
Finding Significant Fourier Transform Coefficients
Deterministically and Locally

Adi Akavia∗

November 20, 2008†

Abstract

Computing the Fourier transform is a basic building block used in numerous applications. For data
intensive applications, even the O(N logN) running time of the Fast Fourier Transform (FFT) algo-
rithm may be too slow, and sub-linear running time is necessary. Clearly, outputting the entire Fourier
transform in sub-linear time is infeasible, nevertheless, in many applications it suffices to find only the
τ-significant Fourier transform coefficients, that is, the Fourier coefficients whose magnitude is at least
τ-fraction (say, 1%) of the energy (i.e., the sum of squared Fourier coefficients). We call algorithms
achieving the latter SFT algorithms.

In this work we present a deterministic algorithm that finds the τ-significant Fourier coefficients of
functions f over any finite abelian group G in time polynomial in log |G|, 1/τ and L1( f̂ ) (for L1( f̂ )
denoting the sum of absolute values of the Fourier coefficients of f ). Our algorithm is robust to random
noise.

Our algorithm is the first deterministic and efficient (i.e., polynomial in log |G|) SFT algorithm to
handle functions over any finite abelian groups, as well as the first such algorithm to handle functions
over ZN that are neither compressible nor Fourier-sparse. Our analysis is the first to show robustness to
noise in the context of deterministic SFT algorithms.

Using our SFT algorithm we obtain (1) deterministic (universal and explicit) algorithms for sparse
Fourier approximation, compressed sensing and sketching; (2) an algorithm solving the Hidden Number
Problem with advice, with cryptographic bit security implications; and (3) an efficient decoding algo-
rithm in the random noise model for polynomial rate variants of Homomorphism codes and any other
concentrated & recoverable codes.
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1 Introduction

Computing the Fourier transform is a basic building block used in numerous algorithms arising in the context
of a wide variety of applications. The best known algorithm for computing the entire Fourier transform is
the Fast Fourier Transform (FFT) algorithm [14] that computes the Fourier transform in time O(N logN) for
N the input size.

For data intensive applications, even the running time of the FFT algorithm may be too slow, and sub-
linear running time is necessary. Clearly, achieving sub-linear running time is infeasible when computing
the entire Fourier transform, because the output itself is of length N. Nevertheless, in many applications
it is not necessary to compute the entire Fourier transform; instead it suffices to find only the τ-significant
Fourier transform coefficients, that is, the indices and approximate values of the Fourier coefficients whose
magnitude is at least τ-fraction (say, 1%) of the sum of squared Fourier coefficients.

In a sequence of works [4, 23, 24, 27, 34–36, 38, 39] starting with the seminal work of Goldreich and
Levin [27], it was shown that finding the significant Fourier transform coefficients (aka, SFT algorithms)
can be done in time polynomial in logN and 1/τ, that is, much much faster than computing the entire Fourier
transform.1 We use the term efficient to address SFT algorithms with running time polynomial in logN and
1/τ.

The above algorithms differ on the domain of the considered input functions (varying from the boolean
cube Fn

2 in [27] to any finite abelian group given by its generators and their orders in [4]), as well as on
whether they are randomized algorithms [4, 23, 24, 27, 39] or deterministic ones [34–36, 38]. Domains
addressed by the deterministic algorithms are direct product of groups Zn

k for small modulus k = poly(n)
in [38] and ZN in [34–36].

The deterministic algorithms [34–36, 38] are universal, that is, they read the same set of entries in
all input functions over the same domain G (provided the same input parameters are given). In addition,
they are explicit, that is, they choose the set of read entries efficiently and deterministically. In contrast, the
randomized algorithms [4,23,24,27,39] are not only non-explicit but also non-universal, that is, they choose
fresh entries to be read for each given input function.

Being universal necessitates some sort of restriction on the input function: It is impossible to find the
significant Fourier coefficients of all functions when reading the same few fixed set of entries, because for
any function f , changing the few read values to zero has very little affect on the Fourier transform, and yet,
clearly the algorithm cannot find the significant Fourier coefficients from reading only those zero values.
This issue is addressed in [34–36, 38] by giving efficient algorithms only for functions f s.t.:

• L1( f̂ ) ≤ poly logN for L1( f̂ ) = ∑α

∣∣∣ f̂ (α)
∣∣∣ the sum of Fourier coefficient of the input function f and

N the domain size in [38].

• f is p-compressible for p≥ 1+Ω(1), i.e., ∀b = 1, . . . ,N the b-th largest Fourier coefficient of f is of
magnitude at most O(b−p), in [34, 35].

• f is m-Fourier sparse for m≤ poly logN, i.e., f has at most m non-zero Fourier coefficients, in [36].

1We remark that [39] only implicitly gives an SFT algorithm, whereas explicitly it addresses interpolation of sparse polynomials.
The interpolation algorithm requires evaluating polynomials on increasing powers of 2, resulting with an (implicit) SFT algorithm
which is applicable to functions over groups ZN only for N a power of 2 (or direct products of such groups). Alon-Mansour [5] de-
randomized the interpolation algorithm [39] for the case of polynomials over ZN for prime N. This does not result in a deterministic
SFT algorithm as it holds for prime N rather than powers of 2. We suspect nevertheless that [5] could be extended to give a
deterministic SFT algorithm for functions over ZN where N is a power of 2.
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We point out that the best (i.e., weakest) of the above restrictions is the first one (when we assume w.l.o.g.

that f is normalized to have ∑α

∣∣∣ f̂ (α)
∣∣∣2 = 1). In general, [34–36, 38] achieve the following complexity in

terms of L1( f̂ ), p and m: running time polynomial in logN, 1/τ and L1( f̂ ) in [38]; running time polynomial
in logN and (1/τ)(p+1)/(p−1) in [34, 35]; and running time polynomial in logN and m in [36].

We use the term local to address algorithms with running time polynomial in logN, 1/τ and L1( f̂ ). The
algorithm of [38] is local, whereas the algorithms of [34–36] are not local.

1.1 New Results

Our main result in this paper is a deterministic, local and robust SFT algorithm for functions over any finite
abelian group G.

Main result: Deterministic local SFT algorithm. There is a deterministic (universal and
explicit) algorithm that, given any finite abelian group G (by its generators and their orders), a
significance parameter τ ∈ (0,1], a bound t > 0, and oracle access to a complex-valued function
f : G→ C s.t. L1( f̂ )≤ t, outputs all τ-significant Fourier coefficients of f in running time and
query complexity polynomial in log |G|, 1/τ and t.

In particular for t = L1( f̂ ) the complexity of our algorithm is polynomial in log |G|, 1/τ and L1( f̂ ).
Robustness. Our SFT algorithm succeeds also in the presence of random noise. That is, with probability

at least 0.99 over the noise, the algorithm outputs the significant Fourier coefficients of f even when given
oracle access only to a corrupted version f ′= f +η for η random noise of parameter O(τ) sufficiently small;
where we say that η random noise of parameter ε if entries of η are drawn independently at random from
distributions of expected absolute values at most ε. We remark that clearly the SFT algorithm also handles
adversarial noise s.t. L1(η̂)≤ t.2

Our result improves on other deterministic SFT algorithms [34–36, 38] in giving:

1. The first efficient deterministic SFT algorithm for functions over arbitrary finite abelian groups G. In
comparison, other deterministic algorithms apply to functions over Zn

k for small modulus k = poly(n)
[38], or over ZN [34–36] where the latter is further restricted to handle only compressible or Fourier
sparse functions.

Handling functions over any finite abelian group is motivated by the wide range of domains arising in
applications, such as: 1-dimensional functions for audio processing, 2- and 3-dimensional functions
for image and video processing and multi-dimensional functions for processing feature spaces arising
in machine learning applications, i.e., domains ZN1× . . .×ZNk with k = 1,2,3 and large k.

2. The first local deterministic SFT algorithm for functions over ZN that handles any function f in
running time polynomial in logN, 1/τ and L1( f̂ ). In particular, our algorithm efficiently handles the
class of all functions f s.t. L1( f̂ ) ≤ poly logN. This class of functions is strictly larger than the
previously handled functions, as L1( f̂ ) = O(1) for the (1+Ω(1))-compressible functions in [34, 35],

2Looking ahead, in Section 8 we present the Robust SFT algorithm that handles adversarial noise η s.t. ‖η‖2
2 = O(τ) in query

complexity polynomial in log |G|, 1/τ and L1( f̂ ), and in running time sub-linear in the domain size.
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and L1( f̂ ) ≤ poly logN for the poly logN-Fourier sparse functions in [36] (where we assume w.l.o.g

that functions are normalized to have unit energy ∑α

∣∣∣ f̂ (α)
∣∣∣2 = 1).3

Handling this wider class of functions is motivated both by the complexity theoretic goal of deter-
mining the limits of de-randomization, as well as by natural families of functions arising in data
intensive applications having L1( f̂ ) = poly(log |G|), e.g., poly-log depth decision trees and decision
lists (c.f. [38]).

3. The first analysis showing robustness to noise in the context of universal SFT algorithms.

We point out that when it comes to handling noise there is a vast difference between randomized and
universal algorithms: For the randomized algorithms [4, 23, 24, 27, 39], being robust to noise (even
adversarial noise) is fairly straightforward: when run with parameter τ′ = (τ− ε) instead of τ, the
randomized algorithms find all the significant Fourier coefficients of f even when given access only
to its corrupted version f ′ = f +η s.t. ‖η‖2

2 ≤ ε. In contrast, for the universal algorithms [34–36, 38]
even random noise is out of scope, as the corrupted function f ′ = f + η typically has very large
L1( f̂ ′)≈

√
N even if L1( f̂ ) was bounded, and f ′ is typically not Fourier sparse even if f was Fourier

sparse.

Using our SFT algorithm we obtain: (1) an algorithm for decoding polynomial rate variants of homo-
morphism and concentrated & recoverable codes; (2) an algorithm solving the Hidden Number Problems
(HNP) with advice with cryptographic bit security implications; and (3) deterministic algorithms for sparse
approximation, compressed sensing and sketching; details follow. The determinism/universality of our SFT
algorithm is essential for all those results.

1.1.1 New: Decoding polynomial rate concentrated & recoverable codes

An error correcting code C is a collection of codewords Cm encoding messages m in a redundant way to allow
decoding, that is, recovery of the message even in the presence of noise. Homomorphism codes (G,C)-Hom
encode messages m in a finite abelian group G by the truth table of the character χm : G→C corresponding
to m (where the characters are all homomorphisms from G to the complex unit sphere, and they correspond
to elements m ∈ G according to an isomorphism between G and the group of its characters). For example,
the well know Hadamard code is the homomorphism code over the boolean cube G = Fn

2. In homomorphism
codes (G,C)-Hom, the codewords length is |G| which is exponential in the information rate log |G| (i.e., in
the messages binary representation length).

We ask whether there are restrictions of the codewords of (G,C)-Hom to a small subset of their entries
yielding new efficiently decodable codes of codewords length polynomial in the information rate. For ho-
momorphism codes over some small groups such restrictions are known; for example, the Sipser-Spielman
codes [44] can be viewed as a restriction of the Hadamard codes achieving linear codewords length and
efficient decoding in the adversarial noise model. In contrast, for homomorphism codes over large groups,
e.g., G = ZN , such restrictions are not known.

