
On Basing One-Way Functions on NP-Hardness

Adi Akavia
MIT

Cambridge, MA

akavia@mit.edu

Oded Goldreich
Weizmann Institute

Rehovot, Israel

oded.goldreich@weizmann.ac.il

Shafi Goldwasser
MIT

Cambridge, MA

shafi@theory.csail.mit.edu

Dana Moshkovitz
Weizmann Institute

Rehovot, Israel

dana.moshkovitz@weizmann.ac.il

ABSTRACT
We consider the possibility of basing one-way functions on
NP-Hardness; that is, we study possible reductions from
a worst-case decision problem to the task of average-case
inverting a polynomial-time computable function f . Our
main findings are the following two negative results:

1. If given y one can efficiently compute |f−1(y)| then
the existence of a (randomized) reduction of NP to
the task of inverting f implies that coNP ⊆ AM.
Thus, it follows that such reductions cannot exist un-
less coNP ⊆ AM.

2. For any function f , the existence of a (randomized)
non-adaptive reduction of NP to the task of average-
case inverting f implies that coNP ⊆ AM.

Our work builds upon and improves on the previous works
of Feigenbaum and Fortnow (SIAM Journal on Computing,
1993) and Bogdanov and Trevisan (44th FOCS, 2003), while
capitalizing on the additional “computational structure” of
the search problem associated with the task of inverting
polynomial-time computable functions. We believe that our
results illustrate the gain of directly studying the context of
one-way functions rather than inferring results for it from a
the general study of worst-case to average-case reductions.

Categories and Subject Descriptors
F.1.3 [Complexity Measures and Classes]: Reducibility
and completeness, Complexity hierarchies.

General Terms
Theory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

Keywords
One-Way Functions, Average-Case complexity, Reductions,
Adaptive versus Non-adaptive machines, Interactive Proof
Systems.

1. INTRODUCTION
One-way functions are functions that are easy to com-

pute but hard to invert, where the hardness condition refers
to the average-case complexity of the inverting task. The
existence of one-way functions is the cornerstone of modern
cryptography: almost all cryptographic primitives imply the
existence of one-way functions, and most of them can be
constructed based either on the existence of one-way func-
tions or on related (but seemingly stronger) versions of this
assumption.

As noted above, the hardness condition of one-way func-
tions is an average-case complexity condition. Clearly, this
average-case hardness condition implies a worst-case hard-
ness condition; that is, the existence of one-way functions
implies that NP is not contained in BPP. A puzzling ques-
tion of fundamental nature is whether or not the necessary
worst-case condition is a sufficient one; that is, can one base
the existence of one-way functions on the assumption that
NP is not contained in BPP.

More than two decades ago, Brassard [12] observed that
the inverting task associated with a one-way permutation
cannot be NP-hard, unless NP = coNP. The question
was further addressed in the works of Feigenbaum and Fort-
now [15] and Bogdanov and Trevisan [11], which focused
on the study of worst-case to average-case reductions among
decision problems.

1.1 Our Main Results
In this paper we re-visit the aforementioned question, but

do so explicitly. We study possible reductions from a worst-
case decision problem to the task of average-case inverting a
polynomial-time computable function (i.e., reductions that
are supposed to establish that the latter function is one-
way based on a worst-case assumption regarding the decision
problem). Specifically, we consider (randomized) reductions
of NP to the task of average-case inverting a polynomial-
time computable function f , and capitalize on the additional
“computational structure” of the search problem associated

with inverting f . This allows us to strengthen previously
known negative results, and obtain the following two main
results:

1. If given y one can efficiently compute |f−1(y)| then
the existence of a (randomized) reduction of NP to
the task of inverting f implies that coNP ⊆ AM.

The result extends to functions for which the preimage
size is efficiently verifiable via an AM protocol. For
example, this includes regular functions (cf., e.g., [20])
with efficiently recognizable range.

Recall that AM is the class of sets having two-round
interactive proof systems, and that it is widely be-
lieved that coNP is not contained in AM. Thus,
it follows that such reductions cannot exist (unless
coNP ⊆ AM).

We stress that this result holds for any reduction, in-
cluding adaptive ones. We note that the previously
known negative results regarding worst-case to average-
case reductions were essentially confined to non-adaptive
reductions (cf. [15, 11], where [15] also handles re-
stricted levels of adaptivity). Furthermore, the re-
sult holds also for reductions to worst-case inverting f ,
thus establishing a separation between this restricted
type of one-way functions and the general ones (see
Remark 7).

