

true, ‖𝑥−𝑥Pi‖ ≤ εPOI

false, otherwise.
(4.12)

ωi evaluates as true if the agent is within a tolerance radius εPOI of the POI.

Finally, propositions pi ∀ i ∈Ω are conditions propositions that denote the accessibility

of the POI i, and are defined as follows:

pi =

false, ∃ j such that
∥∥𝑥Pi−𝑥Tj

∥∥≤ εthreat

true, otherwise.
(4.13)

pi evaluates as false if the POI i is inside the avoidance region of any of the threats.

The agent can be programmed to visit the accessible POIs and avoid threats as per

the ground-truth specification. The ground-truth specifications are stated by defining the

following: a set 𝑇 ⊆ 𝜏 that represents the subset of threats that the agent must avoid; a set

𝑊1 ⊆Ω that represents the subset of POIs the agent must visit; and the ordering constraints

defined by 𝑊2, a set of feasible pairwise precedence constraints between the POIs.
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Here, we demonstrate the results of applying our inference model to three scenarios with

differing ground-truth specifications.

Scenario 1: In Scenario 1, we placed five threats in the task domain, and we sampled

their positions from a uniform distribution for each demonstration. There were four points

of interest, labeled 1,2,3,4, and their positions were fixed across all demonstrations. The

agents were required to visit the POIs in a fixed order ([1,2,3,4]). Example trajectories from

this scenario are depicted in Figure 4-1.

Figure 4-1: Example trajectories from Scenario 1 within the synthetic domain. Green circles
denote the POIs; red circles denote the avoidance zones of threats.

The posterior distribution was computed using prior 1 (defined in Table 4.1), with

both CB (Equation 4.7) and CI (Equation 4.9) likelihood functions. The expected and

maximum values among the top 5 a posteriori formula candidates of L(ϕ) are depicted

in Figure 4-2. We observed that the CB likelihood function performed better than the CI

likelihood function at inferring the complete specification. Using the CI function resulted in

a higher posterior probability assigned to formulas with a high prior probability that were

satisfied by all demonstrations. (These tended to be simple, non-informative formulas; the

CB function assigned higher probability mass to more complex formulas that explained

the demonstrations correctly.) Figure 4-2b depicts the number of unique formulas in the

posterior distributions. The CB likelihood function resulted in posteriors being peakier, with

fewer unique formulas as training set size increased; this effect was not observed with the

CI function.

We also computed the posterior distributions using priors 2 and 3 with the CB likelihood

function. The expected and maximum values among the top 5 a posteriori formula candidates

of L(ϕ) are depicted in Figure 4-3a. Prior 3 aligned better with the ground-truth specification

with fewer training examples. Prior 2 recovered the exact specification with a larger training
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Figure 4-2: Comparison of CI and CB likelihood functions for Scenario 1 within the
synthetic domain. Figure 4-2a depicts the results from Scenario 1, with the dotted line
representing the maximum possible value of L(ϕ). Figure 4-2b shows the number of unique
formulas in the posterior distribution

set, while prior 3 failed to do so. Figure 4-3b depicts the expected value of the correct and

extra orders in the candidate formulas included in the posterior distribution. The a priori

bias of prior 3 toward longer chains is apparent, as it recovered more correct orders with

fewer training demonstrations compared to prior 2. Prior 2 recovered all correct priors with

more training examples; however, prior 3 failed to do so with 30 training examples.

Scenario 2: Scenario 2 contained five POIs 1,2,3,4,5 and five threats. Like Scenario

1, we sampled the threat positions uniformly for each demonstration. All the POIs, if

accessible, had to be visited. We imposed a partial ordering constraint such that POIs [1,3,5]

had to be visited in that specific order, while POIs {2,4} could be visited in any order. Some

demonstrations generated for Scenario 2 are depicted in Figure 4-4.

For Scenario 2, we computed the posterior distribution using priors 2 and 3, as the

ground-truth specification did not lie in support of prior 1. The expected and maximum

values among the top 5 formula candidates of L(ϕ) are depicted in Figure 4-5a. Given a

sufficient number of training examples, both priors were able to infer the complete formula;

with 10 or more training examples; both priors returned the ground-truth formula among the

top 5 candidates with regard to posterior probabilities. Figure 4-5b depicts the correct and

extra orders inferred in Scenario 2. Prior 3 assigned a larger prior probability to longer task

chains compared with prior 2, but both priors converged to the correct specification given
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Figure 4-3: Specification inference results from Scenario 1 for different priors. Figure 4-3a
depicts the results from Scenario 1 using priors 2 and 3, with the dotted line representing
the maximum possible value of L(ϕ). Figure 4-3b depicts the expected value of the number
of correct and extra orders in the posterior distribution.

Figure 4-4: Example trajectories from Scenario 2. Green circles denote the POIs; red circles
denote the avoidance zones of threats.

enough training examples.

Scenario 3: Scenario 3 included five threats, and five POIs labeled {1,2,3,4,5},

respectively. We uniformly sampled the threat positions for each scenario. Each of the POIs,

if accessible, had to be visited; however, there were no constraints placed on the order in

which they were visited. Figure 4-6 depicts some of the example demonstrations.

Again, the posterior distribution was computed using priors 2 and 3. The expected and

maximum values among the top 5 formula candidates of L(ϕ) are depicted in Figure 4-7a.

In this scenario, both priors performed equally well with regard to recovering the ground-

truth specification. With 10 or more demonstrations, both priors returned the ground-truth

specification as the maximum a posteriori estimate. The expected value of the extra orders

contained in the posterior distributions is depicted in Figure 4-7b. Once again, the tendency
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Figure 4-5: Specification inference results for Scenario 2 within the synthetic domain.
Figure 4-5a indicates the L(ϕ) values for Scenario 2, and Figure 4-5b depicts the correct and
extra orderings inferred in Scenario 2. The dotted lines represent the number of orderings in
the true specification.

Figure 4-6: Example trajectories from Scenario 3. The green circles denote the POIs; the
red circles denote the threat avoidance zones.

of prior 3 to return longer chains is apparent, as more formulas in the posterior distribution

returned a greater number of extra ordering constraints as compared with prior 2.

The runtime for MCMC inference is a function of the number of samples generated,

the number of demonstrations in the training set, and demonstration length. Scenarios 1

and 2 required an average runtime of 10 and 90 minutes for training set sizes of 5 and 50,

respectively.

TempLogIn–developed by Kong et al. [66] for inferring parameterized STL formulas

from observations–required 33 minutes to terminate with three PSTL clauses. For all the

scenarios, the mined formulas did not capture any of the temporal behaviors in Section

4.1, indicating that additional PSTL clauses were required. However, with five and 10

PSTL clauses, the algorithm did not terminate within the 24-hour runtime cutoff. Scaling
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Figure 4-7: Specification inference results for Scenario 3 within the synthetic domain.
Figure 4-7a indicates the L(ϕ) values for Scenario 3, and Figure 4-7b depicts the correct and
extra orderings inferred in Scenario 3. The dotted lines represent the number of orderings in
the true specification.

TempLogIn to larger formula lengths is difficult, as the size of the search graph increases

exponentially with the number of PSTL clauses, and the algorithm must evaluate all formula

candidates of length n before candidates of length n+1.

4.3.2 Table-Setting: A Decomposable Single-Agent Task

We also tested our model on a real-world task: setting a dinner table. This task featured

eight dining set pieces that had to be organized on a table while the demonstrator avoided

(a) (b)

Figure 4-8: Data collection setup for the dinner table task. Figure 4-8a depicts all the final
configurations. Figure 4-8b depicts the demonstration setup. (Photographed by the authors
in April 2017.)
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Figure 4-9: Specification inference results for the table-setting task. Figure 4-9a depicts the
L(ϕ) values for the dinner table domain, with the dotted line representing the maximum
possible value. Figure 4-9b depicts the correct and extra orderings inferred within this
domain; the dotted lines represent the number of orderings in the true specification.

contact with a centerpiece. Figure 4-8a depicts each of the final configurations of the dining

set pieces, depending upon the type of food served. The pieces placed on the table were

varied for each of the eight configurations; however, the positions of the pieces remained

constant across all final configurations. We collected a total of 71 demonstrations, with six

participants providing multiple demonstrations for each of the four configurations.

The eight dinner set pieces included a large dinner plate, a smaller appetizer plate, a

bowl, a fork, a knife, a spoon, a water glass, and a mug; the set of pieces is represented by Ω.

Each piece was tracked with a motion-capture system over the course of the demonstration,

with the pose of an object i ∈ Ω in the world frame represented by 𝑇O
i . In addition, the

pose of the wrists of the demonstrators 𝑇O
h1 and 𝑇O

h2 were also tracked throughout the

demonstration. We defined propositions that tracked whether an object was in its correct

position or whether a demonstrator’s wrist was too close to the centerpiece using task-space

region (TSR) constraints proposed by Berenson et al. [15].

The origin for each TSR constraint is located at the desired final position of each object.

The pose 𝑇O
wi

represents the transform between the origin frame and the TSR frame for

the object, i. The bounds for 𝐵i represent the translation and rotational tolerances of

the constraint. Finally, 𝑃i represents the set of poses in the TSR frame that fall within

the tolerance bounds. The pose of object i with respect to the TSR frame is given by
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𝑇 wi
i = (𝑇O

wi
)−1𝑇O

i . A proposition ωi is associated with object i as follows:

ωi =

true, 𝑇Wi
i ∈ 𝑃i

false. otherwise.
(4.14)

Thus, the proposition ωi evaluates as true if the pose of the object i satisfies the TSR

constraints and false otherwise.

A TSR constraint is also associated with the centerpiece, where 𝑇O
c represents the pose

of the centerpiece with respect to the world frame. The bounds of the constraint are defined

by 𝐵c, with 𝑃c representing the set of poses that fall within the tolerances. The poses of

the demonstrator’s wrists with respect to this TSR frame are given by 𝑇 c
hi

for i ∈ {1,2}. A

proposition τc is associated with the centerpiece and is defined as follows:

τc =

false, 𝑇 c
h1 ∈ 𝑃c∨𝑇 c

h2 ∈ 𝑃c

true, otherwise
(4.15)

τc evaluates as false if either of the wrists’ poses falls within the TSR bounds and

evaluates as true otherwise.

Finally, condition propositions pi ∀ i ∈Ω encode whether the object i must be placed.

Their values are set prior to the demonstration and held constant for its duration. These

propositions encode that serving certain courses during a meal requires the specific placement

of certain dinner pieces.

Based on the propositions defined above and the configurations of the dinner table, the

ground-truth specifications of this task are as follows: the demonstrator’s wrists should never

enter the centerpiece’s TSR region (global satisfaction); if pi is true, then the corresponding

dinner piece must be placed on the table (eventual completion); and the large plate must be

placed before the smaller plate, which in turn must be placed before the bowl (ordering).

We constructed the posterior distributions over candidate specification using priors 2 and 3

by incorporating subsets of the training demonstrations of varying sizes and evaluated the

similarity between the inferred specifications and the ground truth using the expected and

maximum values among the top 5 a posteriori candidates of the metric L(ϕ).
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With prior 2, our model correctly identified the ground truth as one of the top 5 a

posteriori formula candidates in all cases. With prior 3, the inferred formula contained

additional ordering constraints compared with the ground truth. Using all 71 demonstrations,

the MAP candidate had one additional ordering constraint: that the fork be placed prior to

the spoon. Upon review, we observed that this condition was not satisfied in only four of the

71 demonstrations.

4.3.3 Evaluating Large Force Air-Combat Exercises

Large-force exercises (LFE) are combat flight training exercises that involve multiple aircraft

groups, with each aircraft group playing a designated role in the completion of the mission

by accomplishing individual objectives, while coordinating with other groups to achieve

the mission objectives. Evaluating an LFE execution is a challenging task for the mission

commander. The raw state-space of the domain includes the navigation data for each aircraft

involved in the scenario (up to 36 aircraft were included in the scenarios we simulated), along

with configuration settings for each of those aircraft (weapon stores, weapon deployments,

etc.) and outcomes of combat engagements that occur throughout the scenario. The mission

commander must distill this time series and evaluate the mission based on multiple output

modalities. They must first identify the transition points between predetermined scenario

phases, then assess the overall success of the mission’s execution in terms of a finite number

of predetermined objectives. Evaluation of the mission objectives depends not only upon

the final state of the scenario but also on the behavior of the aircraft throughout the mission,

thus making LTL a suitable grammar for representing mission objective specifications.