In this paper we show that for every homomorphism code (G,C)-Hom with G a finite abelian group,
there is an explicit subset S of the entries of its codewords such that restricting all codewords to the entries in
S yields a new code that achieves: (1) codewords length polynomial in the information rate log |G|, and (2)

3This is without loss of generality because an “approximate normalization” achieving ‖ f‖2
2 ≈ 1 can be computed deterministi-

cally by dividing each value of f by an estimate 1
|A| ∑x∈A | f (x)|2 for A a small biased set in the domain, and the discussed algorithms

can be made oblivious to the distinction between exact vs. approximate normalization.
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efficient decoding in the random noise model. Furthermore, we show that such restrictions exist for all codes
in the class of concentrated and recoverable codes. (The class of concentrated and recoverable codes was
introduced in [4] and includes in particular all homomorphism code (G,C)-Hom as well as boolean-ization
of homomorphism codes called Multiplication Codes [4].)

Our SFT algorithm is a central component in our decoding algorithm for these new polynomial encoding
length codes. The universality, determinism, robustness and locality of our SFT algorithm is crucial for this
result: Universality is essential for the construction of the new codes, specifically, for defining the restriction
S. Determinism enables us to obtain explicit code construction. Robustness allows us to decode in the
presence of random noise. Locality allows us to decode not only homomorphism codes (where codewords
have a constant sum of Fourier coefficients L1(Ĉ) = 1) but also any concentrated and recoverable codes
(where the sum of Fourier coefficients is only required to be polynomial in log |G|).

Related prior works. Local testing of homomorphism codes with constant query complexity was given
in [7]. Local list decoding of homomorphism codes in poly-logarithmic query and time complexity were
given for the Hadamard codes [27], for homomorphism codes (G,C)-Hom [4], and for arbitrary homo-
morphism codes [20, 28]. We remark that [4] and [20] differ also in the considered distance model: The
algorithm of [4] decodes from noise approaching the code `2

2-distance. In particular, for codes accepting
values on the complex unit sphere –as are homomorphism codes (G,C)-Hom– this implies decoding from
noise approaching normalized Hamming distance half. The algorithm of [20] decode from noise approach-
ing the code normalized Hamming distance.4

1.1.2 New: Solving Hidden Number Problem with advice, and bit security implications

The Hidden Number Problem was formalized by Boneh and Venkatesan [8] in the context of presenting
the best known result on the bit security of the Diffie-Hellman function. A relaxation of this problem to
a Hidden Number Problem with advice was subsequently formalized in the context of a security proof for
cryptographic functions such as Okamoto conference key sharing scheme and a modified ElGamal’s public
key encryption scheme [9].

In the Hidden Number Problem (HNP) with advice, for p a large prime and g a generator of the multi-
plicative group Z∗p, the goal is to find a hidden number s ∈ Z∗p when given a short advice string that depends
only on p and g and oracle access to the function Ps(a) = MSBk(s ·ga mod p) mapping a ∈ {1, . . . , p} to the
k most significant bits in the binary representation of s ·ga mod p.

Boneh and Venkatesan [9] gave an algorithm solving the HNP with advice for any k ≥ O(log log p) in
running time polynomial in log p. They then use this algorithm to show that computing the value of the
k most significant bits is as hard as breaking the scheme for the Okamoto conference key sharing scheme
and for a modified ElGamal’s public key encryption scheme (where “as hard” here means that there is a
poly log p time reduction from the latter to the former). This is interpreted as evidence for the security of
these k bits (assuming the underlying functions are secure).

In this paper, we give an algorithm solving the HNP with advice for any k≥ 1, and even in the presence
of random noise. This improves on prior works [9] in (1) handling k ≥ 1 rather than k ≥ O(log log p), and
(2) being robust to random noise.

We then use this improved algorithm to strengthen the security results of [9] for the Okamoto con-
ference key sharing scheme and their variant of ElGamal’s public key encryption scheme: We show that
non-uniformly computing even the single most significant bit of the aforementioned cryptographic func-

4For C a code with codewords of length n, its `2
2-distance is minC,C′∈C ‖C −C′‖2

2, its normalized Hamming distance is
minC,C′∈C

1
n |{ i ∈ [n] |C(i) 6= C′(i)}|.
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tions is as hard as breaking these schemes (where “non-uniformly” here means in the presence of advice
depending only on g and p).

Our algorithm for HNP with advice builds on our SFT algorithm. The universality, locality and robust-
ness of our SFT algorithm is crucial for this application: Universality allows us to use a single advice for all
inputs (with fixed g, p). Locality allows us to capture the MSB function which is neither compressible nor
Fourier sparse and yet has bounded L1(M̂SB) = poly log p. Tobustness allows us to work with noisy oracles
to Ps().

1.1.3 New: Deterministic sparse approximation, compressed sensing & sketching algorithms

We present deterministic (universal and explicit) algorithms for sparse approximation, compressed sensing
and sketching achieving:

1. The first deterministic algorithm for finding a near optimal m-sparse Fourier approximation for func-
tions over ZN (and any finite abelian G) in time polynomial in logN, m/ε and L1( f̂ ) (for ε the approx-
imation parameter). The input to the algorithm is N, m, ε, L1( f̂ ) and oracle access to f .

In comparison, other sparse Fourier approximation algorithms are either randomized [4,23,24,27,39];
or deterministic but restricted to either functions over Zn

k for k = poly(n) [38], or to compressible
functions over ZN [34, 35], or to Fourier sparse functions over ZN [36].

2. A deterministic compressed sensing and sketching algorithms for vectors x ∈ RN with number of
linear measurements and recovery time polynomial in logN, m/ε and L1(x) = ∑

N
i=1 |xi| (for m the

number of non-zero terms in the recovered representation and ε the approximation parameter).

Similar performance can be derived from the prior deterministic algorithms [5, 38] when identifying
the input with sparse Fourier representation [38] or with coefficients vector of a sparse polynomial [5].

In comparison, other compressed sensing and sketching algorithms either rely on a randomized (non-
universal) choice of measurements [4, 10, 13, 15, 17, 21, 23, 24, 39]; or are universal but non-explicit
[6, 11, 16, 18, 25, 26, 33, 42]; or are deterministic but with a number of measurements and a recovery
time greater than any polynomial in logN [19, 29, 32] (and further restricted to handle only to sparse
inputs [32]); or are deterministic and efficient but restricted only to compressible inputs [16, 34, 35],
sparse inputs [36], or to specific input functions (e.g., “bucket histograms”) [22]. Our algorithm falls
short of some of the aforementioned algorithms in having polynomial rather than linear dependence
on m.5

Robustness. Our results above hold even if the oracle to f or the linear measurements of x are corrupted
by noise η which is either (1) random noise of parameter O(ε/m), or (2) adversarial noise of bounded L1
norm: L1(η̂)≤ L1( f̂ ) for the sparse Fourier approximation algorithm, and L1(η)≤ L1(x) for the compressed
sensing and sketching algorithm. In the random noise case, the algorithm succeeds with 0.99 probability
over the noise. Furthermore, we present an extension of the above algorithms to handle adversarial noise η

s.t. ‖η‖2
2≤O(ε/m) in query complexity polynomial in logN, m/ε and L1( f̂ ), and in running time sub-linear

in the domain size N.
5A few remarks. Compressed sensing algorithms are implicit in [4, 5, 23, 24, 38, 39] as they preceded the introduction of the

compressed sensing paradigm [10, 21]. The algorithms [5, 38, 39] are restricted to input lengths N that are powers of 2 [38, 39]
or primes [5]; nevertheless, they can handle any input length N by padding the input with zeros to reach the nearest appropriate
length N′. [5] focus on sparse input polynomials; nevertheless inspecting their algorithm shows it also handles non-sparse inputs
with complexity depending on their L1 norm.
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In comparison prior works handling comparable amounts of noise have running time polynomial in
the domain size N (rather than in logN) [10, 17]. Prior works with sub-linear running time address only
limited amounts of noise: noise flipping O(1/ logN) fraction of the read entries [17], noise η s.t. L1(η) ≤
O(1/ logm) [25], no noise [5, 38].6

1.1.4 New Techniques

Our deterministic SFT algorithm builds on the randomized algorithm of [4] while (1) using a new set of read
entries, and (2) providing a new analysis relying on combinatorial conditions rather than on probabilistic
arguments (a preliminary version of our new analysis appears in the author’s dissertation [2]).

To define the set of read entries we introduce a new combinatorial property –small bias on intervals–
which is a strict generalization of small biased sets to sets that fool uniform distributions on a restricted
support. We then construct the set of read entries from sets that are small biased on intervals of sizes 2` for
` = 1, . . . ,b(logN)c. We prove that our set is universal for all input functions with bounded L1( f̂ ) relying on
Fourier analysis of the constructed set. This Fourier analysis does not extend to handling functions corrupted
by random noise due to their large L1 values. Instead we prove universality for noisy functions by showing
the algorithm behaves similarly on the noisy and non-noisy functions.

We remark that the definition of small bias on intervals may be useful beyond this work. In comparison,
other deterministic SFT or compressed sensing algorithms rely on combinatorial properties such as small
biased sets [38], K-majority k-strongly selective sets [34,35], Restricted Isometry Property (RIP) [12,19,29],
and extractor graphs [32].

An additional contribution of this work is in introducing connections between deterministic SFT algo-
rithms to solving the Hidden Number Problem with advice and to defining and decoding polynomial rate
variants of homomorphism codes and concentrated & recoverable codes.

Paper Organization

The rest of this paper is organized as follows. Some preliminaries are given in section 2. Our SFT algorithm
for functions over ZN and its analysis are presented in section 3; see section 4 for the case of functions over
arbitrary finite abelian groups. Our results in error correcting codes, in cryptographic bit security, and in
sparse approximation/compressed sending/sketching appear in sections 5-7. The extension of our algorithm
to handling adversarial noise is outlined in section 8.

2 Preliminaries

In this section we summarize some preliminary terminology, notations and theorems.

Inner product, norms, convolution. The inner product of complex valued functions f ,g over a domain G

is 〈 f ,g〉 de f
= 1
|G| ∑x∈G f (x)g(x). We denote the normalized `2 norm and the `∞ norm of f by ‖ f‖2

de f
=
√
〈 f , f 〉

and ‖ f‖∞

de f
= max{| f (x)| |x ∈ G}, and denote the un-normalized L1-norm by L1( f ) = ∑x∈G | f (x)|. The

convolution of f and g is the function f ∗g : G→ C defined by f ∗g(x)
de f
= 1
|G| ∑y∈G f (y)g(x− y).