2. For any (polynomial-time computable) function f , the
existence of a (randomized) non-adaptive reduction of
NP to the task of average-case inverting f implies that
coNP ⊆ AM.

This result improves over the previous negative results
of [15, 11] that placed coNP in non-uniform AM (in-
stead of in uniform AM).

These negative results can be interpreted in several ways:
see discussion in Section 3.

1.2 Relation to Feigenbaum-Fortnow and
Bogdanov-Trevisan

Our work is inspired by two previous works. The first
work, by Feigenbaum and Fortnow [15], posed the question
of whether or not NP-complete problems can be random
self-reducible. That is, can (worst case) instances of NP-
complete problems be reduced to one or more random in-
stances, where the latter instances are drawn according to a
predetermined distribution. The main result of [15] is that if
such (non-adaptive) reductions exist, then coNP is in a non-
uniform version of AM, denoted AMpoly. Non-uniformity
was used in their work to encode statistics about the target
distribution of the reduction.

Bogdanov and Trevisan [11] start by viewing the result
of [15] as a result about the impossibility of worst-case to
average-case reductions for NP-complete problems. They
note that even if one cares about the average-case complex-
ity of a problem with respect to a specific distribution (e.g.,
the uniform one) then it needs not be the case that a worst-
case to average-case reduction must make queries accord-
ing to this distribution. Furthermore, the distribution of
queries may depend on the input to the reduction, and so
statistics regarding it cannot be given as advice. Neverthe-
less, combining the ideas of [15] with additional ideas (some
borrowed from the study of locally-decodable codes [27]),

Bogdanov and Trevisan showed that any non-adaptive re-
duction of (worst-case) NP to the average-case complexity
of NP (with respect to any sampleable distribution) implies
that coNP ⊆ AMpoly.

Although a main motivation of [11] is the question of bas-
ing one-way functions on worst-case NP-hardness, its fo-
cus (like that of [15]) is on the more general study of de-
cision problems. Using known reductions between search
and decision problems in the context of distributional prob-
lems [9, 26], Bogdanov and Trevisan [11] also derive impli-
cations on the (im)possibility of basing one-way functions
on NP-hardness. In particular, they conclude that if there
exists an NP-complete set for which deciding any instance
is non-adaptively reducible to inverting a one-way function
(or, more generally, to a search problem with respect to a
sampleable distribution), then coNP ⊆ AMpoly.

We emphasize that the techniques of [11] refer explicitly
only to decision problems, and do not relate to the under-
lying search problems (e.g., inverting a supposedly one-way
function). In doing so, they potentially lose twice: they lose
the extra structure of search problems and they lose the ad-
ditional structure of the task of inverting polynomial-time
computable functions. To illustrate the latter aspect, we re-
formulate the problem of inverting a polynomial-time com-
putable function as follows (or rather spell out what it means
in terms of search problems). The problem of (average-case)
inverting f on the distribution f(Un), where Un denotes the
uniform distribution over {0, 1}n, has the following features:

1. We care about the average-case complexity of the prob-
lem; that is, the probability that an efficient algorithm
given a random (efficiently sampled) instance y (i.e.,
y ← f(Un)) finds x ∈ f−1(y).

2. The problem is in NP; that is, the solution is relatively
short and given an instance of the problem (i.e., y) and
a (candidate) solution (i.e., x), it is easy to verify that
the solution is correct (i.e., y = f(x)).

3. There exists an efficient algorithm that generates ran-
dom instance-solution pairs (i.e., pairs (y, x) such that
y = f(x), for uniformly distributed x ∈ {0, 1}n).

Indeed, the first two items are common to all average-case
NP-search problems (with respect to sampleable distribu-
tions), but the third item is specific to the context of one-
way functions (cf. [18, Sec. 2.1]). In contrast, a generic
sampleable distribution of instances is not necessarily cou-
pled with a corresponding sampleable distribution of ran-
dom instance-solution pairs. Indeed, capitalizing on the
third item is the source of our success to obtain stronger
(negative) results regarding the possibility of basing one-
way functions on NP-hardness.

The results of [11, 15] are limited in two ways. First,
they only consider non-adaptive reductions, whereas the
celebrated worst-case to average-case reductions of lattice
problems (cf. [3, 29]) are adaptive. Furthermore, these pos-
itive results seem to illustrate the power of adaptive versus
non-adaptive reductions.1 Second, [11, 15] reach conclusions
involving a non-uniform complexity class (i.e., AMpoly).