We evaluated the capabilities of our model to infer LTL specifications that match a

mission commander’s evaluations of mission objective completion. In this section, we begin

by describing the nature of the offensive counter-air (OCA) mission that serves as the subject

of our study. Next, we describe how experts evaluate these missions and how the stated

mission objectives are well-suited for use with the temporal behavioral templates we use in

our candidate formulas. Finally, we describe the results obtained when applying our model

to the LFE domain dataset.
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LFE Scenario description

Each LFE for the OCA mission we modeled consists of 18 friendly aircraft and a variable

number of enemy aircraft and ground-based threats. Among the friendly aircraft, there are

eight escort aircraft that are capable air-to-air fighters, eight SEAD (suppression of enemy

air defenses) aircraft capable of attacking ground-based threats, and two strike aircraft that

carry the ammunition that must be deployed in order to attack a designated ground target

within a time-on-target (TOT) window. The aircraft’ starting positions during a typical

scenario are depicted in Figure 4-10. The role of the mission commander is to debrief the

participants once an LFE scenario execution is completed. During debriefing, the LFE-OCA

scenario is segmented into four phases by design as follows:

• Escort Push

• Strikers Push

• Time-On-Target (TOT)

• Egress

The mission commander must identify the times that correspond to the transitions between

these mission phases and also provide an assessment of whether the following three mission

objectives were achieved:

• MO1: Gain and maintain air superiority.

• MO2: Destroy an assigned target within the TOT window.

• MO3: Friendly attrition should not exceed 25%.

Each of the mission objectives is a Boolean-valued function of the raw state-space of

the LFE scenario, and the mapping between them is not explicitly known. Inputs from

subject matter experts (SMEs) were also utilized to represent the mission execution in terms

of certain Boolean propositions to apply our probabilistic model. The propositions were

defined as follows:
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1. Enemy aircraft attrition (50%, 75%, 100%) (three propositions).

2. Either strike aircraft fired upon.

3. Either strike aircraft shot down.

4. Last munition released by strikers.

5. Strike aircraft flying in on-target flight phase.

6. Assigned target hit.

7. Friendly aircraft attrition (25%, 50%, 75%) (three propositions, each turn false if the

corresponding attrition is reached).

In order to generate realistic demonstrations of how the different executions unfold, the

scenarios were defined in Joint Semi-Automated Forces (JSAF)–a constructive environment

capable of simulating realistic aircraft behavior. The data collected for each demonstration

included the position, speed, attitude, and rates of each of the aircraft (both friendly and

hostile); the individual mission phase of each aircraft (a discrete set of phases by which the

aircraft specific mission timeline can be labeled); and the firing times, designated targets,

detonation times, and outcomes of each weapon deployment over the course of the scenario.

The mapping from the collected data to the Boolean propositions stated above is well

defined.

In order to apply our probabilistic model to the LFE domain, we defined the sets 𝜏

and Ω. The propositions 7, 2, and 3 were included in the set 𝜏 as candidates for global

satisfaction. The propositions 1, 4, 5, and 6 were included in Ω as candidates for eventual

completion.

Data collection

A total of 24 instances of LFEs were simulated and included in the dataset. Each instance

had a different outcome concerning the mission objectives, based on engagements between

friendly and hostile forces. Each scenario was evaluated by an SME acting as a mission

commander performing a manual debrief. The primary annotation task was to assess whether
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Figure 4-10: The starting configuration of a large-force exercise scenario. The red aircraft
are the hostile forces, and the blue are friendly forces.

each of the objectives was successfully achieved upon mission completion. The secondary

annotation task was to determine the segmentation points among the four scenario phases on

the mission timeline. The segmentation task is not directly relevant to specification inference,

but we used the labels to train a secondary classifier in one of the baselines simultaneously.

Benchmarks

The training data for evaluations of LFEs consists of both acceptable and unacceptable

demonstrations, along with the label for that demonstration; thus, it can be viewed as

a supervised learning problem. We decided to compare the classification accuracy of

our model against a classifier trained with a recurrent neural network as the underlying

architecture.

1. Stand-alone: Here, the recurrent neural network is trained to jointly optimize the

binary cross-entropy to classify each of the three mission objectives. The loss functions

for all the mission objectives are equally weighted. The recurrent neural networks are

composed of long and short-term memory (LSTM) modules [55], along with their

bidirectional variants [52]. Such models have shown state-of-the-art performance

during time-series classification tasks [89]. These models–henceforth referred to as

‘LSTM’ and ‘Bi-LSTM,’ respectively–were trained using only the time-series of the
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propositions as inputs.

2. Coupled: In prior research, performance improvements on a primary task have

been observed due to simultaneous training on a secondary related task [121]. We

hypothesized that simultaneously training the classifier on the secondary task of

identifying scenario phases might improve classification accuracy compared with a

standalone RNN. The loss functions used were binary cross-entropy for each of the

mission objectives and categorical cross-entropy for the scenario phase identification.

The overall loss function was an equally weighted sum of the individual cost functions.

These models were also composed of LSTM modules and their bidirectional counter-

parts, referred to as ‘LSTM Coupled’ and ‘Bi-LSTM Coupled,’ respectively. These

models were trained using the propositions and collected flight phase data.

Evaluations

The classification models were evaluated through a four-fold cross-validation wherein the

training dataset was divided into four equal partitions. Three of the partitions were used for

training (18 scenarios), and testing was performed on the remaining partition (6 scenarios);

this was repeated across all partitions. The predictions of the model for each of the scenarios

were assimilated at the end. We also applied our model to the entire dataset to analyze which

of the propositions were included in the maximum a posteriori estimate of the specifications.

The overall accuracy of the classifiers was evaluated using the F1 score on all the predictions

for both the possible outcomes of the mission objectives (’Achieved’ and ’Failed’) for each

mission objective.

Results

As presented in Table 4.2, our model outperformed RNN-based supervised learning models.

With a four-fold split of training and test data, prior 2 seemed to outperform prior 3; one

possible explanation would be that the bias of prior 3 toward longer task chains might result

in a higher rate of false negatives.

We also noticed the tendency of RNN models to collapse to predicting the most
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Table 4.2: Weighted F1 scores for both scenario outcomes for each of the classifiers.

Classifier MO1 MO2 MO3

LSTM 0.533 0.533 0.481
Bi-LSTM 0.533 0.533 0.481
LSTM Coupled 0.533 0.533 0.481
Bi-LSTM Coupled 0.533 0.533 0.481
BSI (Prior 2) 0.674 0.712 0.877
BSI (Prior 3) 0.674 0.676 0.877

commonly occurring outcome in the training set for all values of inputs. Thus, the model

could not achieve high accuracies even on the training set, suggesting that it is not only the

small size of the dataset that results in poor performance. This might indicate that either

greater model capacity or a different model architecture may be required.

Next, we analyzed the maximum a posteriori formula returned by our model using prior

2 trained on the entire dataset. The compositional structure of the model allowed us to

examine the propositions included in the formulas and interpret the decision boundaries of

the classifiers; the results were as follows:

1. MO1 (Gain and maintain air-superiority) The propositions included in ϕglobal

were 7, 3, and 2; these correspond to a maximum allowable friendly attrition rate of

less than 25%, and enforcing the condition that the strikers were never fired upon

or shot down, respectively. (This is consistent with the definition of air superiority.)

The propositions included in ϕeventual were 4, 1, and 5; these correspond to strikers

eventually releasing their weapons, the friendly forces shooting down 75% of the

enemy fighters, and strike aircraft eventually reaching their on-target flight phase,

respectively. (Again, the included propositions indicate that gaining air superiority

allowed strikers to operate freely.) Finally, ϕorder enforced that friendly forces shot

down 50% of the hostile air threats before strikers released their weapons.

2. MO2: (Destroy assigned target) The propositions included in ϕglobal were 7 and 3;

these represent maximum friendly attrition of 50% and only enforcing that the strikers

were never shot down, respectively. (Note that this does not enforce the condition

that strikers were never fired upon.) ϕeventual included 1, 4, 5, and 6; these represent

eventually shooting down all hostile aircraft (which would seem unnecessary), strikers
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entering their on-target flight phase, eventually releasing their weapons — and, most

importantly, attacking the assigned target. ϕorder enforced the condition that the

friendly aircraft had to shoot down all hostiles before the close of the TOT window.

3. MO3: No more than 25% friendly losses: The propositions in ϕglobal included 7,

2, and 3; these correctly enforced that no more than 25% friendly aircraft could be

shot down, and also that the strikers were never shot down or fired upon.

4.4 Summary and Future Work

In this chapter, we presented a Bayesian model for inferring temporal logic specifications

from labeled task executions observed by the learner. We proposed an expressive template

as the hypothesis class for the specifications and developed structured priors over that

expressed as probabilistic programs. We then proposed a domain-independent approximate

likelihood function that adheres to the size principle. We demonstrated that our model

allows for specification inference in both an inductive setting and in a setting where both

acceptable and non-acceptable task executions are observed. We showed that a likelihood

function that adheres to the size principle is key to successful specification inference in the

inductive setting. We also demonstrated the efficacy of our model in learning specifications

to set a dinner table in multiple valid configurations and assess the mission objectives of

multi-aircraft air combat exercises.

While our model can infer a wide range of ground-truth specifications, adopting a

template-based approach limits the class of learnable tasks. Expanding the library of

templates and using disjunctive compositions is a natural first extension of our proposed

model. However, leveraging grammatical inference first to discover useful templates

automatically and then adding them to the inference library would be an important extension

to expand the expressivity without hampering the relevance of the sampled formulas.

We also assumed that the labeling functions from the observed state x to the propositions

𝛼 were pre-defined. However, learning the atomic propositions directly from observed

data, or symbol learning [68], is crucial to adopt a specification inference approach to new

domains. Hierarchical models for joint inference of relevant propositions and the formula
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structure are important in future research.
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Chapter 5

Planning with Uncertain Specifications

This chapter tackles the problem of planning with uncertain specifications as described in

Section 3.2.2. We developed a novel planning formulation, PUnS, that allows an agent to

generate its policy while reasoning about the epistemic uncertainty in the underlying task

specifications. Within the scope of this thesis, the uncertainty arises from the ambiguous

nature of natural interaction modalities like demonstrations and assessments. In these

modalities, the information about the underlying specifications is provided implicitly.

However, there may be other sources of uncertainty, such as specifications based on

preferences elicited from multiple experts [63], or formal specifications derived from

statements expressed in natural language [88, 51]. The PUnS formulation is generally

compatible with scenarios where an agent maintains a belief over a finite set of logical

formulas conforming to a well-defined fragment of LTL.

A key challenge for the PUnS problem is defining the semantics of satisfying a belief

over logical formulas in contrast to satisfying a single logical formula; we discuss this in

Section 5.1. The algorithms for expressing PUnS problems as equivalent reward machines

[129, 128] are described in Section 5.2. We characterize the interactions between the nature

of belief distributions and the choice of the evaluation criterion. We then demonstrate

solving a multi-step robotic manipulation task through the PUnS formulation in Section 5.3.
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5.1 Satisfying a Belief over Logical Formulas

Recall from Section 3.2 that the learner always maintains a belief over logical specifications,

P(ϕ). To be compatible with the PUnS formulation, the belief is restricted to LTL formulas

belonging to the ‘Obligations’ class as defined by Manna and Pnueli [78]. Let, 𝜙obligation

represent the set of all LTL formulas belonging to the ‘Obligations’ class. The admissible

beliefs are defined as a probability mass function P : 𝜙obligation→ [0,1]. We further require

the discrete probability distribution to maintain support (P(ϕ) > 0) over a finite set of LTL

formulas {ϕ} ∈𝜙obligation. This distribution represents the learner’s degree of belief that a

candidate formula ϕ ∈ {ϕ} encodes the ground truth specification.

A single LTL formula can be satisfied, dissatisfied, or undecided; however, satisfaction

semantics over a distribution of LTL formulas do not have a unique interpretation. We

identify the following four evaluation criteria, which capture the semantics of satisfying a

distribution over specifications, and formulate each as a non-Markovian reward function

RP(ϕ) : [𝛼]→R. The evaluation criteria are as follows:

1. Most Likely: This criteria entails executions that satisfy the formula with the largest

probability as per P(ϕ). As a reward, this is represented as follows:

Rmost likely([𝛼];P(ϕ)) = 1([𝛼] |= ϕ
∗)

where ϕ
∗ = argmax

ϕ∈{ϕ}
P(ϕ).