6We remark that in some prior works a weaker notion of noise was considered, where an input is called “noisy” if it is not
sparse. The notion considered here is stronger: we address non-sparse inputs with the additional noise incurred by inaccurate
measurements.
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Characters and Fourier transform. We denote by ZN
de f
= Z/NZ the additive group of integers modulo

N. The characters of ZN are the functions {χα : ZN → C}
α∈ZN

defined by χα(x)
de f
= ωαx

N for ωN = e2πi/N a
complex N-th root of unity. For arbitrary finite abelian groups G, the characters are the set of all homomor-
phism χ : G→C from G into the complex unit sphere. The Fourier transform of a complex valued function

f over G is the function f̂ : G→ C defined by f̂ (α)
de f
= 〈 f ,χα〉. A few useful properties: Parseval Identity

says that ‖ f‖2
2 = ∑α

∣∣∣ f̂ (α)
∣∣∣2. By the convolution-multiplication duality, f̂ ∗g(α) = f̂ (α) · f̂ (α). The Fourier

coefficients for the function g = f ·χ−α0 are ĝ(α) = f̂ (α−α0) (where subtraction is modulo N).
Significant Fourier coefficients. For any α ∈ ZN , valα ∈ C and τ,ε ∈ [0,1], we say that α is a τ-significant

Fourier coefficient iff
∣∣∣ f̂ (α)

∣∣∣2≥ τ‖ f‖2
2, and we say that valα is an ε-approximation for f̂ (α) iff

∣∣∣valα− f̂ (α)
∣∣∣<

ε. We denote the set of τ-significant Fourier coefficients of f by Heavyτ( f ).

Small biased sets [41]. We say that a set A⊆ ZN is γ-biased in ZN if |Ex∈A[χα(x)]| ≤ γ for every non trivial
character χα of the group ZN , α 6= 0.

Fact 1 ( [1, 37, 43]). There exists a deterministic algorithm that, given any integer N > 0 and real γ > 0,
outputs a set A⊆ [0..N−1] that is γ-biased in ZN . The size |A| and the running time are poly(logN,1/γ).

New definition: (γ, I)-bias in G. For any abelian group G and subsets B, I ⊆G, we say that B is (γ, I)-biased
in G if for every character χ of the group G, |Ex∈B∩I[χ(x)]−Ex∈I[χ(x)]| ≤ γ.

Fact 2 ( [3]). There exists a deterministic algorithm that, given any integers 0 < M < N and real γ > 0, out-
puts a set B⊆ [0..M] that is (γ, [0..M])-biased in ZN . The size |B| and the running time are poly(logN,1/γ).

Remark. The construction of [3] is simple given Fact 1, as [3] show that any γ′-small biased sets in ZM for
sufficiently small γ′ = poly(γ,1/ logN) is (γ, [0..M])-biased in ZN . Their proof is the main novelty in [3].

Tail inequality. Chernoff/Hoeffding theorem bounds the deviation of a sum of independent random vari-
ables from its expectation:

Theorem 3 (Chernoff/Hoeffding Bound [30]). Let X1, . . . ,Xt be independent random variables of expecta-
tions µ1, . . . ,µy and bounded values |Xi| ≤M. Then, ∀η > 0, Pr[

∣∣1
t ∑

t
i=1 Xi− 1

t ∑
t
i=1 µi

∣∣≥η]≤ 2 ·exp
(
−2tη2

M2

)
.

Characters average over intervals. Denote by St(α) = 1
t ∑

t−1
x=0 χα(x) the average value of the character χα

of ZN over an interval [1..t], t < N. Then St(α) decrease fast with the growth of α (c.f.proof in [4]):

Proposition 4. ∀α ∈ ZN , |St(α)|<
√

2
3

(
N/t

abs(α)

)
for abs(α) = min{α,N−α}.

3 Finding Significant Fourier Coefficients Deterministically and Locally

In this section we present our algorithm for finding significant Fourier coefficients and its analysis. We focus
here on the case of functions over ZN ; see section 4 for the case of arbitrary finite abelian groups G.

Our algorithm is composed of two parts: (1) Queries generating part, where a set of entries S =
S(G,τ, t) ⊆ G is chosen, given G, τ and t, and (2) Fixed queries part, where the significant Fourier coef-
ficients of a function f : G→C s.t. L1( f̂ )≤ t are found, given G, τ and the restriction to S of f (or are found
with high probability given the restriction to S of f ′ a corruption of f by random noise).

7



3.1 Queries Generating

Our queries generating algorithm constructs the set of entries S using sets that are small biased on intervals
[0..2`] for ` = 0, . . . , logN (c.f. Fact 2 and the preceding definition in section 2):

Algorithm 5. Queries Generating. Given any positive integer N and positive reals τ and t, output a set
S =

⋃b(logN)c
`=1 (A−B`) for A,B1, . . . ,Bb(logN)c each of size polynomial in logN and 1/γ for γ = O(τ/t2(1 +

logN)) sufficiently small s.t.

• A is γ-biased in ZN

• B` is (γ, [0..2`])-biased in ZN for ` = 1, . . . ,b(logN)c

The sets A,B1, . . . ,Nb(logN)c are constructed deterministically in time polynomial in logN and 1/γ using the
algorithms guaranteed in Facts 1-2, section 2. We remark that A−B` is the difference set {a−b |a ∈ A,b ∈ B`}.

Remark 6. To obtain a universal (albeit, non explicit) SFT algorithm it suffices to give a randomized al-
gorithm generating a set of queries S =

⋃b(logN)c
`=1 (A−B`) for A,B1, . . . ,Bb(logN)c satisfying the properties

in Algorithm 5. A randomized algorithm that outputs such a set S with constant success probability is the
algorithm that chooses sets A⊆ ZN and B` ⊆ [0..2`] each of size O((logN)(log logN)/γ2) uniformly at ran-
dom, and outputs S = ∪b(logN)c

`=1 (A−B`). The size of the resulting set is |S| = O((logN)7 · (t/τ)4); and in
particular, |S| = O((log7 N)/τ4) for compressible functions (as for such functions t = L1( f̂ ) is a constant).
Verifying that a set S satisfies the properties from Algorithm 5 can be done in quasi-linear time O(|S| ·N).

3.2 Fixed Queries SFT

We give an overview of the fixed queries (FQ-SFT) part of our algorithm. At a high level, the FQ-SFT is a
binary search algorithm that repeatedly:

1. Partitions the set of potentially significant Fourier coefficients into two halves.

2. Tests each half to decide if it (potentially) contains a significant Fourier coefficient. This is done
by estimating whether the sum of squared Fourier coefficients in each half exceeds the significance
threshold τ.

3. Continues recursively on any half found to (potentially) contain significant Fourier coefficients.

At each step of this search, the set of potentially significant Fourier coefficients is maintained as a col-
lection J of intervals: At the first step of the search, all Fourier coefficients are potentially significant, so
J contains the single interval J = [1..N]. At each following search step, every interval J ∈ J is partitioned
into two sub-intervals J1 and J2 containing the lower and upper halves of J respectively, and the set J is
updated to hold only the sub-intervals that pass the test, i.e., those that (potentially) contain a significant
Fourier coefficient. After logN steps this search terminates with a collection J of length one intervals re-
vealing the frequencies of the significant Fourier coefficients. For all frequencies α of the significant Fourier
coefficients, we then compute as an O(τ)-approximation for f̂ (α) the value valα = 1

|A| ∑x∈A−y f (x)χα(x) for

some arbitrary y ∈ ∪b(logN)c
`=1 B`; to simplify notations in the following we assume w.l.o.g. that y = 0.

The heart of the algorithm is the test deciding which intervals potentially contain a significant Fourier
coefficient (aka, distinguishing procedure). The distinguishing procedure we present, given an interval

8



J, answers YES if its Fourier weight weight(J) = ∑α∈J

∣∣∣ f̂ (α)
∣∣∣2 exceed the significance threshold τ, and

answers NO if the Fourier weight of a slightly larger interval J′ ⊇ J is less than τ/2. This is achieved by
estimating the `2 norm (i.e., sum of squared Fourier coefficients) of a filtered version of the input function
f , when using a filter h that passes Fourier coefficients in J and decays fast outside of J.

The filters h that we use for depth ` of the search are the (normalized) periodic square function of support
size 2` or Fourier domain translations of this function:

h`,c(y) =


N
2` ·χ−c(y) y ∈ [0..2`]

0 otherwise

The filter h = h`,c passes all frequencies that lie within the length N/2` interval J centered around c, and
decays fast outside of J. The filtered version of f is f ∗ h, and we estimate its `2 norm ‖ f ∗ h‖2

2 by the
estimator:

esth,A,B`( f ) =
1
|A| ∑x∈A

(
1
|B`| ∑

y∈B`

χ−c(y) f (x− y)

)2

for A,B1, . . . ,B` ⊆ ZN as specified in the Queries Generating Algorithm 5.
A pseudo-code of the FQ-SFT algorithm follows; we denote by {a,b} the interval [a..b] and by Candidate`

the collection J as reached at search depth `.

Algorithm 7. FQ-SFT Algorithm
Input: N ∈ N, τ ∈ (0,1], A,B1, . . . ,BlogN ⊆ ZN and {(x, f (x))}x∈S for S = A−

⋃logN
`=1 B`

Output: L⊆ ZN

Steps:

1. Candidate0←{{0,N}}, ∀` = 1, . . . , logN, Candidate` = φ

2. For ` = 0, . . . , log2 N−1

(a) For each {a′,b′} ∈Candidate`

For each {a,b} ∈
{{

a′, a′+b′
2

}
,
{

a′+b′
2 +1,b′

}}
i. Run Distinguishing Algorithm 8 on input {a,b}, τ‖ f‖2

2, A,B`+1, and {(x, f (x))}x∈S; denote
its output by “decision”

ii. If decision = 1, Candidate`+1←Candidate`+1
⋃
{{a,b}}

3. Output L =
{

α |{α,α} ∈CandidatelogN
}

and
{

valα = 1
|A| ∑x∈A f (x)χα(x)

}
α∈L

Algorithm 8. Distinguishing Algorithm.
Input: {a,b} ∈ ZN×ZN , τ ∈ R+, A,B⊆ ZN , {(x, f (x))}x∈A−B
Output: 1 or 0
Steps:

1. Compute esta,b← 1
|A| ∑x∈A

(
1
|B| ∑y∈B χ−b( a+b

2 )c(y) f (x− y)
)2

2. If esta,b ≥ 5
36 τ, decision = 1, else decision = 0

9



We remark that to ease the reading of the above pseudo-code we made the simplifying assumptions that

f is normalized to have unit energy ∑α

∣∣∣ f̂ (α)
∣∣∣2 = 1, that A ⊆ S, and that (a′+ b′)/2 is an integer. When

this is not the case mild changes are due: When f is not normalized we normalize it by dividing each
read value by an estimator for the energy of precision O(τ‖ f‖2

2) sufficiently small; the estimator we use
is 1
|A| ∑x∈A f (x)2 for A the small bias set computed in Generate Queries algorithm 5 (this is an estimator

for ‖ f‖2
2 which is equal to the energy by Parseval Identity). When A is not contained in S, we replace the

sum on A in computing the values valα’s and the estimator for ‖ f‖2
2 by a sum on A− y for an arbitrary

y in
⋃logN

`=1 B`. When (a′+ b′)/2 is not an integer, we partition {a′, . . . ,b′} into two disjoint subintervals
{a′, . . . ,c},{c+1, . . . ,b′} of roughly the same length.

3.3 Analysis

In this section we analyze our SFT algorithm proving our main result. Recall that Heavyτ( f ) is the set of
τ-significant Fourier coefficients of f , and that valα is an ε-approximation for f̂ (α) iff

∣∣∣valα− f̂ (α)
∣∣∣< ε.

The following theorem says that our SFT algorithm succeeds when there’s no noise.

Theorem 9. For every positive integer N, positive reals τ, t, and a complex valued function f : ZN → C s.t.
L1( f̂ ) ≤ t, our SFT algorithm given N, τ, t and oracle access to f , outputs a list L ⊇ Heavyτ( f ) together
with O(τ)-approximations for f̂ (α) ∀α ∈ L in running time polynomial in logN, 1/τ and t.

Proof. Proof follows from the combination of lemma 11 below together with Item 1 in lemma 12 below.

The next theorem says that our SFT algorithm succeeds also in the presence of noise, that is, the al-
gorithm outputs the significant Fourier coefficients of f even when given only oracle access to a corrupted
version f ′ = f + η. The noise η may be either (1) Random noise of parameter ε = O(τ) sufficiently small,
that is, entries of η are drawn independently at random from distributions of expected absolute value at most
ε, or (2) Adversarial noise s.t. L1(η̂)≤ t.

Theorem 10 (Robustness to noise). For every positive integer N, positive reals τ, t, and complex valued
functions f ,η : ZN → C s.t. L1( f̂ )≤ t,

• Our SFT algorithm, given N, τ, t and oracle access to f ′ = f + η for η random noise of parameter
O(τ) sufficiently small, outputs a list L ⊇ Heavyτ( f ) together with O(τ)-approximations for f̂ (α)
∀α ∈ L with probability at least 1−1/NΘ(1) over the noise η.

• Our SFT algorithm, given N, τ, t and oracle access to f ′= f +η for η adversarial noise s.t. L1(η̂)≤ t,
outputs a list L⊇ Heavyτ( f ) together with O(τ)-approximations for f̂ (α) ∀α ∈ L.

The running time of the SFT algorithm polynomial in logN, 1/τ and t.

Proof. The proof for the case of random noise follows from the combination of lemma 11 below together
with Item 2 in lemma 12 below. The proof for the case of adversarial noise η follows from the combination
of lemma 11 below together with Item 1 in lemma 12 below when observing that L1( f̂ ′)≤ 2t for f ′ = f +η

s.t. L1( f̂ ),L1(η̂)≤ t implying that running the algorithm with parameter 2t rather t suffices.

Our main lemmas are stated below; proofs appear in section 3.4. Lemma 11 shows that the FQ-SFT
algorithm succeed on any function f that satisfies conditions (*) and (*’) below.
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Lemma 11. For every function f : ZN → C and thresholds t,τ > 0, the FQ-SFT algorithm returns a list
L ⊇ Heavyτ( f ) together with τ-approximations for f̂ (α) ∀α ∈ L in running time polynomial in logN, 1/τ

and t if both the following conditions hold:

(∗)
∣∣esth,A,B`( f )−‖ f ∗h‖2

2
∣∣< cτ ∀` ∈ [b(logN)c],c ∈ ZN and h = h`,c as defined above, and

(∗′)

∣∣∣∣∣ 1
|A| ∑x∈A

f (x)χα(x)− f̂ (α)

∣∣∣∣∣< cτ ∀α ∈ ZN

for c > 0 a sufficiently small absolute constant.

Lemma 12 shows that when using a set of queries S generated by algorithm 5 conditions (*) and (*’)
hold in any of the following cases: (1) They hold any function f s.t. L1( f̂ ); and (2) they hold with high
probability for any function f ′ = f +η s.t. f s.t. L1( f̂ )≤ t and η random noise.

Lemma 12. Let S =
⋃logN

`=1 (A− B`) be the output of the queries generating algorithm 5 then for every
f ,η : ZN → C the following holds:

1. If L1( f̂ )≤ t, then conditions (*) and (*’) hold for f .

2. If L1( f̂ ) ≤ t and η is random noise of parameter ε ≤ O(τ) sufficiently small, then conditions (*) and
(*’) hold for f ′ = f +η with probability at least 1−1/NΘ(1) over the noise η.

3.4 Proofs of Lemmas 11-12

In this section we give the proofs of our main lemmas, lemmas 11-12. Throughout this section conditions
(*) and (*’) are as defined in Lemma 11.

3.4.1 Proof of Lemma 11

The following lemma gives a sufficient condition for the success of the FQ-SFT algorithm on any particular
input function.

Lemma 11. For every function f : ZN → C and thresholds t,τ > 0, the FQ-SFT algorithm returns a list
L ⊇ Heavyτ( f ) together with τ-approximations for f̂ (α) ∀α ∈ L in running time polynomial in logN, 1/τ

and t if the following conditions hold:

(∗)
∣∣esth,A,B`( f )−‖ f ∗h‖2

2
∣∣< cτ ∀` ∈ [b(logN)c],c ∈ ZN and h = h`,c as defined above, and

(∗′)

∣∣∣∣∣ 1
|A| ∑x∈A

f (x)χα(x)− f̂ (α)

∣∣∣∣∣< cτ ∀α ∈ ZN

for c > 0 a sufficiently small absolute constant.

Proof. The lemma is established by showing that if condition (*) holds then the FQ-SFT algorithm efficiently
returns all τ-significant Fourier coefficients of f . The fact that the outputted values valα = ∑x∈A f (x)χα(x)
are O(τ)-approximations for the f̂ (α) follows immediately from condition (∗′).

Correctness. To establish the correctness of the algorithm it suffices to show that the distinguishing
procedure answers YES whenever the considered interval J contains a significant Fourier coefficient, i.e.,
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esth,A,B`( f ) ≥ Ω(τ) for the used filter h = h`,c (with c, N/2`−1 the center of J and its length). This is
true because when J contains a τ-significant Fourier coefficient, then by Proposition 13 Item (1), ‖ f ∗h‖2

2 ≥

Ω(∑α∈J

∣∣∣ f̂ (α)
∣∣∣2)≥Ω(τ), implying by condition (*) that also esth,A,B`( f )≥Ω(τ), and thus the distinguishing

procedure decides YES.
Efficiency. To establish the efficiency of the algorithm it suffices to show that the distinguishing proce-

dure does not answer YES too often. If the distinguishing procedure answers YES on a considered interval
J, then esth,A,B`( f )≥ Ω(τ) implying by condition (*) that ‖h∗ f‖2

2 ≥ Ω(τ). By Proposition 13 Item (2) the
latter implies that for a slightly larger interval J′ ⊇ J, |J′|/ |J| ≤ O(1/γ), its Fourier weight (that is, sum of
squared Fourier coefficients with frequencies in J′) is greater than Ω(τ). This implies that the distinguishing
procedure cannot answer YES too often because there are at most O(1/τ) disjoint intervals whose Fourier
weight exceeds Ω(τ) (by Parseval Identity), and thus at most O(1

τ

|J′|
|J| ) (possibly, overlapping) intervals J′

whose Fourier weight exceeds Ω(τ).

For integers `,c > 0 and real γ > 0, let J`,c =
{

α |abs(α− c)≤ N
2`

}
be an interval in [0..N− 1] and let

its extension be J′`,c,γ =
{

α |abs(α− c)≤
√

2
3γ
· N

2`

}
. Then the following holds:

Proposition 13. (1) ‖h`,c ∗ f‖2
2 ≥ 1

6 ∑α∈J`,c

∣∣∣ f̂ (α)
∣∣∣2, and (2) ‖h`,c ∗ f‖2

2 ≤ ∑α∈J′`,c,γ

∣∣∣ f̂ (α)
∣∣∣2 + γ.

Proof. Let h = h`,c. We first give some properties of h derived using Fourier analysis. Denote St(α) =
1
t ∑

t−1
y=0 χα(y), and observe that ĥ(α) = S2`(α− c). By Proposition 14 below this implies the following

properties of h: (i) ∀α,
∣∣∣ĥ(α)

∣∣∣2 ≤ 1, (ii) ∀α ∈ J`,c,
∣∣∣ĥ(α)

∣∣∣2 ≥Ω(1), and (iii) ∑α/∈J`,c,γ

∣∣∣ĥ(α)
∣∣∣2 ≤ γ. Recall also

that we assumed w.l.o.g that f is normalized to have (iv) ∑α

∣∣∣ f̂ (α)
∣∣∣2 = 1, which in particular implies that

(v) ∀α,
∣∣∣ f̂ (α)

∣∣∣2 ≤ 1.
Item (1) of Proposition 13 follows from (ii), because by Parseval Identity and the convolution-multiplication

duality, ‖h∗ f‖2
2 = ∑α

∣∣∣ĥ(α)
∣∣∣2 ∣∣∣ f̂ (α)

∣∣∣2 ≥Ω(1)∑α∈J`,c

∣∣∣ f̂ (α)
∣∣∣2 (where the last inequality follows from (ii)).

Item (2) of Proposition 13 follows from (i),(iii)-(v), because ‖h∗ f‖2
2 ≤maxα

∣∣∣ĥ(α)
∣∣∣2 ∑α∈J`,c,γ

∣∣∣ f̂ (α)
∣∣∣2 +

maxα

∣∣∣ f̂ (α)
∣∣∣2 ∑α/∈J`,c,γ

∣∣∣ĥ(α)
∣∣∣2 ≤ ∑α∈J`,c,γ

∣∣∣ f̂ (α)
∣∣∣2 + γ (where the last inequality follows from (iii)-(v)).

Proposition 14. Let t ∈ 1, . . . ,N, and St(α) = 1
t ∑

t−1
y=0 χα(y), then the following properties hold.

1. |St(α)|2 = 1−cos( 2π

N αt)
1−cos( 2π

N α)

2. Pass Band: ∀α ∈ ZN and γ ∈ [0,1], if abs(α)≤ γ
N
2t , then |St(α)|2 > 1− 5

6 γ2

3. Fast decreasing: ∀α ∈ ZN , |St(α)|2 < 2
3

(
N/t

abs(α)

)2

4. Fourier bounded: ∀α ∈ ZN , |St(α)|2 ≤ 1

Proof. Proof of Item 1. Recall that χα(x) = ωαx for ω = ei 2π

N a primitive root of unity of order N. By the
formula for geometric sum

St(α) =
1
t

ω−αt −1
ω−α−1
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Implying that

|St(α)|2 =
1− cos(2π

N αt)
1− cos(2π

N α)

Proof of Item 2. For all α ∈ ZN with abs(α)≤ γ
N
2t , we can utilizing Taylor approximation of the cosine

function (namely, 1− θ2

2! ≤ cos(θ)≤ 1− θ2

2! + θ4

4! ) to have:

|St(α)|2 ≥ 1− π2

12

(
2tabs(α)

N

)2

≥ 1− π2

12
γ

2

and this is greater than 1− 5
6 γ2 since π2 < 10.

Proof of Item 3. As cosθ = cos(−θ) and since abs(α)≤ N
2 we can, again, utilize Taylor approximation

to have:

|St(α)|2 ≤
(

N/t
abs(α)

)2 1

π2

(
1− ( 2π

N abs(α))2

12

) ≤ 2
3

(
N/t

abs(α)

)2

(where in the last inequality we used the bounds abs(α)≤ N/2 and 9 < π2 < 10).
Proof of Item 4. By triangle inequality, |St(α)| ≤ 1

t ∑
t−1
x=0 |χα(x)| which is in turn equal to 1.