(5.1)

Here

1([𝛼] |= ϕ) =

1, if [𝛼] |= ϕ

−1, otherwise.
(5.2)

Here only the most likely specification in the belief is considered during planning.

The planner will disregard whether the other formulas in the support of the belief

are satisfied. This approach makes the PUnS formulation compatible with any
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methodology that generates robot behavior from task specifications expressed as

a single logical formula. In scenarios where the learner’s belief distribution has a very

low entropy with most of the probability mass concentrated on a single formula, this

criterion can alleviate the computational overhead associated with reasoning about

the entire belief distribution.

2. Maximum coverage: This criteria entails executions that satisfy the maximum

number of formulas in support of the distribution P(ϕ). As a reward function, it is

represented as follows:

Rmax coverage([𝛼];P(ϕ)) = ∑
ϕ∈{ϕ}

1([𝛼] |= ϕ). (5.3)

This criterion is best suited for scenarios where the belief distribution results from

preference elicitations from multiple experts, but with no preference over them, such

as the approach followed by Kim et al. [63] where it is desirable to satisfy the largest

common set of specifications.

3. Minimum regret: This criteria entails executions that maximize the hypothesis-

averaged satisfaction of the formulas in support of P(ϕ). As a reward function, this is

represented as follows:

Rminregret([𝛼];P(ϕ)) = ∑
ϕ∈{ϕ}

P(ϕ)1([𝛼] |= ϕ) (5.4)

Maximizing this criterion results in a task execution that has the largest probability of

being acceptable as per the learner’s belief of the true task specification. This makes

the minimum regret criterion best suited to applications involving a Bayesian approach

towards uncertainty in task specification, the setting considered in this dissertation.

4. Chance constrained: Suppose the maximum probability of failure is set to δ ,

with 𝜙δ defined as the set of formulas such that ∑ϕ∈𝜙δ P(ϕ)≥ 1−δ ; and P(ϕ ′)≤

P(ϕ) ∀ ϕ ′ /∈ 𝜙δ ,ϕ ∈ 𝜙δ . This is equivalent to selecting the most-likely formulas
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until the cumulative probability density exceeds the risk threshold. As a reward, this

is represented as follows:

Rcc([𝛼];P(ϕ)) = ∑
ϕ∈𝜙δ

P(ϕ)1([𝛼] |= ϕ). (5.5)

The chance-constrained criterion offers a trade-off between risk aversion and computa-

tional overhead of reasoning about multiple LTL formulas within the support of

P(ϕ). For δ = 0, this corresponds to the minimum regret criterion. As the value of δ

approaches 1, the formulas in the support {ϕ} are sequentially disregarded till only

a single formula is relevant to computing the policy; thus coinciding with the most

likely criterion.

Each of these four criteria represents a valid interpretation of satisfying a belief over

LTL formulas, with the choice between the criteria dependent upon the relevant application.

Broadly, the choice of the criterion represents a trade-off between flexibility in task execution

by reducing constraints and risk aversion in terms of generating task executions that dissatisfy

a subset of the support of the belief distribution. The impact of the choice of the evaluation

criterion is studied in greater detail in Section 5.3.1.

5.2 The PUnS Formulation

An instance of a PUnS problem is concretely defined as follows:

Definition 1 A PUnS problem is defined by the tuple 〈MX, f ,P(ϕ),RP(ϕ)〉, where: MX =

〈X,A,TX〉 represents the planning environment as an MDP sans a reward function; f : X→

{0,1}nprop is the labeling function that maps the state of the environment to the truth value

of nprop Boolean propositions; P(ϕ) represents a belief distribution over LTL formulas with

support over a finite set of of formulas, {ϕ} constructed from the same propositions that are

the output of f ; and RP(ϕ) : [𝛼]→ R is the reward function that maps a sequence of truth

values of the propositions, 𝛼 ∈ {0,1}nprop , to a real-valued reward.
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Consider a planning domain representing the task of setting a dinner table, with multiple

objects accessible to the robot, including a fork, a bowl, and a plate. The environment MDP,

MX, consists of a discrete state space, X, that encodes whether each object is correctly

placed; a discrete action space, A, that encodes the selection of the object to be placed

next; and the transition function, TX, which encodes how the action selection affects a

change in the state. The acceptability of the task execution is evaluated using the vector

of Boolean propositions, 𝛼 = [Fork, Bowl, Plate], where each proposition represents

whether that object was correctly placed on the table. An example of a belief over the

task specifications is represented by the distribution P(ϕ), whose support, {ϕ} = {ϕ1 =

G ¬Fork∧F Bowl ∧ ¬Bowl U Plate, ϕ2 = G ¬Fork∧F Bowl}, with probabilities as

follows: P(ϕ1) = 0.3, and P(ϕ2) = 0.7. ϕ1 encodes the specification that the fork must

never be placed, the bowl must be placed eventually, and that the bowl must not be placed

until the plate has been placed; ϕ2 encodes that the fork must never be placed and that the

bowl must be placed eventually. Thus, any task execution that satisfies ϕ2 also satisfies ϕ1;

however, the converse is not true. To perform the task to best align with this belief over

specifications, one must place the plate, then the bowl, and must not place the fork. The

PUnS formulation formalizes this intuition.

Solving a given PUnS problem involves three steps: first, we construct a minimal state

machine that is a Markov representation of all the formulas in the support {ϕ}; next, the

reward function RP(ϕ) is transformed into an equivalent reward function over the states, thus

yielding a PUnS reward machine (defined in Section 5.2.1); finally, the reward machine is

composed with the environment MDP MX to yield an MDP equivalent of the original PUnS

problem. The final policy for a PUnS problem can be computed by any solver that accepts

an MDP as an input.

5.2.1 Reward Machines

Reward machines, proposed by Toro Icarte et al. [128, 56], are a form of state machine that

can encode non-Markov specifications through states and transition tables. Following Toro

Icarte et al. [128], we define a simple reward machine as follows:
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Definition 2 Given a set of nprop Boolean propositions 𝛼 ∈ {0,1}nprop , a simple reward

machine is defined as the tuple M= 〈S,s0,F ,T,R〉 where: S is a finite set of states; s0 is

the initial state; F ⊂ S is the set of terminal states; T : S×{0,1}nprop×S→ {0,1} is the

transition function that determines the next state, given a current state and a truth value of

the propositions at a given time step. R : S×{0,1}nprop is the reward function that maps a

transition to a real valued reward.

Intuitively, a reward machine maintains a compact and sufficient representation of

the execution history through its state-space S; thus, it is a Markov representation of an

equivalent non-Markov reward function. The reward machine can be composed with a

Markov transition function of the environment to yield an equivalent Markov decision

process (MDP), thus making reward machines compatible with any MDP or RL solvers.

Toro Icarte et al. [127], and Camacho et al. [26] showed that reward machine representations

can be constructed for a wide variety of specifications encoded as formal logic formulas.

We demonstrate that every instance of a PUnS problem can be compiled into an equivalent

reward machine.

5.2.2 Constructing a PUnS Reward Machine

Given a single LTL formula ϕ , a Büchi automaton can be constructed that accepts all

traces that satisfy ϕ [132]. These automata are directed graphs where each node represents

the LTL formula, ϕ ′ that the trace must satisfy from that point onwards in order to be

accepted by the automaton. An edge labeled by the truth assignment α connects a node

to its progression Prog(ϕ ′,α). Our decision to restrict the candidate LTL formulas to the

obligation class ensures that the automaton representing ϕ is deterministic. In general, a

formula of the obligation class, can be rewritten as a conjunction of safe and co-safe LTL

formulas, ϕ = ϕsa f e∧ϕcosa f e. Thus the automaton representing the formula ϕ will have

terminal states that represent one of >, ⊥ or ϕsa f e. These terminal states are the reward

generating states in the reward machine representing a single LTL formula of the obligations

class defined according to Definition 2 as follows:
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Figure 5-1: Example of a PUnS problem compilation with minimum regret rewards

Mϕ = 〈
{

ϕ
′} ,ϕ,{ϕ

′}
term ,Tϕ ,Rϕ(ϕ

′)〉. (5.6)

Here {ϕ ′} represents the set of enumerations of all progressions of the formula ϕ .

The initial state of the reward machine corresponds to ϕ , the original formula. {ϕ ′}term

corresponds to the terminal state, i.e. states that have progressed to >, ⊥ or ϕsa f e. The

transition function is defined as follows:

Tϕ(ϕ
′
1,α,ϕ ′2) =

1, if ϕ ′2 = Prog(ϕ ′1,α)

0, otherwise.
(5.7)

Finally, the reward function Rϕ is defined as follows:

Rϕ(ϕ
′) =


1, ifϕ ′ =>orϕ ′ = ϕsa f e

−1, ifϕ ′ =⊥

0, otherwise.

(5.8)
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Recall the table-setting example from Section 5.2. The reward machines encoding the

satisfaction of ϕ1 and ϕ2 are depicted in Figure 5-1. Consider the reward machine Mϕ1;

Mϕ1 is initially in the state labeled as G¬Fork∧F Bowl∧¬Bowl U Plate. Once the Plate

is placed on the table, the reward machine enters the state labeled by G ¬Fork∧F Bowl,

which encodes the temporal property that in the future, the Bowl must eventually be placed

on the table.

For a PUnS problem with the belief P(ϕ) and support {ϕ}, the reward machine is

constructed through a concatenation of the individual reward machines corresponding to the

elements of {ϕ}. The reward machine corresponding to this PUnS problem is defined as

follows:

M{ϕ} = 〈{〈ϕ ′〉},〈ϕ〉,{〈ϕ ′〉}term,T{ϕ},R(〈ϕ ′〉)〉. (5.9)

Here, {〈ϕ ′〉} is the set of ordered tuples 〈ϕ ′〉 that represent all progressions of the

formulas contained in the support {ϕ}. In particular, ϕ ′i, represents the ith formula in the

tuple 〈ϕ ′〉. The initial state of the reward machine is 〈ϕ〉 which is the ordered tuple of

the unprogressed formulas in {ϕ}. {〈ϕ ′〉}term is the set of terminal states where each of

the component formula has either been satisfied (>), dissatisfied (⊥), or progressed to a

safe-LTL formula. T{ϕ} : {ϕ ′}×{0,1}nprop×{ϕ ′} → {0,1}, is the transition function for

state machine, and is defined as follows:

T{ϕ}(〈ϕ ′〉1,𝛼,〈ϕ ′〉2) =

1, if ϕ ′i2 = Prog(ϕ i
1,𝛼) ∀ i

0, otherwise.
(5.10)

R(〈ϕ ′〉) : {〈ϕ ′〉} → R is equivalent to R([𝛼];P(ϕ)), but the domain of the function is

now the set of the states of the reward machine. This transformation is straightforward, as

any trace [𝛼] advances the reward machine to a unique state 〈ϕ ′〉 due to the deterministic

nature of the transition function. Note that the underlying state machine depends only on

the support {ϕ} of the belief and not on the specific probability values.
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5.2.3 Defining PUnS Reward Functions

The reward functions for the PUnS reward machines are constructed based on the evaluation

criteria proposed in Section 5.1. These reward functions are defined as follows:

1. Most likely: Let ϕ i = argmaxϕ∈{ϕ}P(ϕ). The reward function corresponding to the

most likely evaluation criterion is defined as follows:

Rmost likely(〈ϕ ′〉;P(ϕ)) =


1, if ϕ ′i => or ϕ ′i ∈ safe−LTL

−1, if ϕ ′i =⊥

0, otherwise.

(5.11)

2. Max coverage: The max coverage reward function is defined as follows:

Rmax cover(〈ϕ ′〉;P(ϕ)) =

∑i r(ϕ ′i), if 〈ϕ ′〉 ∈ {〈ϕ ′〉}term

0, otherwise.
(5.12)

Here r(ϕ ′i) is defined as follows:

r(ϕ ′i) =

1, if ϕ ′i => or ϕ ′i ∈ safe−LTL

−1, if ϕ ′i =⊥.
(5.13)

3. Minimum regret The reward function based on the minimum regret criterion is

defined as follows:

Rmin regret(〈ϕ ′〉;P(ϕ)) =

∑i P(ϕ i)r(ϕ ′i), if 〈ϕ ′〉 ∈ {〈ϕ ′〉}term

0, otherwise.
(5.14)

Here r(ϕ ′i) is defined as per Eq 5.13.