3.4.2 Proof of Lemma 12 Item 1

The following lemma shows that when using a set of queries S generated by algorithm 5, conditions (*) and
(*’) hold for every function f of bounded L1( f̂ ).

Lemma 12 Item 1. Let S =
⋃logN

`=1 (A−B`) be the output of the queries generating algorithm 5, then for
every function f : ZN → C s.t. L1( f̂ )≤ t, conditions (*) and (*’) hold.

Proof. We first argue that condition (*) holds. Fix N, ` ∈ [b(logN)c], A γ-biased in ZN , and B = B` (γ, I)-
biased in ZN for I = [0..2`]. Denote gx(y) = χ−c(y) f (x− y) for y ∈ I and gx(y) = 0 otherwise. By the
definition of esth,A,B( f ) and ‖h∗ f‖2

2,

∣∣esth,A,B( f )−‖h∗ f‖2
2
∣∣ =

∣∣∣∣∣ E
x∈A

(
E

y∈B
gx(y)

)2

− E
x∈ZN

(
E

y∈I
gx(y)

)2
∣∣∣∣∣≤ (i)+(ii)

for: (i) =

∣∣∣∣∣ E
x∈A

(
E

y∈B
gx(y)

)2

− E
x∈A

(
E

y∈I
gx(y)

)2
∣∣∣∣∣

(ii) =

∣∣∣∣∣ E
x∈A

(
E

y∈I
gx(y)

)2

− E
x∈ZN

(
E

y∈I
gx(y)

)2
∣∣∣∣∣

We show below that (i)≤ γ ·L1( f̂ )2 ·O(logN) and (ii)≤ γ ·L1( f̂ )2. Combining these bounds we get that∣∣esth,A,B( f )−‖h∗ f‖2
2
∣∣≤ γL1( f̂ )2(O(logN)+1)

Thus, for γ = O( τ

t2(1+logN)) sufficiently small,
∣∣est( f )−‖h∗ f‖2

2

∣∣≤ O(τ) for all f s.t. L1( f̂ )≤ t.
We next argue that condition (∗′) holds. Observe that when switching to the Fourier representation of f ,

1
|A| ∑x∈A f (x)χα(x) is equal to f̂ (α)+ ∑β 6=α f̂ (β) 1

|A| ∑x∈A χβ−α(x). So,
∣∣∣ 1
|A| ∑x∈A f (x)χα(x)− f̂ (α)

∣∣∣ is upper
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bounded by ∑β 6=α

∣∣∣ f̂ (β)
∣∣∣ ∣∣∣ 1
|A| ∑x∈A χβ−α(x)

∣∣∣ which is in turn upper bounded by γL1( f̂ ) for any γ-biased set A.

Finally, this implies condition (*’) for the choice of γ < O(τ/L1( f̂ )) in our algorithm.

Bounding term (i). Rewrite (i) as
∣∣∣Ex∈A

[
(Ey∈B gx(y))

2− (Ey∈I gx(y))
2
]∣∣∣ and observe that the expectation

over A is upper bounded by the maximum over A. Namely, denoting g(y) = gx0(y) for the x0 ∈ A where the
maximum is obtained, we have that

(i)≤

∣∣∣∣∣
(

E
y∈B

g(y)
)2

−
(

E
y∈I

g(y)
)2
∣∣∣∣∣

Using the identity a2− b2 = (a− b)(a + b) and observing that a + b ≤ 2‖ f‖∞ for a = Ey∈B gx(y) and b =
Ey∈I gx(y) (where we use here the fact that ‖χ−c‖∞ ≤ 1), we get that:

(i)≤ 2‖ f‖∞

∣∣∣∣ E
y∈B

g(y)− E
y∈I

g(y)
∣∣∣∣

Switching to the Fourier representation of g and using the triangle inequality we get that:

(i) ≤ 2‖ f‖∞ ∑
α∈ZN

|ĝ(α)|
∣∣∣∣ E
y∈B

χα(y)− E
y∈I

χα(y)
∣∣∣∣≤ 2γ‖ f‖∞L1(ĝ)

where the last inequality follows from the fact that B is γ-biased on I. Observing that by switching to the
Fourier representation of f , ‖ f‖∞ = maxx

∣∣∣∑α f̂ (α)χα(x)
∣∣∣≤ ∑α

∣∣∣ f̂ (α)
∣∣∣= L1( f̂ ), we conclude that

(i) ≤ 2γ ·L1( f̂ ) ·L1(ĝ)

We next bound L1(ĝ). Observe that g(y) = h′(y) fy(x) for h′(y) = χ−c(y) if y∈ I and h′(y) = 0 otherwise,
and fy(x) = f (x− y). By the convolution theorem ĝ = ĥ′ ∗ f̂y, implying that

L1(ĝ)≤ L1(ĥ′) ·L1( f̂ )

where the last inequality follows from the fact that ∑α ĥ′ ∗ f̂y(α)≤ L1(ĥ′) ·L1( f̂y), and that
∣∣∣ f̂y(α)

∣∣∣= ∣∣∣ f̂ (α)
∣∣∣

for all α. Finally, we compute L1(ĥ′). By Proposition 4,∣∣∣ĥ′(α)
∣∣∣= |I|

N

∣∣∣∣∣ 1
|I|∑x∈I

χ−c+α(x)

∣∣∣∣∣≤ |I|N N/ |I|
abs(α− c)

where abs(a) denotes min{a,N−a}. So,

L1(ĥ′) = ∑
α

1/abs(α− c) = O(logN)

We conclude that
L1(ĝ)≤ O(logN) ·L1( f̂ )

Combining the above bound on (i) with the bound on L1(ĝ) we conclude that:

(i)≤ γ ·L1( f̂ )2 ·O(logN)
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Bounding term (ii). Denoting ḡ(x) = (Ey∈I gx(y))
2, we rewrite (ii) as |Ex∈A ḡ(x)−Ex∈ZN ḡ(x)|. Switching

to Fourier representation of ḡ and using the triangle inequality we upper bound this expression by:

(ii) ≤ ∑
α∈ZN

∣∣̂̄g(α)
∣∣ ∣∣∣∣ E

x∈A
χα(x)− E

x∈ZN

χα(x)
∣∣∣∣≤ γL1(̂̄g)

where in the last inequality we use the fact that A is γ-biased in ZN .
We next bound L1(̂̄g). Observe that ḡ =(h∗ f )2 (since h∗ f = Ey∈ZN

N
|I|χ−c(y) f (x− y)= Ey∈I χ−c(y) f (x− y)).

Therefore,
L1(̂̄g)≤ L1(ĥ∗ f )2

where we use the fact that for any function s, L1(ŝ2)≤ L1(ŝ)2. Observe further that

L1(ĥ∗ f )2 ≤ L1( f̂ )2

because
∣∣∣ĥ∗ f (α)

∣∣∣ = ∣∣∣ĥ(α)
∣∣∣ · ∣∣∣ f̂ (α)

∣∣∣ ≤ ∣∣∣ f̂ (α)
∣∣∣, where the last inequality follows since

∣∣∣ĥ(α)
∣∣∣ ≤ 1 for all α.

Combining the above bounds together we conclude that

(ii)≤ γL1( f̂ )2

�

3.4.3 Proof of Lemma 12 Item 2

The following lemma addresses the random noise case, and shows that when using a set of queries S gener-
ated by algorithm 5, conditions (*) and (*’) hold with high probability over the choice of noise η for every
function f ′ = f +η s.t. f has bounded L1( f̂ ).

Lemma 12 Item 2. Let S =
⋃logN

`=1 (A−B`) be as in algorithm 5, then with probability at least 1−1/NΘ(1),
conditions (*) and (*’) hold for all functions f ′ = f + η s.t. L1( f̂ ) ≤ t and η : ZN → C is random noise of
expected absolute value ε ≤ O(τ) sufficiently small (where the probability is taken over the choice of the
noise η).

Proof. We first argue that condition (*) holds. Observe that for f ′ = f + η,
∣∣esth,A,B`( f ′)−‖ f ∗h‖2

2

∣∣ ≤
(i)+(ii)+(iii) for:

(i) =
∣∣esth,A,B`( f )−‖ f ∗h‖2

2
∣∣

(ii) =

∣∣∣∣∣2 1
|A| ∑x∈A

(
1
|B`| ∑

y∈B`

χ−c(y) f (x− y)

)(
1
|B`| ∑

y∈B`

χ−c(y)η(x− y)

)∣∣∣∣∣
(iii) = |esth,A,B`(η)|

We bound each of these terms. Term (i) is upper bounded by O(τ) by lemma 1 above. We show below
that for each ` = 1, . . . ,b(logN)c, terms (ii) and (iii) are upper bounded by O(ε), each with probability
at least 1− 1/NΩ(1) (where the probability is over the choice of random noise η). By union bound, both
these bounds hold for all ` = 1, . . . ,b(logN)c with probability at least 1−2logN/NΩ(1) = 1−1/NΩ(1). We
conclude that for ε = O(τ),

∣∣esth,A,B`( f ′)−‖ f ∗h‖2
2

∣∣≤ O(τ) with probability at least 1−1/NΩ(1).
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We next argue that condition (*’) holds. Since f ′ = f + η, then 1
|A| ∑x∈A f ′(x)χα(x) is equal to the sum

of two terms: T1 = 1
|A| ∑x∈A f (x)χα(x) and T2 = 1

|A| ∑x∈A η(x)χα(x). By Lemma 1,
∣∣∣T1− f̂ (α)

∣∣∣ ≤ O(τ).

To bound the second term observe that Eη[T2] ≤ Eη[ 1
|A| ∑x∈A |η(x)|] = ε, implying by Chernoff bound that

|T2| ≤ 2ε with probability at least 1− exp(Ω(|A|ε2)) ≥ 1− 1
NΩ(1) (where the last inequality follows from

the choice of |A| used in our algorithm). Combining both these bounds and assigning ε < O(τ) we obtain
that

∣∣∣ 1
|A| ∑x∈A f ′(x)χα(x)− f̂ (α)

∣∣∣≤ ∣∣∣T1− f̂ (α)
∣∣∣+ |T2| ≤O(τ) –i.e., condition (*’) holds– with probability at

least 1−1/NΩ(1).

Bounding (ii). By Cauchy-Schwartz inequality, (ii)2≤ (a)·(b) for (a)= 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−c(y) f (x− y)
)2

and (b) = 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−cη(x− y)
)2

. We show below that |(a)| ≤ O(1). To bound (b), observe that
(b) is equal to expression (iii) above, i.e., (b) = esth,A,B`(η); and therefore from the bound on (iii) below we
get that (b) ≤ O(ε) with probability at least 1− exp(Ω(|A|ε2)). Combining both bounds we conclude that
(ii)≤ O(ε).

Bounding (a). Observe that (a) = esth,A,B`( f ) for h = h`,c, implying by Lemma 1 that
∣∣(a)−‖h∗ f‖2

2

∣∣≤
γL1( f̂ )2(1 + O(logN)). Next observe that ‖h∗ f‖2

2 ≤ 1 since ‖h∗ f‖2
2 = ∑α

∣∣∣ĥ(α) f̂ (α)
∣∣∣2 where

∣∣∣ĥ(α)
∣∣∣ ≤ 1

for all α and f is normalized to have ∑α

∣∣∣ f̂ (α)
∣∣∣2 = 1. We conclude therefore that |(a)| ≤ 1 + γL1( f̂ )2(1 +

O(logN)) = O(1) (where the last equality follows from the fact that γL1( f̂ )2(1+O(logN)≤ O(τ) for the γ

used in our algorithm, and from the fact that τ≤ 1).

Bounding (iii). Recall that est(η) = 1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

χ−c(y)η(x− y)
)2

which is upper bounded by

1
|A| ∑x∈A

(
1
|B`| ∑y∈B`

|η(x− y)|
)2

. In expectation E[(iii)]≤ ε2. By Chernoff bound, we get Pr[(iii) > Ω(ε)] <

exp(Ω(|A|ε2)).

4 Finding Significant Fourier Coefficients over Finite Abelian Groups

In this section we describe our SFT algorithm for the case of functions over arbitrary finite abelian groups.
Our algorithm is composed of two parts: (1) queries generating and (2) fixed queries SFT; described in
sections 4.1-4.2 below. Analysis overview is given in section 4.3.

Theorem 15. There is a deterministic algorithm that for every finite abelian group G, positive reals τ, t, and
a complex-valued function f : G→ C s.t. L1( f̂ ) ≤ t, given G (by its generators and their orders), τ, t and
oracle access to f , outputs a list L ⊇ Heavyτ( f ) together with O(τ)-approximations for f̂ (α) ∀α ∈ L. The
running time is polynomial in logN, 1/τ and t.

Furthermore, the above holds with probability at least 1− 1/NΘ(1) over the random noise even if the
algorithm is given oracle access not to f but to a noisy version f ′ = f +η for η : ZN →C whose entries are
drawn independently at random from a distribution of expected absolute value O(τ) sufficiently small.
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4.1 Queries Generating

The queries generating algorithm constructs the set set S of entries using sets that are small biased on (sets
isomorphic to) rectangles R′t+1,` = ZN1× . . .×ZNt ×

{
0, . . . ,2`

}
×{0}× . . .×{0} in G.

Algorithm 16. Queries Generating. Given generators g1, . . . ,gk ∈G, their orders N1, , . . . ,Nk, and pos-
itive reals τ, t, output a set S =

⋃
`∈[b(logN)c],t∈[k](A−Bt,`) for A and Bt,`’s each of size spoly(log |G| ,1/γ) for

γ = poly(1/ log |G| ,τ,1/t) sufficiently small s.t.

• A is a γ-biased set in G

• Bt,` is (γ,Rt+1,`)-biased in G for each t = 1, . . . ,k, ` = 1, . . . , logN, where Rt+1,` is the set in G isomor-

phic to R′t+1,` = ZN1×. . .×ZNt×
{

0, . . . ,2`
}
×{0}×. . .×{0}, i.e., Rt+1,` =

{
∏

k
j=1 gx j

j

∣∣∣(x1, . . . ,xk) ∈ R′t+1,`

}
.

The sets A and Bt,`’s are deterministically constructed in time polynomial in log |G| and 1/γ using the explicit
algorithms guaranteed in Fact 1 in section 2 and in corollary 17 below.

The following is a corollary from Facts 1 and 2.

Corollary 17. For every finite abelian group G isomorphic to ZN1× . . .×ZNk , real γ > 0, and subset J ⊆G
isomorphic to J′ = ZN1× . . .×ZNt × I×{0}× . . .×{0} for an interval I = [0..M] for M < Nt+1, there exists
explicit construction (i.e., by a deterministic algorithm with running time poly(log |G| ,1/γ)) constructing a
set B⊆ G of size poly(log |G| ,1/γ) which is (γ,J)-biased in G.

4.2 Fixed Queries SFT

4.2.1 The Case G = ZN1× . . .×ZNk

We next describe the SFT algorithm for functions over G = ZN1 × . . .×ZNk . The input in this case is a
description of the group by N1, . . . ,Nk, a threshold τ and query access to a function f : G→ C. The output

is a short list containing all τ-significant Fourier coefficients, that is, all α ∈ G s.t.
∣∣∣ f̂ (α)

∣∣∣2 ≥ τ.

Algorithm overview. The SFT algorithm finds the τ-significant Fourier coefficients (α1, . . . ,αk) ∈ ZN1 ×
. . .×ZNk by gradually revealing its coordinates one after the other. At the first step, the algorithm finds
the first coordinates of all the τ-significant Fourier coefficients, that is, it finds length 1 prefixes of the
τ-significant Fourier coefficients. At the second step, the algorithm extends each length 1 prefix to all
its continuation into length 2 prefixes of the τ-significant Fourier coefficients. The algorithm continues
in extending prefixes of the τ-significant Fourier coefficients one coordinate at a time. After k step, the
algorithm holds length k prefixes, which are the list of τ-significant Fourier coefficients.

To extend a length t− 1 prefix (α1, . . . ,αt−1) of a τ-significant Fourier coefficient to a prefix of length
t, the algorithm searches for all values αt of the t-th coordinate such that (α1, . . . ,αt−1,αt) is a length t
prefixes of a τ-significant Fourier coefficient. This search is done in a binary search fashion, similarly to the
SFT algorithm for functions over ZNt . Namely, the search proceeds by gradually refining the initial interval
{0, . . . ,Nt} into smaller and smaller subintervals, each time applying a distinguishing procedure to decide
whether to keep or discard a subinterval.

The distinguishing procedure we use here is different than the one used for the case of functions over ZN .
Ideally we’d like the distinguishing procedure to keep an interval iff it contains αt such that (α1, . . . ,αt−1,αt)
is a length t prefix of a a τ-significant Fourier coefficient. It is not known how to efficiently compute such
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a distinguishing procedure. Nevertheless, we present a distinguishing procedure with similar guarantee: it
keeps all intervals that contain a τ-significant Fourier coefficient, yet keeping only few intervals. Specifi-
cally, the distinguishing procedure, given a length t−1 prefix α = (α1, . . . ,αt−1) and an interval {a, . . . ,b},
computes (an approximation of) a weighted sum of squared Fourier coefficients

est≈ ∑
αt∈ZNt

cαt · ∑
α′∈ZNt+1×...×ZNk

∣∣∣ f̂ (ααtα
′)
∣∣∣2

such that the weights cαt are high (i.e., close to 1) for αt in the interval, and the weights cαt are fast decreasing
as α gets farther and farther away from the interval. The distinguishing procedure keeps the interval iff this
(approximate) weighted sum is sufficiently large. To compute (an approximation of) this weighted sum, we

define a “filter function” h whose (squared) Fourier coefficients
∣∣∣ĥ(β)

∣∣∣2 are equal to the above coefficients
cαt when the length t prefix of β is the given prefix α, and they are zero otherwise. With this filter function
we express the above weighted sum as the norm of the convolution of h and f , which we in turn approximate
by taking an average over randomly chosen values

The filter function that we use is

hG,t,`,c(y1, . . . ,yk) =


(
∏

k
i=t+1 Ni

)
·χα1,...,αt−1(y1, . . . ,yt−1) ·hNt ,`,c(yt) if (yt+1, . . . ,yk) = 0k−t

0 otherwise

for hNt ,`,c(yt) = Nt
2` χNt ,−c(yt) if yt ∈ [0..2`] and hNt ,`,c(yt) = 0 otherwise; χN1,...,Nt−1,α1,...,αt−1(y1, . . . ,yt−1) =

∏
t−1
j=1 e

i 2π

Nj
α jy j a character in the group ZN1 × . . .×ZNt−1 ; and χNt ,−c(yt) = ei 2π

Nt
(−c)yt a character in the group

ZNt . When G and N1, . . . ,Nk are clear from the context, we often omit their indices.
A pseudo-code of the algorithm follows.

Algorithm 18. Fixed Queries SFT Algorithm
Input: N1, . . . ,Nk ∈ N, τ ∈ (0,1], A,Bt,` ⊆ ZN1 × . . .×ZNk ∀(t, `) ∈ [k]× [b(logNt)c] and {(x, f (x))}x∈S for
S = A−

⋃
(t,`)∈[k]×[b(logNt)c] Bt,`

Output: L⊆ ZN1× . . .×ZNk and {valα}α∈L
Steps:

1. Let Pre f ixes0 = {the empty string}, Pre f ixes1, . . . ,Pre f ixesk = φ

2. For t = 1, . . . ,k

(a) For each αt = (α1, . . . ,αt−1) ∈ Pre f ixest−1

i. Candidateαt ,0←{{0,Nt}}, ∀` = 1, . . . , logN`, Candidateαt ,` = φ

ii. For ` = 0, . . . , log2 Nt −1
A. For each {a′,b′} ∈Candidateαt ,`

For each {a,b} ∈
{{

a′, a′+b′
2

}
,
{

a′+b′
2 +1,b′

}}
• Run the Distinguishing Algorithm 19 on input αt , {a,b}, τ, A,Bt,`+1 and {(q, f (q))}q∈A×Bt,`+1

;
denote its outputs be “decision”
• If decision = 1, Candidateαt ,`+1←Candidateαt ,`+1

⋃
{{a,b}}

iii. For each {a,a} ∈Candidateαt ,logNt denote αta = (α1, . . . ,αt−1,a). Let

Lt(αt) =
{

α
ta
∣∣{a,a} ∈Candidatesαt ,logNt

}
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(b) Let Pre f ixest ←
⋃

αt∈Pre f ixest−1
L(αt)

3. Output Pre f ixesk

Algorithm 19. Distinguishing Algorithm.
Input: αt ∈ ZN1× . . .×ZNt−1 , {a,b} ∈ ZNt ×ZNt , τ ∈ (0,1], A,B⊆ ZN1× . . .×ZNk and {(x, f (x))}x∈A−B.
Output: 1 or 0
Steps:

1. Compute

estαt ,a,b← 1
|A| ∑x∈A

(
1
|B| ∑y∈B

χαt (yt)χ−b( a+b
2 )c(yt) · f (x− y)

)2

for χαt (yt) = ∏
t−1
j=1 e

i 2π

Nj
·αt

jy
t
j an evaluation of the αt character of the group ZN1 × . . .×ZNt−1 , and

χ−b( a+b
2 )c(yt) = e−i 2π

Nt
·b( a+b

2 )cyt an evaluation of the −b(a+b
2 )c character of the group ZNt .

2. If estαt ,a,b ≥ 5
36 τ, decision = 1, else decision = 0

4.2.2 The Case G is Arbitrary Finite Abelian Group

The SFT Algorithm for arbitrary finite abelian groups G is defined by utilizing the isomorphism between G
and a direct product group.7 as follows.

Given a description
{
(g j,N j)

}k
j=1 of the group G, a threshold τ and query access to a function f : G→C,

we simulate query access to a function f ′ over a direct product group isomorphic to G, and apply the SFT
algorithm on input a description of the direct product group, the threshold τ and query access to f ′. Output
L =

{
∏

k
j=1 gx j

j

∣∣∣(x1, . . . ,xk) ∈ L′
}

for L′ the output of the SFT algorithm.

To complete the description of the algorithm we define the function f ′ and explain how to efficiently
simulate query access to f ′ when given query access to f . The function f ′ is defined by f ′(x1, . . . ,xk) =
f (∏k

j=1 gx j
j ). The function f ′ is computable in time polynomial in log |G|.