4. Chance-constrained Recall the definition of the chance-constrained set {ϕ}δ from

eq 5.5. The chance constrained reward function is defined as follows:
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RCC(〈ϕ ′〉;P(ϕ),δ ) =

∑i P(ϕ i)r(ϕ ′i;δ ), if 〈ϕ ′〉 ∈ {〈ϕ ′〉}term

0, otherwise.
(5.15)

Here r(ϕ ′i,δ ) is defined as follows:

r(ϕ ′i,δ ) =


1, if ϕ ′i => or ϕ ′i ∈ safe−LTL and ϕ ′i ∈ {ϕ}δ

−1, if ϕ ′i =⊥ and ϕ ′i ∈ {ϕ}δ

0, otherwise.

(5.16)

5. Desired state reward: This reward function is best suited to guide the robot to a

particular intended state of the reward machine. Given a set of reward machine

states {〈ϕ ′〉}, the transition function T{ϕ}, and a desired final state 〈ϕ ′〉∗ ∈ {〈ϕ ′〉}; let

{〈ϕ ′〉}path represent the set of states that lie on a simple path connecting 〈ϕ〉 to 〈ϕ ′〉∗;

then the desired state reward R〈ϕ ′〉∗ is defined as follows:

R〈ϕ ′〉∗(〈ϕ ′〉) =


1, if 〈ϕ ′〉= 〈ϕ ′〉∗

0, if 〈ϕ ′〉 ∈ {〈ϕ ′〉}path

−1, otherwise.

(5.17)

In addition to the reward function, the set of terminal states must be modified as

follows:

{〈ϕ ′〉}∗term = {〈ϕ ′〉}term∪{〈ϕ ′〉∗}−{〈ϕ ′〉}path. (5.18)

This ensures that the desired end state is a part of the terminal states of the modified

reward machine, and none of the states that are on a transition path from the initial state

to the desired state are in the modified set of terminal states. Thus a policy computed

for the reward machine M{ϕ} = 〈{〈ϕ ′〉},〈ϕ〉,{〈ϕ ′〉}∗term,T{ϕ},R〈ϕ ′〉∗〉 drives the robot

towards the desired state.
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5.2.4 Computing PUnS Policy

To compute the policy to solve a PUnS problem, the compiled reward machine M{ϕ}

is composed with the environment MDP MX to construct the MDP equivalent of the

original PUnS problem MPUnS = 〈X×{〈ϕ ′〉},A,TPUnS,R(〈ϕ ′〉)〉. Here the state-space is

the Cartesian product of the states-spaces of the environment MDP MX and the reward

machine M{ϕ}, the action space is identical to the action space of MX, and the reward is

only a function of the state of the reward machine. The transition function TPUnS is defined

as follows:

TPUnS(〈〈ϕ ′〉1,x1〉,a,〈〈ϕ ′〉2,x2〉) = T{ϕ}(〈ϕ ′〉1, f (x2),〈ϕ ′〉2)×TX(x1,a,x2). (5.19)

Here f is the labeling function as defined in Definition 1. MPUnS is compatible with any

reinforcement learning or planning algorithm that accepts an MDP problem definition.

5.2.5 Counterfactual updates in a model-free setting

Toro Icarte et al. [56, 127] demonstrated that reward machines allow for off-policy updates

for each state in the reward machine. Constructing MSpec as a composition of MX and

M{ϕ} results in the following properties: the reward function is only dependent upon 〈𝜙〉,

the state of M{ϕ}; the action availability only depends upon x, the state of MX; and the

stochasticity of transitions is only in TX, as T{ϕ} is deterministic. These properties allow

us to exploit the underlying structure of MSpec in a model-free learning setting. Let an

action a ∈𝐴 from state x1 ∈ X result in a state x2 ∈ X. As T{ϕ} is deterministic, we can

use this action update to apply a Q-function update (Equation 3.4) to all states described by

〈〈𝜙′〉,x1〉 ∀ 〈𝜙′〉 ∈ {〈𝜙〉}.
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Figure 5-2: The transition diagram for the synthetic task with five states.

5.3 Experimental Evaluation

We first explored how the choice of criteria represented by Equations 5.1, 5.3, 5.4, and 5.5

results in qualitatively different performance by trained RL agents. This was conducted

within the synthetic threats and waypoints domain used in Section 4.3.1, where it was

easy to vary the problem size and the belief distribution and to compute the final policy

for different problem variants rapidly. Then, we demonstrate how the PUnS compilation

algorithm can serve to train an agent on a real-world task involving setting a dinner table

with specifications inferred from human demonstrations, as per Shah et al. [111]. We also

demonstrate the value of counterfactual Q-value updates for speeding up the agent’s learning

curve.

5.3.1 Interactions Between Beliefs and Evaluation Criteria

The choice of the evaluation criterion impacts the executions it entails based on the nature

of the distribution P(ϕ). Figure 5-3 depicts examples of different distribution types. Each

figure is a Venn diagram where each formula ϕi represents a set of executions that satisfy

ϕi. The size of the set represents the number of execution traces that satisfy the given

formula, while the thickness of the set boundary represents its probability. Consider the

simple discrete environment depicted in Figure 5-2: there are five states, with the start state
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in the center labeled ‘S’ and the four corner states labeled “T0”, “W0”, “W1”, and “W2”. The

agent can act to reach one of the four corner states from any other state, and that action is

labeled according to the node it is attempting to reach.

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 5-3: Comparisons between different types of distributions over specifications. In
each case, the size of the set is proportional to the number of executions satisfying the
specification, and the thickness of the boundary is proportional to the probability mass
assigned to that specification.

Case 1: Figure 5-3a represents a distribution where the most restrictive formula of the

three is also the most probable. All criteria will result in the agent attempting to perform

executions that adhere to the most restrictive specification.

Case 2: Figure 5-3b represents a distribution where the most likely formula is the least

restrictive. The minimum regret and maximum coverage rewards will result in the agent

producing executions that satisfy ϕ3, the most restrictive formula; however, using the most

likely criteria will only generate executions that satisfy ϕ1. With the chance-constrained

policy, the agent begins by satisfying ϕ3 and relaxes the satisfactions as risk tolerance is

decreased, eventually satisfying ϕ1 but not necessarily ϕ2 or ϕ3.

Case 3: Case 3 represents three specifications that share a common subset but also

have subsets that satisfy neither of the other specifications. Let the scenario specification

be {ϕ}= {G¬T0∧FW0,G¬T0∧FW1,G¬T0∧FW2} with assigned probabilities to each of

0.4,0.25, and 0.35, respectively. These specifications correspond to always avoiding “T0”

and visiting either “W0”, “W1”, or “W2”. For each evaluation criteria defined in Section

5.2.3, the Q-value function was estimated using γ = 0.95 and an ε-greedy exploration policy.

A softmax policy with temperature parameter 0.02 was used to train the agent, and the

resultant exploration graph of the agent was recorded. The most likely criterion requires only

the first formula in {ϕ} to be satisfied; thus, the agent will necessarily visit “W0” but may or
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may not visit “W1” or “W2”, as depicted in Figure 5-4a. With either maximum coverage or

minimum regret serving as the reward function, the agent tries to complete executions that

satisfy all three specifications simultaneously. Therefore, each task execution ends with the

agent visiting all three nodes in all possible orders, as depicted in Figure 5-4b. Finally, in the

chance-constrained setting with risk level δ = 0.3, the automaton compiler drops the second

specification; the resulting task executions always visit “W0” and “W2” but not necessarily

“W1”, as depicted in Figure 5-4c.

(a) Case 3: most likely (b) Case 3: min regret (c) Case 3: chance constrained

Figure 5-4: Exploration graphs for Case 3 within the synthetic domain. Figures 5-4a, 5-4b,
and 5-5a depict the exploration graph of agents trained with different evaluation criteria for
distributions with an intersecting set of satisfying executions.

Case 4: Case 4 depicts a distribution where an intersecting subset does not exist. Let

the scenario specifications be {ϕ} = {G¬T 0∧G¬W2∧FW1,G¬T0∧G¬W2∧FW1,G¬T0∧

FW2}, with probabilities assigned to each of 0.05,0.15, and 0.8, respectively. The first

two formulas correspond to the agent visiting either “W1” or “W0” but not “W2”. The third

specification is satisfied when the agent visits “W2”; thus, any execution that satisfies the

third formula will not satisfy the first two. The first two formulas also have an intersecting

set of satisfying executions when both “W0” and “W1” are visited, corresponding to Case

4 from Figure 5-3d. Optimizing for max coverage will result in the agent satisfying both

the first and the second formula but ignoring the third, as depicted in Figure 5-5a. However,

when using the minimum regret formulation, the probability of the third specification is

higher than the combined probability of the first two formulas; thus, a policy learned to

optimize minimum regret will ignore the first two formulas and always end an episode by

visiting “W2”, as depicted in Figure 5-5b. The specific examples and exploration graphs for
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the agents in each of the scenarios in Figure 5-3 and for each reward formulation in Section

5.2.3 are provided in the supplemental materials.

(a) Case 4: max coverage (b) Case 4: min regret

Figure 5-5: Exploration graphs for Case 4 within the synthetic domain. Figures 5-5a and
5-5b depict the exploration graph of agents trained with different evaluation criteria for
distributions without an intersecting set of satisfying executions.

5.3.2 Demonstration: Multi-Step Manipulation Task

To demonstrate the utility of PUnS, we formulated the task of setting a dinner table as

an instance of the PUnS problem. We used the posterior distribution inferred from 30

demonstrations (Section 4.3.1) as the belief distribution for this task. We used some newer

dinner table objects that were better suited for robotic manipulation and shatter-resistant.

The desired final configuration of the dinner table objects is depicted in Figure 5-6a. Recall

that the successful completion of this task relied on placing all the dinner table objects in

their correct final positions; and on stacking the dinner plate, small plate, and bowl on top of

each other.

For the purpose of planning, the task environment MDP MX was simulated. Its state was

defined by the truth values of the eight propositions defined above; thus, it had 256 unique

states. The action space of the robot was the choice of which object to place next. Once an

action was selected, it had an 80% chance of success as per the simulated transitions. The

posterior distribution inferred from 30 training demonstrations had the largest uncertainty in

the true specification. This distribution P(ϕ) had 25 unique formulas in its support {ϕ}. As

per the expected value of the intersection over union metric, the belief was 85% similar to
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(a) Desired final configuration (b) Task setup

Figure 5-6: Robot setup for the table setting task. Figure 5-6a depicts the desired final
configuration of objects. Figure 5-6b presents the UR-10 arm performing the table-setting
task.

the true specification. The true specification itself was part of the support but was only the

fourth most likely formula, as per the distribution.

The reward machine M{ϕ} compiled from P(ϕ) had 3,025 distinct states; thus, the

cross-product of M{ϕ} and MX yielded MSpec with 774,400 unique states and the same

action space as MX. We chose the minimum regret criteria to construct the reward function

and trained two learning agents using Q-learning with an ε-greedy policy (ε = 0.3): one

with and one without off-policy updates. We evaluated the agent at the end of every training

episode using an agent initialized with softmax policy (the temperature parameter was set

to 0.01). The agent was allowed to execute 50 test episodes, and the terminal value of the

reward function was recorded for each; this was replicated 10 times for each agent. We

conducted all evaluations on a desktop with i7-7700K and 16 GB of RAM.

The statistics of the learning curve are depicted in Figure 5-7. The solid line represents

the median value of terminal reward across evaluations collected from all training runs. The

error bounds indicate interquartile range. The maximum value of the terminal reward is

1 when all formulas in the support {ϕ} are satisfied, and the minimum value is −1 when

all formulas are not satisfied. The learning curves indicate that the agent that performed

counterfactual Q-value updates (Section 5.2.5) learned faster and had less variability in

its task performance across training runs compared with the one that did not perform

counterfactual updates. This provides additional empirical evidence that such counterfactual

updates improve the sample complexity as first observed by Toro Icarte et al. [127, 56].
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Figure 5-7: Learning curves for the computing the table-setting task policy. The curve
depicts the median and the interquartile range of the terminal rewards.

We implemented the learned policy with predesigned motion primitives on a UR-

10 robotic arm. We observed during evaluation runs that the robot never attempted to

violate any temporal ordering constraint. The stochastic policy also made it robust to some

environmental disturbances. For example, if one of the objects was occluded, the robot

finished placing the other objects before waiting for the occluded object to become visible

again.1

Next, to examine the trade-off between the creativity of performing the task and risk

aversion, we repeated the training and testing with the M{ϕ} compiled with the most likely

and the chance constrained criteria with δ = {0.1,0.3}. For each of the trained agents,

we recorded 20 physical executions by deploying the policy on the robot, and we also ran

20000 simulated test episodes for each instance of the PUnS MDP MSpec. We recorded the

number of unique placement sequences and the number of specification violations during the

simulated and physical test runs. The results are tabulated in Tables 5.2 and 5.3 respectively.