4.3 Analysis Overview

We give an overview of the SFT algorithm analysis for the case of functions over arbitrary finite abelian
groups. The high level structure of this analysis is similar to the one for functions over ZN .

The following theorem says that our SFT algorithm succeeds when there’s no noise.

Theorem 20. For every finite abelian group G, positive reals τ, t, and a complex valued functions f : G→C
s.t. L1( f̂ ) ≤ t, our SFT algorithm given G (by its generators and their orders), τ, t and oracle access to f ,
outputs a list L ⊇ Heavyτ( f ) together with O(τ)-approximations for f̂ (α) ∀α ∈ L. The running time is
polynomial in log |G|, 1/τ and t.

Proof. The proof follows from the combination of lemma 22 below together with Item 1 in lemma 23
below.

7Recall that if G a finite abelian group generated by g1, . . . ,gk of orders N1, . . . ,Nk, respectively, then G is isomorphic to the
direct product group ZN1 × . . .×ZNk by mapping (x1, . . . ,xk) ∈ ZN1 × . . .×ZNk to ∏

k
j=1 gx j

j ∈ G.
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The next theorem says that our SFT algorithm succeeds also in the presence of noise, that is, the al-
gorithm outputs the significant Fourier coefficients of f even when given only oracle access to a corrupted
version f ′ = f + η. The noise η may be either (1) Random noise of parameter ε = O(τ) sufficiently small,
that is, entries of η are drawn independently at random from distributions of expected absolute value at most
ε, or (2) Adversarial noise s.t. L1(η̂)≤ t.

Theorem 21 (Robustness to noise). For every finite abelian group G, positive reals τ, t, and complex valued
functions f ,η : G→ C s.t. L1( f̂ )≤ t,

• Our SFT algorithm, given G (by its generators and their orders), τ, t and oracle access to f ′ = f +η

for η random noise of parameter O(τ) sufficiently small, outputs a list L ⊇ Heavyτ( f ) together with
O(τ)-approximations for f̂ (α) ∀α ∈ L with probability at least 1−1/ |G|Θ(1) over the noise η.

• Our SFT algorithm, given G (by its generators and their orders), τ, t and oracle access to f ′ = f +η

for η adversarial noise s.t. L1(η̂)≤ t, outputs a list L⊇Heavyτ( f ) together with O(τ)-approximations
for f̂ (α) ∀α ∈ L.

The running time of the SFT algorithm polynomial in log |G|, 1/τ and t.

Proof. The proof for the case of random noise follows from the combination of lemma 22 below together
with Item 2 in lemma 23 below. The proof for the case of adversarial noise η follows from the combination
of lemma 22 below together with Item 1 in lemma 23 below when observing that L1( f̂ ′)≤ 2t for f ′ = f +η

s.t. L1( f̂ ),L1(η̂)≤ t implying that running the algorithm with parameter 2t rather t suffices.

Our main lemmas are stated below. Lemma 22 shows that the FQ-SFT algorithm succeed on any function
f that satisfies conditions (*) and (*’) below. Lemma 23 shows that when using a set of queries S generated
by algorithm 16 conditions (*) and (*’) hold in any of the following cases: (1) They hold any function f s.t.
L1( f̂ ); and (2) they hold with high probability for any function f ′ = f +η s.t. f s.t. L1( f̂ )≤ t and η random
noise. Proofs are similar to proofs of lemmas 11-12; details omitted (see author’s dissertation [2], Chapter
3, for proof of Lemma 22).

Lemma 22. Denote by N1, . . . ,Nk the orders of the generators in the given generating set for G. For ev-
ery function f : G→ C and thresholds t,τ > 0, the FQ-SFT algorithm returns all the τ-significant Fourier
coefficients of f in time polynomial in log |G|, 1/τ and t if the following condition holds:

(∗∗)
∣∣esth,A,B`( f )−‖ f ∗h‖2

2
∣∣< cτ

∀` ∈ [b(logNt+1)c], t ∈ [k−1],c ∈ ZNt+1 and h = hG,t,`,c as defined above, and

(∗∗′)

∣∣∣∣∣ 1
|A| ∑x∈A

f (x)χα(x)− f̂ (α)

∣∣∣∣∣< cτ ∀α ∈ G

for c > 0 a sufficiently small absolute constant.

Lemma 23. Let S be the output of the queries generating algorithm 16, then for every f ,η : G→ C the
following holds:

1. If L1( f̂ )≤ t, then conditions (*) and (*’) hold for f .

2. If L1( f̂ ) ≤ t and η is random noise of parameter ε ≤ O(τ) sufficiently small, then conditions (*) and
(*’) hold for f ′ = f +η with probability at least 1−1/NΘ(1) over the noise η.
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5 Decoding Polynomial Rate Concentrated & Recoverable Codes

We show that for every concentrated and recoverable code there is a restriction of the codewords to a subset S
of their entries yielding a new code of polynomial codeword length which is efficiently decodable in random
noise model.

A code is concentrated and recoverable [4] if (1) messages and codeword entries can be identified with
elements in a finite abelian group G, and when identifying codewords with functions over G mapping entries
to values the following holds: (2) for every codeword C, L1(Ĉ) ≤ poly log |G|, and (3) there is a recovery
algorithm that given a frequency α ∈ G and a significance threshold τ, outputs all codewords C whose α

Fourier coefficient is τ-significant in running time polynomial in log |G| and 1/τ.
Examples of concentrated and recoverable codes include Homomorphism codes (G,C)-Hom and Mul-

tiplication (MPC) codes C P
N s.t. L1(P̂) ≤ poly(logN). Where the MPC code C P

N is the boolean-ization of
(ZN ,C)-Hom by a boolean function P, that is, with codewords Cm = (P(χm(1)),P(χm(2)), . . . ,P(χm(N)))
encoding messages m ∈ ZN [4].

Recall that the random noise model of parameter ε outputs corrupted codewords C′ = C + η for C the
uncorrupted codeword and η a random function whose entries are drawn independently at random from
distributions of expectation absolute value ε. The Binary Symmetric Channel (BSCε) is an example of this
random noise model, where C is a binary codeword accepting ±1 values, and η is a function accepting
values in {−2,0,2} whose value on each entry i is chosen independently at random to be: η(i) = −2C(i)
with probability ε, and η(i) = 0 otherwise.
Notations. Let G a finite abelian group, S ⊆ G. Denote by CG a code with codewords identified with
functions C : G→ C; we assume that a generating set of G and the generators orders is given as part of
the specification of CG. Denote by C S the code whose codewords are the restrictions to S of the codewords
C ∈ CG, that is, the codewords are CS : S→ C defined by CS(i) = C(i) ∀i ∈ S.

Theorem 24. There is a (explicit) constant c > 0 such that for every τ > 0 and every concentrated and
recoverable code CG, there is a subset S ⊆ G such that the restriction code C S is a code of polynomial
codewords length which is efficiently decodable in the random noise model of parameter O(τ); that is, the
codeword length and the running time of the decoding algorithm are (1

τ
log |G|)c.

Proof. Let S be the output of our Queries Generating algorithm when given G (by its generators and their
orders), τ and an upper bound t on maxC∈C L1(Ĉ). We point out that it suffices to take t = 1 for the case of
Homomorphism codes, as L1(Ĉ) = 1 for all their codewords.

Given a corrupted codeword w : S→C, we think of w as a restriction of a corrupted codeword w′ : G→C
of the code C. The decoding algorithm is as follows: (1) Apply our SFT algorithm to find a list L of the
significant Fourier coefficients of w′; (2) Apply the recovery algorithm on each frequency α ∈ L to obtain a
list Lα of all codewords for which α is a significant Fourier coefficient; (3) Return the codeword C ∈

⋃
α∈L Lα

with highest agreement with the given corrupted codeword w on the entries in S.
The success of this algorithm follows from our analysis of our SFT algorithm together with the analysis

of [4] of concentrated and recoverable codes: By the properties of our SFT algorithm, with high probabil-
ity step (1) of the above algorithm returns the significant Fourier coefficients of w′ even in the presence of
random noise. This proves the success of our algorithm since it was shown in [4] that to decode concen-
trated and recoverable codes it suffices to (1’) find the significant Fourier coefficients of the given corrupted
codeword w′ and then continue as in steps (2)-(3) of the above algorithm.

The efficiency of this algorithm follows from the efficiency of the SFT and the recovery algorithms.

21



6 Solving Hidden Number Problem with Advice & Bit Security

We give an algorithm solving the HNP with advice for any k≥ 1, and even in the presence of random noise.

Definition 25 (Hidden Number Problem (HNP) with advice [9]). For p a prime and g a generator of the
multiplicative group Z∗p, the goal is to find a hidden number s ∈ Z∗p when given a short advice string that
depends only on p and g and an oracle access to the function

Ps(a) = MSBk(s ·ga mod p)

mapping a ∈ {1, . . . , p} to the k most significant bits in the binary representation of s ·ga mod p

Theorem 26. For any prime p and a generator g, there is an algorithm solving the Hidden Number Problem
with advice for any k≥ 1. Furthermore, with probability at least 1−1/pΘ(1), the algorithm succeeds even in
the presence of random noise flipping each entry of the oracle Ps independently at random with probability
ε = O(1) sufficiently small.

Proof. To prove the theorem we show there are an algorithm and an advice string Advicep,g of length
poly log p s.t. for every secret s ∈ Z∗p, given Advicep,g and oracle access to Ps(a) = MSB1(s ·ga), the algo-
rithm finds s in running time polynomial in log p. Furthermore, we show the algorithm succeeds in finding s
with probability at least 1−1/pΘ(1) even if the oracle answers are corrupted by random noise flipping each
bit with sufficiently small constant probability.

Fix a prime p and a generator g of the multiplicative group Z∗p. Let fs : Zp→{0,1} be the function

fs(x) = MSB1(s · x)

Denote τ = maxα6=0

∣∣∣ f̂s(α)
∣∣∣2 and t = L1( f̂s). Fourier analysis of fs shows that τ = Θ(1); t = O(log p); the

most significant Fourier coefficient of fs is located on the frequencies s and −s, and furthermore, the latter
is true with high probability even in the presence of random noise (see details in [2]).

The advice we use is discrete logs in the base g of elements in S ⊆ Zp, |S| = poly(log p,1/τ, t), the
output of the Queries Generating Algorithm 5 on input N,τ, t:

Advicep,g = {DLp,g(x)}x∈S

where DLp,g(x) is the element a ∈ Zp−1 s.t. x = ga mod p. By the bounds on τ, t, the advice string is of
length poly log p

The algorithm for finding s is as follows: (1) Run our SFT algorithm on input domain size p, the
significance parameter τ, the bound t on L1( f̂s) and with oracle access to the restriction of fs to S (that is,
to the values { fs(x)}x∈S); denote the outputted list of frequency by L. (2) Output the α ∈ L s.t. MSB1(α · x)
has highest agreement with the restriction of fs to S. Observe that when running the SFT algorithm we
can answer all oracle queries it makes, because fs(x) = Ps(DLp,g(x)) and, due to its universality, the SFT
algorithm queries only on x ∈ S for which the advice provides the discrete log a = DLp,g(x).