Assuming that the dinner plate, the small plate and the bowl must be placed in that partial

order, there are 6720 unique, valid orderings for placing the eight objects. The policies

trained as per min regret and both the chance constrained criteria generated 20 unique

1Example executions can be viewed at https://youtu.be/LrIh_jbnfmo
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Reward Type
Formulas
Included

M{ϕ}
States

Min Regret 25 3025
Most Likely 1 193
Chance constained
(d = 0.1) 4 449

Change Constrained
(d = 0.3) 3 353

Table 5.1: Relation between evaluation criteria choice, formulas considered in reward
machine construction, and states of the reward machine.

orderings in the physical test executions. The simulated tests reveal that the policy trained in

accordance with minimum regret criterion executes the task with fewer unique orders than

the policy trained with both the chance constrained criteria. Both the physical executions

and the simulations reveal that the policy trained with the most likely criterion performs the

task with many constraint violations because the most likely formula does not include an

ordering constraint existing in the ground truth specification. This demonstrates a three-way

trade-off between computational complexity in terms of the additional states to consider

while planning, the creativity displayed by the policy in terms of the unique executions

discovered, and the risk of specification violation. The min regret policy is the most risk-

averse but also the least flexible, while the chance constrained policies demonstrate higher

creativity but with more constraint violations.

Reward Type
True
Valid
Orders

Successful
Executions
(On Robot)

Constraint
Violations
(On Robot)

Unique
Orders
(On Robot)

Min Regret 6720 20 0 20
Most Likely 6720 12 8 20
Chance constained
(d = 0.1) 6720 20 0 20

Change Constrained
(d = 0.3) 6720 20 0 20

Table 5.2: Successful task executions, and policy flexibility as demonstrated on a physical
robot.
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Reward Type
True
Valid
Orders

Successful
Executions
(Simulation)

Constraint
Violations
(Simulation)

Unique
Orders
(Simulation)

Min Regret 6720 19997 3 1962
Most Likely 6720 9920 10080 10215
Chance constained
(d = 0.1) 6720 19995 5 4253

Change Constrained
(d = 0.3) 6720 19987 13 4882

Table 5.3: Successful task executions and policy fliexibility as evaluated in simulations.

5.4 Summary and Future Directions

This chapter introduced planning with uncertain specifications (PUnS), a novel problem

formulation that allows policy computation while reasoning about the epistemic uncertainty

over what is the true task that the learner must perform. We introduced four evaluation

criteria that capture the semantics of satisfying a belief over logical formulas. We further

demonstrated that policies computed to optimize the reward functions derived from these

evaluation criteria conform with the notion of hedging behaviors that satisfy multiple

candidate formulas simultaneously. We also demonstrated the inherent trade-off between

flexibility in task execution and risk-aversion that results from selecting the evaluation

criteria. Finally, we demonstrated that every PUnS problem is equivalent to an MDP

formed through the concatenation of the environment MX, and the reward machine M{ϕ}

representing the belief over formulas. Finally, we proposed an algorithm to automatically

construct the reward machine from the belief distribution P(ϕ) and the choice of the

evaluation criterion, based on breadth-first enumeration of the progression states of the

formulas within the support {ϕ} of the belief.

While we demonstrated that every PUnS problem can be framed as an equivalent MDP,

computing sample-efficient policies for the resulting MDP remains an open problem. The

learning agent acts within the environment MX while the rewards are obtained only when

transition occurs within the reward machine M{ϕ} that end in one of the terminal states;

therefore, the reward structure for an MDP resulting from a PUnS problem is sparse. Toro-
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Icarte et al. [128] have proposed approaches to shape rewards within the reward machines

that allow for greater learnability. In addition to that, exploiting the compositional structure

of the transitions of the reward machines presents a promising direction for future research.

Another key area of the extension is to relax the requirement for the candidate formulas

to belong to the ‘Obligation’ class of temporal properties as defined by Manna and Pnueli

[78]. The reward machine representation provides a sound realization of the underlying

‘Obligation’ temporal properties as a reward function; however, formulas that belong

to classes higher in Manna and Pnueli’s hierarchy demonstrate non-determinism in the

underlying automata and the need for infinite planning horizons. Both these aspects make

the construction of a reward machine that is a realization of the underlying properties

challenging. The theoretical analysis of the expressivity of reward machines vis-a-vis the

temporal properties is an important avenue of future research.
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Chapter 6

Online Interactive Robot Training

Batch Bayesian specification inference (Chapter 4) deals with a learner that learns purely

from observing labeled task executions provided by the teacher, whereas planning with

uncertain specifications (PUnS) (Chapter 5) allows the learner to reason over the uncertainty

in the underlying task specification and generate behavior that satisfies a maximal subset of

the belief distribution. Together, these approaches allow a learner to infer task specifications

passively from observational data, and then perform the task by planning with uncertain

specifications. However, an ideal robot apprentice should be an active learner, i.e., it should

be capable of guiding its learning by intelligently generating the data it learns from.

This chapter describes the development of the integrated framework formalized in

Section 3.2.3. We start by demonstrating how the structure of the reward machine can be

leveraged to identify a task execution whose acceptability label is most informative to the

learner. We then demonstrate how to estimate the expected utility gain if the learner were to

elicit a new demonstration from the teacher under the assumption of noisy rationality–i.e.

taking the optimal decision with higher probability. The learner can compare these estimates

of expected utility gain from an active query to eliciting a new demonstration from the

teacher to identify the ideal modality for the next learning iteration. Finally, we instantiate

utility functions based on principles of uncertainty sampling, information gain, and model

change within the context of non-Markov tasks represented by PUnS reward machines.

These technical contributions result in our proposed Bayesian framework where the learner

learns iteratively, either from demonstrations provided by the teacher or from acceptability
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assessments of its task execution. Further, the schedule of the learning modalities can either

be fixed apriori or intelligently selected by the learner.

We then conduct simulation experiments within our framework to compare various

learning modality schedules and assess the impact of the teacher’s pedagogical selectivity.

In particular, we demonstrate that a learner that can intelligently select its learning modality

can compensate for a teacher who cannot provide a diverse set of teaching demonstrations.

Finally, we demonstrate our entire Bayesian framework on a real-world task of setting

the table through a user study. Based on our study with 18 participants, all the participants

could teach the robot to set the dinner table in the desired configuration without any errors

within just five task executions, thus indicating the viability of deploying our framework

towards real-world applications.

6.1 Multi-Modal Training Framework

In our framework (Figure, 6-1), the teacher intends to teach the desired task encoded by an

LTL formula ϕ∗ to a learner. Following a Bayesian approach, the learner maintains a belief

over candidate LTL formulas P(ϕ), defined by the probability mass function P : {ϕ}→ [0,1].

The support of the distribution P(ϕ) is restricted to a finite set of LTL formulas, {ϕ}, where

each formula ϕ belongs to the “Obligations” class of temporal properties [78].

The learner acts in and observes the environment encoded by the environment MDP

MX from as defined in Def 1. We assume that a set of nprop propositional variables 𝛼 is

sufficient to evaluate the truth values of ϕ∗ and of all the formulas in the support of P(ϕ) at

all times. Thus task execution performed by either the teacher or the learner are represented

by a sequence of environment states [x] that is injectively mapped to a sequence of truth

values of the propositions, [𝛼], through the labeling function 𝛼= f (x).

The teacher can provide inputs to the learner by either providing a demonstration

of successful task execution as per their intended task specification ϕ∗ or assessing the

acceptability of a task execution performed by the learner. Given the learner’s current belief

P(ϕ), we model the teacher’s demonstrations as a draw from the distribution Pteacher([𝛼] |

ϕ∗;P(ϕ)); i.e., we assume that the teacher’s demonstrations are conditioned on the true
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Figure 6-1: Our proposed Bayesian interactive learning framework that unifies learning
from demonstrations provided by the teacher and using informative queries generated by the
learner to refine the learner’s belief. The green path depicts the teacher initiating training
using task demonstrations. The orange path indicates the learner initiating training by
demonstrating a task execution as a query requesting an assessment from the teacher.

task specification that they intend to teach the learner and the learner’s current belief over

task specifications. Further, we also assume that any demonstration provided by the teacher

is acceptable with respect to the intended formula, ϕ∗. We also assume the teacher can

assess the acceptability of task executions with respect to ϕ∗ through the labeling function

Lϕ∗([𝛼]) ∈ {0,1}.

6.1.1 Modes of Learning

We adopt an iterative Bayesian formulation to update the belief of the learner. The prior

belief P(ϕ)0 of the learner is initialized to be one of the distributions over LTL formulas

defined in Section 4.2.1. The teacher initializes the learner’s belief P(ϕ)1 = P(ϕ |D0) over

the intended task specifications by providing at least two acceptable task demonstrations,

denoted by D0 = {〈[𝛼]1,1〉,〈[𝛼]2,1〉, . . .}. All subsequent updates to the learner’s belief

occur iteratively, one task execution at a time. The data from each task execution, performed

by either the teacher or the learner, is represented by the tuple 〈[𝛼],L([𝛼])〉, representing

the sequence of the truth values of the Boolean propositions, and the acceptability label.

All task executions performed by the teacher are labeled as acceptable, and the executions

performed by the learner are labeled by the teacher according to Lϕ∗ . The posterior belief
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conditioned on the data from each interaction is set as the prior belief for the subsequent

Bayesian update:

P(ϕ)i+1← P(ϕ | 〈[𝛼],L([𝛼])〉)i (6.1)

The learner operates in two modes: learning, wherein the learner updates its belief

conditioned on demonstrations provided by the teacher, or based on the teacher’s assessments

of the acceptability of its task executions; and planning, where it must compute the final

policy based on the final belied P(ϕ) f inal , once the teacher’s input is not available to the

learner. The computation of the final policy in the planning mode is an instance of the PUnS

problem (Definition 1), 〈MX, f ,P(ϕ) f inal,Rmin regret〉.

In the learning mode, the learner can learn from either a task execution demonstrated

by the teacher or from the teacher’s assessment of the task execution performed by the

robot. In Section 6.2.1, we define query selection strategies that allow the learner to

identify a task execution, where the teacher’s assessment would be the most beneficial in

reducing the learner’s uncertainty of the true task specification. However, the choice of the

learning modality itself is a decision variable that impacts the rate at which the learner gains

competency towards the desired task. We consider two approaches towards determining the

learning modality at each iteration:

1. Fixed modality schedule: In this mode of learning, the number of iterations that the

learner can use to update its beliefs are fixed, and so is the nature of the source of the

task execution at each iteration. In this dissertation, we consider the two extremes

of the fixed modality schedule once the learner’s belief is initialized with a fixed

number of demonstrations. First, the learner identifies and executes a query task

execution following the active learning paradigm described in Section 6.2.1; we term

this schedule as Active. Next, the learner only learns from acceptable demonstrations

provided by the teacher; this schedule is called Demonstrations.

2. Adaptive modality schedule: In this mode of learning, the learner first decides what

the ideal learning modality at each iteration would be based on a model of the teacher.

The pedagogical selectivity of the teacher plays an important role in such a scenario.
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Figure 6-2: Example of selecting an informative query using a PUnS reward machine.The
desired state reward function is indicated in blue.

We consider a noisy-pedagogical model of the teacher described in Section 6.3, that

allows us to estimate the expected utility of a teacher’s demonstration in contrast with

that of an actively selected query execution. The learner leverages this to decide the

learning modality to use during the next iteration as described in Section 6.2.3. We

call this learning schedule, Meta-Selection.

6.2 Online Multi-Modal Learning

Consider the table setting task defined in Section 5.2. Uncertainty in whether ϕ1 or ϕ2 is the

true formula would result in robot behavior that favors ϕ1 under the PUnS formulation, as

it is the more restrictive of the two. If the plate and the bowl are placed sequentially, that

automatically satisfies the specification of placing just the bowl. However, if ϕ2 were the

ground truth specification, the learned policy overconstrains the robot’s behavior.

Any task execution performed by the robot will progress the PUnS reward machine,

M{ϕ} (depicted in Figure 6-2), to one of the five states. An execution that ends in the states

denoted by 〈⊥,⊥〉, or 〈G ¬ Fork,G ¬ Fork〉 has limited utility in refining the robot’s belief

as such an execution either satisfies or dissatisfies all the formulas in the support, {ϕ}.
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However, the acceptability label for an execution that ends in the state 〈⊥,G ¬ Fork〉 is

always informative, as it helps increase certainty towards one of the two formulas in the

support {ϕ}.