We show that the output is indeed the hidden number s: Since the most significant Fourier coefficients
of fs are located on the frequencies s and −s (and furthermore this holds with high probability even in the
presence of random noise), then s,−s ∈ L; this in turn implies that s is outputted by the algorithm (with high
probability over the random noise).

The running time of this algorithm is dominated by the running time of the SFT algorithm which is
polynomial in log p, 1/τ = O(1) and t = O(log p). �
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As a corollary we obtain a strengthening of the security results of [9] for the Okamoto conference key
sharing scheme and their variant of ElGamal’s public key encryption scheme : We show that non-uniformly
(i.e., in the presence of advice depending on g, p) computing even the single most significant bit of the
aforementioned cryptographic functions is as hard as breaking these schemes.

For completeness, we write here the definitions of the Okamoto conference key sharing scheme and the
ElGamal public key encryption scheme as given in [9]:

Okamoto conference key sharing scheme. Bob picks r at random and sends to Alice c = gr. Alice picks
a random s and sends y = xs back. Bob computes yr−1

= gs which is the conference key they use. Since the
conference key is determined by Alice’s bits alone she can distribute the same key to all members of the
conference. Cracking this scheme needs computing the function OKg(grs,gr,mgxr) = m.

Modified ElGamal public key encryption scheme. Bob picks a random x and publishes y = gx as his public
key. To send a message m to Bob, Alice picks a random r and sends gr,myr. Bob can decode the message
by computing myr/(gr)x. To break the scheme one has to compute the function ELg(gx,gxr,mgr) = m.

7 Deterministic Sparse Approximation, Compressed Sensing & Sketching

7.1 Deterministic Sparse Fourier Approximation

We present a deterministic (universal and explicit) and efficient algorithm for sparse Fourier approximation.

Theorem 27 (sparse Fourier approximation). There exists a deterministic (universal and explicit) algorithm
that for every finite abelian group G, integer m≥ 0, reals t,ε > 0, and a complex-valued function f : G→C
s.t. L1( f̂ ) ≤ t, given G (by its generators and their orders), m, t, ε and oracle access to f , outputs a near
optimal m-terms approximation R for f s.t.

‖ f −R‖2
2 ≤ (1+ ε)‖ f −Ropt‖2

2

for Ropt the best m-terms approximation of f in the Fourier basis (up to finite precision). The running time
and query complexity of this algorithm is polynomial in log |G|, m/ε and t.

Proof Sketch. Our sparse Fourier approximation algorithm follows from our SFT algorithm via known
techniques for converting SFT algorithms to algorithms finding sparse Fourier approximation [23, 39] (c.f.,
[23], Theorem 9). Applying these techniques on our deterministic and efficient SFT algorithm results in
a deterministic and efficient algorithm for sparse Fourier approximation: The complexity analysis follows
by observing that in the proof of Theorem 9 in [23] the SFT algorithm is run with significance parameters
τ = poly(ε/m) and on functions f ′ for which L1( f̂ ′) ≤ L1( f̂ ) for f the input functions (where the latter is
true as f ′= f −∑α∈Γ valαχα for Γ a subset of the significant Fourier coefficients of size poly(log |G| ,m/ε, t)
and valα’s are approximations of the Fourier coefficients f̂ (α)’s). �

Robustness. The above algorithm for sparse Fourier approximation is robust to random noise of expected
absolute value at most O(ε/m) with probability .99 over the noise; in addition it is robust to any adversarial
noise η s.t. L1(η̂)≤ t. Furthermore, using the extension of our SFT algorithm for adversarial noise settings,
we obtain an algorithm for sparse Fourier approximation for the case of G = ZN that handles any adversarial
noise η s.t. ‖η‖2

2 = O(ε/m) in running time sub-linear in the domain size N and with query complexity
remains as in the above theorem, i.e., poly-logarithmic in N.
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7.2 Deterministic Compressed Sensing and Sketching

In recent years there’s growing interest in algorithms finding succinct approximate representations of vectors
x ∈ CN by short sketches s ∈ Ck (typically with k << N) such that given s one can recover a near optimal
m-sparse approximation R of x. Such sketches are useful for example in the context of streaming algorithms
[31, 40] where the data is too large to be represented explicitly, as well as in compressed sensing [10, 21]
where data acquisition already reads only the values requires for computing the sketch.

Our sparse Fourier approximation algorithm gives sketching and recovery algorithms for vectors x with
sparse representation in their Fourier basis. The sketch is the (explicit) set of entries read by the algorithm.
The recovery algorithm is our algorithm finding sparse Fourier approximation. The sketch length and the
running time of the recovery algorithm are polynomial in logN, m/ε and L1(x̂) (for L1(x̂) the sum of absolute
values of the entries of the Fourier transform of x).

Furthermore, by a change-of-basis we obtain sketching and recovery algorithms for vectors x with sparse
representation in the standard basis L1(x) = ∑

N
i=1 |xi| ≤ poly logN with sketch length and the running time

of the recovery algorithm polynomial in logN, m/ε and L1(x). This is because as noted in [32] (see footnote
2 there), any algorithm for sparse Fourier approximation reading k entries gives an algorithm for sparse
approximation in the standard basis making k linear measurements computing inner product of x with ap-
propriate rows of the (inverse) Fourier matrix. The running time of the recovery algorithm is not affected by
this change of basis.

Theorem 28 (Sparse recovery for compressed sensing and sketching). There exists two deterministic (ex-
plicit and universal) algorithms: (1) A measurement generating algorithm that, given integers N,m > 0 and
reals t,ε > 0, outputs a measurement matrix A ∈ Cpoly(logN,m/ε,t)×N; and (2) A recovery algorithm, given
integers N,m > 0, reals t,ε > 0 and the measurements Ax for any every vector x ∈ CN s.t. ∑

N
i=1 |xi| ≤ t,

outputs an m-terms approximation R ∈ CN s.t.

‖x−R‖2
2 ≤ (1+ ε)‖x−Ropt‖2

2

for Ropt the best m-terms approximation of x in the standard basis. The running time of the both these
algorithms is polynomial in logN, m/ε and t. The recovery algorithm is robust to random noise η of
parameter O(ε/m) and to adversarial noise η of L1(η)≤ t.

8 Robust SFT: Handling Adversarial Noise in Sub-Linear Time

We present a deterministic (universal and explicit) SFT algorithm that handles adversarial noise of bounded
‖η‖2

2 in sub-linear time. We focus here on the case of functions over ZN ; the algorithm extends to functions
over arbitrary finite abelian groups, details omitted.

Theorem 29. There is a deterministic algorithm that for every positive integer N, reals τ, t > 0, and functions
f , f ′ : ZN → C s.t. L1( f̂ ) ≤ t, and ‖ f ′− f‖2

2 = O(τ), given N, τ and oracle access to f ′, outputs a list L ⊇
Heavyτ( f ) together with O(τ)-approximations for f̂ (α) ∀α ∈ L in query complexity q = poly(logN,1/τ, t)
and in running time NO(ε/τ) ·O(q/τ1.5).

We remark that this result extends to other finite abelian groups.
Our robust algorithm is composed of two parts: (1) queries generating and (2) fixed queries SFT. The

queries generating part is identical to Algorithm 5. We describe the fixed queries part (Robust-SFT) and
sketch its analysis.
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Overview of the Robust-SFT algorithm. The high level of the Robust-SFT algorithm is similar to that of
the FQ-SFT algorithm: Both algorithms are binary search algorithms that progress via a sequence of adaptive
tests, where tests at depth ` in the search tree are designed to decide whether given length N/2` intervals
potentially contain significant Fourier coefficients of the input function. These tests are essentially achieved
by estimating the Fourier weight of the given interval (that is, the sum of squared Fourier coefficients of the
input function over this interval) and checking whether it exceeds a threshold O(τ). Since the lengths of
the considered intervals decrease exponentially with `, the algorithm zooms into the exact location of the
significant Fourier coefficients in logN search depth.

The Robust-SFT algorithm differ from the FQ-SFT algorithm on how each of these tests is executed.
In the FQ-SFT algorithm, tests at search tree depth ` use only the input function values f (x) on entries x in
the small set A−B` out of all entries S =

⋃logN
`=1 (A−B`), namely, on only a 1/ logN-fraction of the entries.

This is not robust against adversarial noise, because an adversary corrupting even only this 1/ logN-fraction
of the entries can diverge the entire search away from finding the significant Fourier coefficient (say, by
setting the values on these few entries to 0, thus convincing the algorithm that f has no significant Fourier
coefficients).

To overcome this weakness of the FQ-SFT algorithm, in the Robust-SFT algorithm, tests at each search
tree depth ` (test `, in short) are executed relying on many more entries of the input function. Specifically,
each test ` is composed of O(ε/τ) logN sub-tests enumerated by ˜̀= `, . . . , ` + O(ε/τ) logN, where each
sub-test ˜̀is executed using entries in A−B˜̀. The outcome of test ` is determined by the majority vote over
all sub-test ˜̀.

Each of those sub-tests ˜̀operates as follows. In sub-test ˜̀, entries A−B˜̀ are used for estimating the

Fourier weight of length N/2` > N/2˜̀ intervals as follows: The given length N/2` interval is divided into
sub-intervals of length N/2˜̀ and the Fourier weight of each of these intervals is estimated using A−B˜̀
(where the latter is achieved in the same manner as it is done in the FQ-SFT algorithm). The Fourier weight
of the entire interval is the sum of the Fourier weights of all its parts. (More precisely, instead of taking the
sum of Fourier weights, we decide that an interval potentially contains a significant Fourier coefficient if
any of the sub-intervals exceeds the appropriate threshold O(τ).)

Overview of the analysis of the Robust-SFT algorithm. Correctness. The tests of the Robust-SFT
algorithm are robust, because an adversary flipping at most ε-fraction of the entries in S cannot change the
majority vote over all O(ε/τ) logN sub-tests. Thus, despite the noise, each test of the Robust-SFT algorithm
returns the correct outcome. This implies the success of the entire algorithm similarly to the analysis of the
FQ-SFT algorithm.

Complexity. The running time of the Robust-SFT is dominated by NO(ε/τ). This is because the num-
ber of sub-intervals in each sub-test ˜̀ of test ` is (N/2`)/(N/2˜̀) = 2˜̀−`, which is NO(ε/τ) when ˜̀=
`+O(ε/τ) logN.

We remark that while this running time is far worse than the poly logN running time of the FQ-SFT
algorithm, yet, it is far better than the N · poly(logN) running time of the trivial exhaustive search algorithm.
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A Definitions of the Okamoto and ElGamal schemes

For completeness, we write here the definitions of the Okamoto conference key sharing scheme and the
modified ElGamal public key encryption scheme as given in [9]:

Okamoto conference key sharing scheme. Bob picks r at random and sends to Alice c = gr. Alice picks
a random s and sends y = xs back. Bob computes yr−1

= gs which is the conference key they use. Since the
conference key is determined by Alice’s bits alone she can distribute the same key to all members of the
conference. Cracking this scheme needs computing the function OKg(grs,gr,mgxr) = m.

Modified ElGamal public key encryption scheme. Bob picks a random x and publishes y = gx as his public
key. To send a message m to Bob, Alice picks a random r and sends gr,myr. Bob can decode the message
by computing myr/(gr)x. To break the scheme one has to compute the function ELg(gx,gxr,mgr) = m.
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