If the learner had a choice to perform the following task execution, the learner would

perform one that terminates in the state 〈⊥,G ¬ Fork〉, as the demonstrator’s label is

informative irrespective of whether this task execution was acceptable or not. Thus the

learner must compute the utility of a query task execution over the possible labels that it

might receive.

Conversely, a pedagogical demonstrator has the benefit of knowing the ground-truth

formula and the learner’s current belief, and the belief update model. In the scenario where

ϕ1 is the ground truth formula, the teacher can only provide demonstrations that terminate

in the state 〈G¬Fork,G ¬Fork〉; however, if ϕ2 were the ground-truth formula, the teacher

can provide demonstrations that terminate in either of the states 〈G¬Fork,G ¬Fork〉 or

〈⊥,G ¬Fork〉. However, with the knowledge of the learner’s belief, a pedagogical teacher

will choose to perform a demonstration that terminates in the more informative state that

can help the learner refine its belief.

More generally, the states of the reward machine M{ϕ} implicitly encode all possible

truth values of the LTL specifications within the support, {ϕ}, of the learner’s belief P(ϕ).

In the case of the learner eliciting an assessment of the query, the state is explicitly selected

by the learner. To generate the query execution, once a state 〈ϕ ′〉∗ is determined, the learner

compiles a new PUnS reward machine, M〈ϕ
′〉∗

{ϕ} = 〈{〈ϕ ′〉},〈ϕ〉,{〈ϕ ′〉}∗,T{ϕ},R〈ϕ ′〉∗〉. The

optimal policy for M〈ϕ
′〉∗

{ϕ} drives the learner to the desired informative state. A key benefit of

using reward machines is that all functions of the trace, [𝛼], can be transformed to equivalent

functions of the reward machine state 〈ϕ ′〉, as the [𝛼] maps injectively to 〈ϕ ′〉. Following

this, we define the following shorthand for convenience. For any function f that accepts

traces as domain f ([𝛼]), there will be an equivalent transformed function, f ([𝛼])≡ f (〈ϕ ′〉)

that accepts the set of states of the reward machine as its domain.

We developed models that allow the learner to estimate the expected utility of performing

a query execution to seek specific refinements or allow the teacher to demonstrate diverse

ways of acceptably performing the task execution. We first demonstrate how the learner can
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leverage the structure of the reward machine to determine the expected utility of asking a

query (Section 6.2.1) in comparison with that of seeking a demonstration from the teacher

(Section 6.2.2). Next, in Section 6.2.4 we discuss the choices of utility functions that lead to

various query selection strategies inspired by active learning approaches [106].

6.2.1 Determining Informative Queries

Let J(〈ϕ ′〉,L) : {〈ϕ ′〉}×0,1→R is a function of the reward machine state, 〈ϕ ′〉, and the

acceptability label, L of a task execution that ends in 〈ϕ ′〉. We also assume that a trace and

label with a larger value of J(〈ϕ ′〉,L) is a more desirable source of data for learning.

If the learner performs a query task execution and elicits the acceptability label from the

teacher, the expected utility of the query that ends in the state 〈ϕ ′〉 over all possible labels

that the teacher may provide is:

ELJJK = P(L= 1)J(〈ϕ ′〉,1)+(1−P(L= 1)J(〈ϕ ′〉,0). (6.2)

Here, given the learner’s belief P(ϕ), the probability of the acceptability label as

estimated by the learner is P(L = 1) = EP(ϕ)J1([𝛼] |= ϕ)K. As the learner has complete

control over what task execution to perform, the learner chooses to maximize the expected

utility (Eq 6.2). Thus the state chosen, 〈ϕ ′〉∗ by the learner, and the expected utility Jquery

from an active query are:

Jquery = max
〈ϕ ′〉∈{〈ϕ ′〉}

ELJJ(〈ϕ ′〉,L)K, and (6.3)

〈ϕ ′〉∗ = argmax
〈ϕ ′〉∈{〈ϕ ′〉}

ELJJ(〈ϕ ′〉,L)K. (6.4)

6.2.2 Computing Expected Utility of Teacher’s Demonstrations

Next, we must estimate the expected utility of allowing a teacher to provide a teaching

demonstration, assuming that the teacher has access to the belief-updating algorithm of

the learner and the learner’s current belief. Note that the teacher will always provide an
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acceptable task execution as a demonstration, therefore L= 1, but the teacher can choose a

trace that ends in an informative reward machine state 〈ϕ ′〉∗. Thus the learner must compute

the expected utility of a demonstration, given its belief over the true formula P(ϕ), and a

model of the teacher’s pedagogical selection of the teaching state 〈ϕ ′〉∗. The expected utility

gain from a teacher’s demonstrations is computed as follows:

Jdemo = E〈ϕ ′〉∈{〈ϕ ′〉}JJ(〈ϕ ′〉,1)K = ∑
〈ϕ ′〉∈{〈ϕ ′〉}

J(〈ϕ ′〉,1)P(〈ϕ ′〉) (6.5)

Here the P(〈ϕ ′〉) is the resulting distribution over the final state of the demonstration

given the teacher’s pedagogical model P(〈ϕ ′〉 | ϕ∗) and the learner’s belief over the true

task specification P(ϕ), thus the expected utility of the teacher’s demonstration is computed

as follows:

Jdemo = ∑
〈ϕ ′〉∈{〈ϕ ′〉}

J(〈ϕ ′〉,1) ∑
ϕ∈{ϕ}

P(〈ϕ ′〉 | ϕ)P(ϕ) (6.6)

We discuss the teacher’s pedagogical model in greater detail in Section 6.3.

6.2.3 Intelligent Learning Modality Selection (Meta-Choice)

An adaptive schedule of learning from teacher demonstrations and from acceptability

assessments of the learner’s performance can help the learner choose the ‘right’ modality

for learning at each iteration. Similar to the active learning approach discussed in Section

6.2.1, the selection of the best learning modality requires the learner to estimate the relative

utility of observing a demonstration and of eliciting an assessment of query execution.

During any given iteration, the learner computes expected utility from both eliciting

a task demonstration from the teacher and seeking the teacher’s assessment of a query

execution performed by the learner. The learner selects the data source with the highest

expected utility. As in the case of active learning, the learner can use uncertainty sampling,

information gain, and model change heuristics to guide the selection of the learning modality,

just as the learner can use them to determine an informative query execution.
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6.2.4 Utility Functions

The query selection strategy is key to the performance of our interactive learning framework.

We instantiated the utility functions inspired by approaches to active learning as surveyed

by Settles [106]. We considered the following query selection strategies:

1. Uncertainty Sampling: The principle of uncertainty sampling [76] states that the

ideal query for the active learner is the one where the current model is most ambivalent

about the teacher’s expected label. For binary acceptability labels, the probability that

the query task execution is acceptable per the current belief should be closest to 0.5.

Given the current belief of the learner P(ϕ)i, the learners estimate of the acceptability

of a given task execution [𝛼] is:

EP(ϕ)iJ[𝛼] |= ϕ
∗K = EP(ϕ)iJ1([𝛼] |= ϕ)K = 0.5× (1+Rmin regret(〈ϕ ′〉)). (6.7)

Here 〈ϕ ′〉 is the final state resulting from the progression of the reward machine M{ϕ}

with the trace [𝛼]. Note that the minimum regret reward is linearly dependent on the

model’s evaluation of the probability of a trace satisfying the true specification. Thus,

a probability of 0.5 corresponds to a minimum regret reward value of 0. Thus the

utility function corresponding to uncertainty sampling is:

JUS(〈ϕ ′〉,L) =− | Rminregret(〈ϕ ′〉) | (6.8)

2. Information Gain: The Shannon entropy [114], denoted by H(ϕ) is a measure of

the uncertainty in a random variable’s distribution, and is:

H(ϕ) = EP(ϕ)J−P(ϕ) log(P(ϕ))K. (6.9)

Biyik et al. [19, 18] and Jeon et al. [57] have proposed active learning of reward

functions in an MDP setting based on the principle of maximal information gain, i.e.

selecting a query execution that would maximally reduce the conditional entropy in

expectation over all possible expert labels. Note that any trace [𝛼] that ends in the state
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〈ϕ ′〉, given the same label L([𝛼]) would result in an identical posterior distribution;

i.e. P(ϕ | [𝛼],L([𝛼])) = P(ϕ | 〈ϕ ′〉,L(〈ϕ ′〉)). The information gain for a trace ending

in state, 〈ϕ ′〉, with the teacher’s acceptability label, L([𝛼]) = L(〈ϕ ′〉) = L is:

JH(〈ϕ ′〉,L) = H(ϕ)−H(ϕ | 〈ϕ ′〉,L). (6.10)

3. Maximum Model Change : The principle of maximum model change for active

learning selects a data point that expects to have the largest impact on the learned

model. Traditionally, this metric has been operationalized through the magnitude

of the model gradient. However, we utilize the expected Jenson-Shannon distance

between the prior and the posterior distribution as the metric for selecting the desired

state for our purposes. The model change metric for a trace ending in the state, 〈ϕ ′〉,

with the teacher’s acceptability label L is:

JJSD(〈ϕ ′〉,L) = JSD(P(ϕ) ‖ P(ϕ | 〈ϕ ′〉,L). (6.11)

Each of the utility functions JUS (Eq: 6.8), JH (Eq 6.10, or JJSD (Eq 6.11) can be used as

the utility functions to determine the most informative query that a learner should perform

(Eq 6.4, or to compute the expected utility of observing a demonstration performed by the

teacher (Eq 6.6).

6.3 Modeling Pedagogical Teaching Behavior

Finally, we discuss the learner’s model of the teacher’s pedagogical behavior. We assume that

a teacher who has access to the learner’s present belief and its mechanism for updating the

belief can select training demonstrations that are more instructive than simply demonstrating

task executions that satisfy the intended specification, independently of each other. We

model the teacher as Boltzmann optimal [80, 81, 23], where the teacher’s selection of the

training example is proportional to the power of the posterior probability of the learner’s

belief over the true (or the most aligned) task specification. The teacher’s demonstrations
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are modeled as a draw from a distribution described as follows:

P(〈ϕ ′〉 | ϕ∗) = P(ϕ∗ | 〈ϕ ′〉,1;P(ϕ))γ

∑〈ϕ ′〉∈{〈ϕ ′〉}sat P(ϕ∗ | 〈ϕ ′〉,1;P(ϕ))γ
. (6.12)

Here P(ϕ∗ | 〈ϕ ′〉,1;P(ϕ)) represents the posterior probability mass of the ground truth

formula given a task execution demonstrated by the teacher (thus acceptable) that ends

in the state 〈ϕ ′〉 of the reward machine M{ϕ}, and the prior belief P(ϕ). γ represents the

pedagogical selectivity of the teacher; {〈ϕ ′〉}sat is the set of states of M{ϕ} where the

formula ϕ∗ is satisfied. Note that the parameter γ determines the optimality of the teacher’s

selected state. Higher values of γ place a higher probability mass on the state that results

in the largest posterior probability of the true formula; in the limit γ → ∞, the teacher

always selects the best possible state. γ = 0 represents the condition where the teacher

independently selects any state where the ground truth formula is satisfied. γ < 0 models a

teacher that shows acceptable demonstrations, but their demonstrations are very similar to

the initial demonstrations shown, thus lacking in diversity.

We demonstrate the impact of the teacher’s pedagogical selectivity on the learning

curves and also the impact of an incorrect pedagogical model, where the learner either

underestimates or overestimates the teacher’s selectivity.

6.4 Simulation Experiments

Prior research has demonstrated the compatibility of reward machines with reinforcement

learning approaches to accomplish tasks with a long planning horizon [127, 128, 26].

However, prior work in learning for non-Markov tasks has relied on pre-determined tasks.

For our experiments, we evaluated the performance of our learning methods on a wide

variety of procedurally sampled ground truth task specifications based on the priors defined

in Section 4.2.1.

The environment, MX was based on a synthetic domain that allows for a variable number

of threats (signifying constraints) and waypoints (signifying sub-tasks). This domain allows

flexibility in terms of the number of propositions considered, the temporal structure of the
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specifications and ensures that the generated specifications are satisfiable within the context

of the environment. We believe that evaluating the learner’s performance over a wider

variety of ground truth formulas in the same domain is more valuable than evaluating the

performance in different domains with a few ground truth formulas in each.

The first experiment intended to compare the performance of various query selection

strategies within an active learning setting. Next, we evaluated the impact of the teacher’s

pedagogical selectivity when learning purely from demonstrations. We then evaluate the

relative performance of learning purely from demonstrations compared to a setting where

the learner is allowed to choose the learning modality at each iteration. Finally, we perform

experiments to model a scenario where the learner overestimates or underestimates the

teacher’s pedagogical selectivity.

6.4.1 Experiment Setting and Evaluation Metrics

Each simulation experiment modeled a virtual learner and a teacher. The teacher was

assumed to have access to the learner’s belief over task specification at any given time

and the belief update model, thus allowing it to predict what the updated belief would be

conditioned on the input provided by the teacher.

Each simulation experiment was assigned a set of conditions that had to be run for a

pre-determined number of replicates. In each of the replicates, a ground truth formula was

sampled from the prior over LTL formulas, P(ϕ). Additionally, a set of two (2) execution

traces were generated, D = {〈[𝛼]1,1〉,〈[𝛼]2,1〉}, that satisfied the ground truth formula.

This was then used to initialize the task-specific prior P(ϕ)0 = P(ϕ |D;P(ϕ)) that was then

used for all the online learning conditions for that replicate.

An online learning condition was defined by the learning modality schedule, the

pedagogical selectivity of the teacher, the learner’s estimate of the teacher’s pedagogical

selectivity, the criteria guiding the query selection strategy, and the modality selection. We

considered one of three learning modality schedules: for the fixed modality schedule, we

either used only active queries or only teacher-provided demonstrations, or we used an

adaptive modality schedule as defined in Section 6.2.1. For each condition, we maintained a

record of the belief distribution after each iteration; and the task execution trace along with
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the label assigned to it.

To evaluate the learning performance, we used the entropy of the belief distribution to

represent the (un)certainty of the learner and the similarity metric to the ground truth as a

measure of the accuracy of the learned specification. Given two formulas, ϕ1 and ϕ2, that

are conjunctive compositions of the clauses in sets 𝐶1 and 𝐶2 respectively, the similarity

metric is defined using an intersection-over-union:

L(ϕ1,ϕ2) =
|𝐶1∩𝐶2|
|𝐶1∪𝐶2|

. (6.13)

The similarity of a belief distribution P(ϕ)i with a ground truth formula ϕ∗ is:

L(P(ϕ)i) = EP(ϕ)i)JL(ϕ,ϕ∗)K. (6.14)

6.4.2 Comparison of Query Strategies for Active Learning

In the first experiment, we compared the relative performance of a fixed learning modality

schedule that only relies on assessments of queries generated by the learner. We utilized

the three query selection strategies described in Section 6.2.1. We first compare the relative

performance of each query selection strategy by comparing the similarity with the ground

truth specifications as additional trajectories are provided to the learner. The learning curves

comparing the similarity of the posterior distribution to the ground-truth value are depicted

in Figure 6-3a, and the entropy of the posterior distribution is depicted in Figure 6-3b. Note

that the variability within each query selection strategy (measured by the interquartile range)

is much larger than the variability between the median performance. Further, this indicates

that an active learning strategy can accurately infer the ground truth task specification as the

learner is allowed to generate a greater number of query executions whose acceptability is

labeled by the teacher.

As each replicate run used the same underlying ground truth formula and initial

demonstrations, we can directly compare the best and the worst performing condition.

Table 6.1 records when the similarity of each condition was equal to the best performance

for a given experimental run. Note that each condition was the best and the worst-performing
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(a) (b)

Figure 6-3: Statistics from the simulation experiments comparing a fixed learning modality
schedule with only active queries for three different query selection strategies. Figure 6-3a
depicts the median and the interquartile range of the similarity of the inferred distribution
with respect to the ground truth formula as a box plot. Figure 6-3b depicts the same for the
entropy of the inferred distribution. The underlying samples for these plots were generated
through 500 simulated runs with a shared ground truth formula across all conditions.

Uncertain Sampling Information Gain Model Change

Best performing 313 313 318

Worst performing 133 126 138

Table 6.1: Frequency as the best and the worst performing active learning query selection
strategy over the course of 500 simulated experiment runs.

for a similar number of experimental runs. These results indicate that all the query selection

strategies perform comparably.

Next, we investigate how the query selection strategies differ qualitatively. Recall from

Section 6.2.1, that each query selection strategy determines a state 〈ϕ ′〉∗ of the reward

machine that would be most informative towards refining the learner’s belief P(ϕ). To

determine if the similar performance results from the query selection strategies choosing

the same state, we identify the number of times the choice of the evaluation criteria would

have resulted in a different reward machine state. Thus, we identified the state based on

each of the query selection strategies for each experimental run at each iteration. With

500 simulated runs and nine distributions per condition for three conditions, this resulted

in 27,000 scenarios. Of these, we ignored the distributions that had already effectively

converged to a single formula. The results are tabulated in Table 6.2. Note that while

100



Uncertain Sampling Information Gain Model Change

Uncertainty Sampling 0 1181 242

Information Gain 0 1108

Model Change 0

Table 6.2: Mismatches between state selection based on the different query selection
strategies

Figure 6-4: The fraction of acceptable query executions generated by each of the query
selection strategies as a function of the number queries asked to the teacher.

different, Uncertainty Sampling and Model Change selection strategies are better aligned

with each other compared to Information Gain.

Finally, we evaluate whether the mismatches result in qualitatively different query

executions. For this, we record the number of acceptable and unacceptable task executions

generated as queries by the learner. This is indicative of whether a given query selection

strategy prefers confirming queries or falsifying queries. The fraction of acceptable queries

generated by each query selection strategy is depicted in Figure 6-4. We note that towards

the end of the learning curve, the Information Gain query selection strategy selects states

that result in a greater fraction of confirming demonstrations as compared to falsifying

demonstrations preferred by both Uncertainty Sampling and Model Change strategies.

This indicates that the Information Gain query selection strategy might be susceptible to

confirmation biases when faced with low entropy belief distributions.

The similar quantitative performance with a diverging qualitative behavior indicates
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that additional experiments are required to characterize the nature of the query executions

selected by each strategy and its impact on the asymptotic learning performance. Further

characterizing the confirming and falsifying nature of actively selected queries in other active

learning paradigms for robot learning is also an interesting area of future investigations.

6.4.3 Effect of Pedagogical Demonstrations

In the second experiment, we investigate the effect of providing pedagogical examples on

the learner’s learning curve. This experiment was also run with 500 randomly sampled

ground truth formulas and shared initial demonstrations between all the conditions. Each

condition utilized a pre-determined learning modality schedule; each had a different value

of the demonstrator’s pedagogical selectivity γ (Eq 6.12). We varied the selectivity from

generating demonstrations anchored to the initial demonstrations (γ < 0), all the way to

a perfectly optimal demonstrator (γ → ∞). The learning curves for the similarity and the

entropy of the belief distribution at each iteration are depicted in Figure 6-5.

(a) (b)

Figure 6-5: Statistics from the simulation experiments comparing a fixed learning modality
schedule with only demonstrations with varying levels of demonstrator pedagogical
selectivity. Figure 6-5a depicts the median and the interquartile range of the similarity
of the inferred distribution with respect to the ground truth formula as a box plot. Figure
6-5b depicts the same for the entropy of the inferred distribution. The underlying samples
for these plots were generated through 500 simulated runs with a shared ground truth
formula across all conditions. Note the poor learning performance when the teacher is not
pedagogical (γ < 0).

The similarity learning curve (Figure 6-5a) indicates that as the pedagogical selectivity
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of the demonstrator increases, the learner’s belief converges to the true distribution more

rapidly. Further, the smaller interquartile range suggests that pedagogical demonstrators can

teach a wide variety of ground truth specifications reliably. A final aspect to note is that the

median similarity values are lower than 1, the maximum possible value of the similarity

metric. This is explained by the fact that the formulas that encode an underconstrained

version of the ground-truth task specification cannot be fully eliminated from the belief in

the absence of falsifying demonstrations. The likelihood function that conforms to the size

principle, discussed in Chapter 4, increases the probability of the more constrained formulas

with more confirming examples, but falsifying demonstrations generated by active queries

can achieve a better convergence to the ground truth specification.

The learning curve of the entropy of the belief distribution at each iteration (Figure

6-5b) shows that allowing the learner to observe a greater number of demonstrations reduces

the uncertainty of the belief as indicated by the reducing entropy for any value of the

pedagogical selectivity. Specifically, the rapidly reducing uncertainty for an anchored

demonstrator indicates the issue with confirmation biases for an inductive learner. Here the

learner is very certain about an incorrect (overconstrained) task specification.

6.4.4 Comparison of Query Selection Strategies with Meta-Choice

In the third simulation experiment, we compare the effect of using different utility functions

described in Section 6.2.4. Here The learner first used the utility functions to assert a

meta-choice, i.e., the intelligent selection of the learning modality for the next iteration;

then, if the modality was acceptability assessment of the query execution, the learner used

the same utility function to determine the ideal query execution as described in Section

6.2.3. We tested each utility function with two different models for the teacher’s pedagogical

selectivity, first where the teacher is optimally pedagogical (γ → ∞), and second where the

teacher generates independent demonstrations γ = 0.

The similarity learning curves for each of the utility functions are depicted in Figure

6-6. We first note that each utility function except uncertainty sampling with an optimally

pedagogical teacher demonstrates convergence to the ground-truth specification in greater

than half the trials. Next, we note that the median value for uncertainty sampling with an
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optimally pedagogical teacher is just less than 1, the maximum possible similarity score.

Thus the learner’s belief places a high probability mass on the ground-truth formula but

still assigns a non-zero probability to competing candidate formulas. We also note that the

model change utility function demonstrates the largest deterioration in performance between

a pedagogical teacher and a non-pedagogical teacher. In contrast, uncertainty sampling

demonstrates the smallest performance deterioration. Finally, we note that using model

change as the utility function results in the fastest initial learning curve with an optimally

pedagogical teacher.

(a) Uncertainty Sampling (b) Information Gain (c) Model Change

Figure 6-6: Similarity learning curves for the different utility functions. Note that each
curve depicts the median and the error bars represent the inter-quartile range.

In order to explain the differences in the observed performance, we next examine the

meta-choices made by the learning agent. Figure 6-7 depicts the fraction of times the learner

chose to elicit a new demonstration from the teacher as a function of the iteration count. We

note that when learning from an optimally pedagogical teacher, the learner universally elicits

demonstrations more frequently than learning from a non-pedagogical teacher. Further, we

note that with a pedagogical teacher, the choice of information gain or model change as

the utility function results in the learner seeking more demonstrations in the early phase of

learning as compared to the case where uncertainty sampling is used as the utility function.

We note that this is also correlated with a steeper initial learning curve for model change

as information gain utility functions as compared to uncertainty sampling. Finally, we

note that uncertainty sampling with a pedagogical teacher resorts to a greater reliance on

demonstrations towards the latter phase of learning. Thus the learning curve with uncertainty

sampling resembles a learner that learns purely from demonstrations (Figure 6-5a).
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(a) Uncertainty Sampling (b) Information Gain (c) Model Change

Figure 6-7: Fraction of trials with demonstrations requested for different utility functions.

These experiments support the idea that pedagogical demonstrations are most useful

in the early learning phase to quickly collect a representative sample of acceptable task

executions. In contrast, actively generated queries are most useful to refine the specifications

by eliciting acceptability labels for executions that falsify a targeted subset of the support

of the belief distribution. These experiments also support the idea that while acceptable

demonstrations allow for faster learning initially, falsifying observations are necessary to

converge to the ground-truth task specification.

6.4.5 Effect of Pedagogical Selectivity with Meta-Choice

In the final set of simulation experiments, we examined the impact of noisy pedagogical

selectivity when the learner could assert a meta-choice. For this set of experiments, we

selected model change as the utility function to guide both query selection and the meta-

choice. Just as in the experiment on learning only from demonstrations described in Section

6.4.3, we varied the pedagogical selectivity to represent a teacher generating anchored

demonstrations γ < 0 to a teacher providing the optimal demonstrations γ → ∞.

The learning curves are depicted in Figure 6-8, just as in the case of learning purely from

demonstrations, decreasing the pedagogical selectivity results in deterioration of learning

performance. However, we note the contrast with Figure 6-5a–where the learning curves

converge to a value lower than 1–the ability to select the learning modality at each iteration

allows the learner to infer the correct specification in a majority of trials even from a teacher

providing anchored demonstrations (γ < 0).

To examine the cause for this, we also plot the fraction of trials in which the learner
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(a) Similarity (b) Entropy

Figure 6-8: Learning curves for intelligent modality selection with varying pedagogical
selectivity of the teacher. The plots represent the mean and the errorbars represent the
inter-quartile range from 500 runs.

Figure 6-9: Fraction of trials with demonstration requested with varying pedagogical
selectivity.

106



asked the teacher to provide a new demonstration at each iteration. These results are depicted

in Figure 6-9. As expected, the fraction of trials where the learner requested a demonstration

at each iteration increased as the pedagogical selectivity increased. We also note that the

qualitative trend of how frequently the learner requested demonstration is similar for all

values of pedagogical selectivity.

6.4.6 Key Findings

The key findings from the simulation experiments are:

• Active learning, i.e., learning from acceptability assessments of task executions

performed by the learner, can infer the ground-truth specification accurately given a

sufficient number of learning iterations.

• Learning purely from demonstration is sensitive to the pedagogical selectivity of the

teacher. The learner can leverage the diversity of the demonstrations to learn very

rapidly, even from a noisily pedagogical teacher; however, the learning performance

suffers when the teacher’s demonstrations are anchored (γ < 0).

• Allowing the learner to assert a meta-choice over the learning modality for the next

iteration can potentially overcome the limitations of a teacher who provides anchored

demonstrations.

• All the utility functions, namely uncertainty sampling, information gain, and model

change show very similar performance across a wide range of ground-truth formulas.

However we discovered that query executions entailed by uncertainty sampling, and

model change utility function are better aligned with each other than those generated

by information gain.

• When the learner is allowed to assert a meta-choice over the learning modality for

the next iteration, uncertainty sampling favors seeking demonstrations in the latter

phase of learning. In contrast, model change and information gain function favor

demonstrations in the earlier phase of learning. We observe an impact of that on the

slope of the learning curve and the asymptotic convergence of the learning protocols.
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(a) Setup (b) Task 1 (c) Task 2

Figure 6-10: Experimental Setup and desired configurations for the table-setting user study.

6.5 User Study

In order to evaluate the real-world performance of the active learning approach, we conducted

a user study that involved participants teaching a robot to set a dinner table in various

reference configurations.

Figure 6-10a depicts the experiment setup. During each task execution (whether

demonstrated by the participant or performed by the robot), the five objects were initially

placed on Table A, and subsequently arranged on Table B. In the first phase of the study, the

task (Task 1) involved arranging the objects into the configuration depicted in Figure 6-10b,

with demonstrations provided directly by participants. In the second phase, we modified the

study to be conducted online due to the restrictions on in-person studies imposed in light of

the COVID-19 pandemic, and participants remotely commanded the robot to provide the

demonstrations. The robot’s task execution and the experiment instructions were displayed

to the participants via video conferencing. In addition to Task 1, we also added a second task

(Task 2), wherein the dinner plate and bowl were to be placed on the table in the configuration

depicted in Figure 6-10c. Placing the fork and knife were optional, and placing the small

plate was not permitted.1

We instructed participants to move only a single object at a time while providing

demonstrations, and informed them that objects could not be picked up again once placed

on Table B. Participants were also instructed to provide an assessment after observing the

robot while it executed the task; a participant’s label was only recorded once the entire task

had been completed. For both the in-person and remote study protocols, the participant

1example video: ral2021.ajshah.info
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(a) Similarity (b) Entropy

Figure 6-11: Results from active learning user study.

initiated the robot’s belief with two demonstrations; beliefs were then refined using three

queries generated via our active learning models. Finally, the robot demonstrated the results

of its learning by performing three task executions observed by the participant.

The state space of the robot, X, was identical to the set of propositions required for

evaluating the task, 𝛼, and contained five Boolean propositions, each of which encoded

whether a particular object was successfully placed on the table. The robot’s action space,

A, comprised five actions (one for each object). Initiating an action triggered a sequence

of parameterized primitives programmed into the robot to locate, pick up, and place the

object on Table B. Based on the constraints provided to the participants and the robot’s

action space, the only way to successfully complete Task 1 was to ensure that the dinner

plate, small plate, and bowl were placed in that specific order (the fork and the knife could

be placed at any instant). There were multiple final acceptable configurations for Task 2;

in each, the dinner plate and bowl were placed in that partial order, while the fork and the

knife may or may not have been placed.

6.5.1 Results

We recruited 18 participants for the in-person phase of the study, but had to terminate the

protocol with three participants due to robot hardware failure. The results include data

collected from 15 participants (10 male, 5 female, median age: 26 years), seven of whom

reported prior experience with robots or automated systems. All participants were instructed
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to teach the robot to perform Task 1. For the remote phase, we recruited 12 participants

(8 male, 4 female, median age: 28 years); four participants reported prior experience with

robotics. We assigned six participants each to Task 1 and Task 2.

All participants were successfully able to teach the assigned task to the robot–i.e., the

policies learned by the robot did not result in an incorrect table setting during any of the test

executions. The learning curves for the robot are depicted in Figure 6-11.

Overall, the median similarity of the final belief with respect to the ground truth formula

was 0.83 95% CI : [0.73,0.94]. The median similarity was 0.87 95% CI : [0.73,0.94]

for Task 1; for Task 2, it was 0.78 95% CI : [0.59,0.99]. For Task 1, the posterior belief

distribution recovered the ground truth formula as the most likely LTL specification for 14

out of 21 participants, while the most likely specification differed from the ground truth

by a single conjunctive clause in four cases. Similarly, for Task 2, the posterior belief

distribution for two out of six participants recovered the ground truth formula as the most

likely LTL specification, while the most likely specification for two of them differed from

the ground truth formula by a single conjunctive clause. Our demonstration of the entire

learning pipeline on an embodied robot indicates the viability of deploying our active

learning framework for real-world applications.

6.6 Summary and Future Directions

In this chapter, we developed a Bayesian framework that integrates specification inference

and planning to allow the learner to actively refine its belief over the teacher’s intended task.

We developed decision-making models that allow the learner to first assert a meta-choice

over its next learning modality and determine the most informative task execution. We

further conducted a battery of simulation experiments over a wide range of ground-truth task

specifications to compare different learning modality schedules, utility functions for active

learning, and assessing the impact of the teacher’s pedagogical selectivity. In particular, we

demonstrated that an active learner could overcome the limitation of a teacher in providing

demonstrations that are not adequately diverse. Finally, we demonstrated our Bayesian

framework on the real-world task of setting a dinner table, where 18 participants successfully
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taught the robot to set the dinner table in the desired configuration.

Our work has demonstrated the viability of active learning approaches in learning non-

Markov task specifications; however, it also opens up an exciting set of questions involved in

learning from human teachers. A key question for asserting the meta-choice is the estimate

of the teacher’s pedagogical selectivity. The variance of selectivity across humans and

between different task or task environments for the same person is unknown. Prior research

has indicated that while the teacher’s pedagogical selectivity can be leveraged [23, 80], it is

also challenging to predict [81]. Further studies into human-robot pedagogy are necessary

to develop best practices for deploying our framework.

This work models programming the robot as manipulating the belief distribution over

tasks through interactions with the teacher. In our work, we have considered demonstrations

and acceptability assessments as modalities for interacting with the robot; many intuitive

modalities can be used. Developing computational models for grounding interactions

through various intuitive modalities into a belief over LTL formulas is an interesting area of

future research.
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Chapter 7

Conclusion

This dissertation lays the groundwork for a robotic apprentice that is an active learner.

However, an ideal robotic apprentice should improve continually after every task execution

or interaction with a human expert, recognize novel avenues for improvement, and succinctly

explain its understanding of the task to a human expert. This will require many future

algorithmic and empirical developments. Here, we highlight a few promising areas for

future research.

1. Aligning Mental Models of Abstraction:

Robots that develop hierarchical abstract task representations can later compose them

through simple rules to perform increasingly complex tasks. The ability to develop

useful abstractions is key to deploying robots in unseen, partially defined domains.

However, to ensure that the robots can learn from human teachers in these domains,

it is key that the robot’s abstractions are aligned with those used by human domain

experts.

Cognitive science research has a vast body of work characterizing human cognitive

biases and learning heuristics [130, 117]. Developing learning models for robots that

leverage human cognitive biases to achieve data efficiency is a promising avenue for

future work. Our work on learning temporal specifications from demonstrations is

an example of successfully leveraging temporal abstractions along with cognitively

inspired Bayesian learning. Leveraging tools such as natural language instructions
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[88, 51], augmented reality [85] are other examples of leveraging human-interpretable

abstractions to facilitate robot learning through expressive human feedback.

Closely related to this is the challenge of allowing a robot to accurately and compactly

summarizes its own representation for the user. More concretely, the robot should be

capable of answering questions like: ‘when do you consider the bowl to be placed

correctly?’ in the table-setting context. Our initial approach resulted in Bayes-TrEx

[20], a sampling-based approach to model transparency by example. Zhou and Booth

et al. [142] have also extended Bayes-TrEx to analyze robot behavior through the

development of RoCUS, a sampling-based approach to discover environments in

which motion planners generate trajectories that exhibit a pre-defined behavior.

2. Algorithms for Pedagogical Learning and Teaching:

Empowering task experts to deploy automation by programming the task rather than

the robot necessitates developing a diverse toolkit to train robotic apprentices. We can

only assess the utility of these approaches through well-designed user studies informed

by prior research into human-factors in addition to the technical contributions of this

dissertation. Future algorithmic developments towards sophisticated human-robot

interaction models will also open up new challenges in human factors research.

Our recent experiments on interactive robot training [113] have indicated the influence

of ground truth specifications, pedagogical selectivity of the teacher, and the specific

training modality on the relative performance different training protocols. Prior

research into cognitive models for representative sampling and pedagogical behavior

[124, 107, 108, 109] have indicated the existence of different behaviors while teaching

a task compared to simple performing it. Modeling these pedagogical cognitive priors

remains an open problem. Appropriate pedagogical priors will inform the design of

cognitive support systems for domain experts to better shape their teaching strategy

and lead to algorithms that learn faster from human teachers. Subsequently, robots

can also leverage these pedagogical priors to better explain their policies to human

teammates.
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3. Dynamic Multi-Agent Environments:

The ability to learn novel tasks through intuitive modalities, jointly construct useful

abstractions along with a human teammate, and then convey novel information back

to the human teammate are critical enabling technologies for agile robots of the future.

However, many real-world environments are dynamic, including multiple decision-

making actors, and have pre-defined regulations for operations, such as public roads or

airspace systems worldwide. There are two key challenges in dynamic environments:

first, the expert demonstrator cannot always guarantee the correct execution of tasks

due to the non-deterministic nature of the environment and the presence of other

decision-making agents; second, the changes in the task state may not be causally

linked to the actions of the robot. The ability to rapidly learn and execute novel tasks

in multi-agent dynamic environments will be crucial to widespread robot deployment

and adoption.

7.1 Summary of Contributions

In this dissertation, we developed a novel Bayesian framework for learning complex non-

Markov tasks through interactions with a human teacher through intuitive modalities. We

demonstrated the utility of this framework in the automated evaluation of task executions,

decision-making under epistemic uncertainty concerning the task specification, and active

learning setting for rapidly learning new tasks through interactions. The contributions of

this dissertation are:

1. We developed a Bayesian model for inferring template-based LTL specifications from

labeled task executions. This involved developing structured priors and approximate

likelihood models to perform sampling-based inference over a hypothesis space of

LTL formulas. Our approach can infer LTL specifications inductively, i.e., from solely

positive examples and from both positive and negative examples.

2. We proposed planning with uncertain specifications (PUnS), a novel formulation that

admits a belief distribution over candidate task specifications, and yields a policy
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that attempts to satisfy a maximal subset of the belief distribution simultaneously.

We formalize this by proposing four evaluation criteria that define the semantics of

satisfying a belief over logical formulas. We further demonstrate the trade-off between

the flexibility of task execution and risk-aversion.

3. We demonstrated that there exists an equivalent MDP encoding of a PUnS problem.

We propose computational models to compile any PUnS problem into an equivalent

MDP by first constructing a reward machine that captures the structure of the belief

distribution and then concatenating it with the environment MDP.

4. We propose an interactive online Bayesian framework that combines specification

inference and planning to enable an active learning agent to refine its beliefs by

selecting the best learning modality and identify an informative task execution to learn

from.

5. We demonstrate that allowing the learner to assert a meta-choice over the learning

modality allows it to overcome the limitation of a teacher in providing diverse and

representative training demonstrations.
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