1We comment that the power of adaptive versus non-
adaptive reductions has been studied in various works (e.g.,
[16, 24, 6]). It is known that if NP 6⊆ BPE, then there
exists a set in NP \ BPP that is adaptively random self-
reducible but not non-adaptively random self-reducible.

Non-uniformity seems an artifact of their techniques, and
one may hope to conclude that coNP ⊆ AM rather than
coNP ⊆ AMpoly. (One consequence of the uniform con-
clusion is that it implies that the polynomial-time hierarchy
collapses to the second level, whereas the non-uniform con-
clusion only implies a collapse to the third level.) As stated
before, working directly with one-way functions allows us to
remove the first shortcoming in some cases and remove the
second shortcoming in all cases.

1.3 The Benefits of Direct Study of One-Way
Functions

The results presented in this paper indicate the gains of
studying the question of basing one-way functions on NP-
hardness directly, rather than as a special case of a more
general study. The gains being, getting rid of the non-
uniformity altogether, and obtaining a meaningful negative
result for the case of general (adaptive) reductions. Specif-
ically, working directly with one-way functions allows us to
consider natural special cases of potential one-way functions
and to establish stronger negative results for them (i.e.,
results regarding general rather than non-adaptive reduc-
tions).

In particular, we consider polynomial-time computable
functions f for which, given an image y, one can verify the
number of preimages of y under f via a constant-round pro-
tocol. We call such functions size-verifiable, and show that
the complexity of inverting them resembles the complex-
ity of inverting polynomial-time computable permutations
(and is separated from the complexity of inverting general
polynomial-time computable functions, see Remark 7).

Indeed, the simplest case of size-verifiable functions is that
of a permutation (i.e., a length-preserving 1-1 function).
Another interesting special case is that of regular functions
that have an efficiently recognizable range, where f is reg-
ular if each image of f has a number of preimages that is
determined by the length of the image. We prove that any
reduction (which may be fully adaptive) of NP to inverting
such a function f implies coNP ⊆ AM. Indeed, this is a
special case of our result that holds for any size-verifiable
function f .

We remark that, in the context of cryptographic construc-
tions, it has been long known that dealing with regular one-
way functions is easier than dealing with general one-way
functions (see, e.g., [20, 19, 13, 23]). For example, construc-
tions of pseudorandom generators were first shown based
on one-way permutation [10, 30], followed by a construction
that used regular one-way functions [20], and culminated in
the complex construction of [25] that uses any one-way func-
tion. Our work shows that regularity of a function (or, more
generally, size-verifiability) is important also for classifying
the complexity of inverting f , and not only the ease of using
it within cryptographic constructions.

Summary. We believe that the study of the possibility of
basing one-way functions on worst-case NP-hardness is the
most important motivation for the study of worst-case to
average-case reductions for NP. In such a case, one should
consider the possible gain from studying the former ques-
tion directly, rather than as a special case of a more general
study. We believe that the results presented in this paper
indicate such gains. We hope that this framework may lead
to resolving the general question of the possibility of bas-
ing the existence of general one-way functions on worst-case

NP-hardness via general reductions.

1.4 Techniques
Our results are proved by using the hypothetical existence

of corresponding reductions in order to construct constant-
round interactive proof systems for coNP (and using [5, 22]
to conclude that coNP ⊆ AM). Towards this end we de-
velop constant-round protocols for verifying the size of var-
ious “NP-sets” (or rather to sets of NP-witnesses for given
instances in some predetermined NP-sets).2 Recall that
lower-bound protocols for this setting are well-known (cf.,
e.g., Goldwasser and Sipser [22] and [21]), but the known
upper-bound protocol of Fortnow [17] (see also [2, 11]) works
only when the verifier knows a “secret” element in the set.
The latter condition severely limits the applicability of this
upper-bound protocol, and this is the source of all technical
difficulties encountered in this work.

To overcome the aforementioned difficulties, we develop
two new constant-round protocols for upper bounding the
sizes of NP sets. These protocols suffice for our applica-
tions, and may be useful also elsewhere. The two protocols
are inspired by the works of Feigenbaum and Fortnow [15]
and Bogdanov and Trevisan [11], respectively, and extend
the scope of the original ideas.

The first protocol, called confidence by comparison, sig-
nificantly extends the main idea of Feigenbaum and Fort-
now [15]. The common setting consists of a verifier that
queries a prover such that the following two conditions hold:

1. The prover may cheat (without being detected) only in
“one direction”: For example, in the decision problem
setting of [15], the prover may claim that some yes-
instances (of an NP-set) are no-instances (but not the
other way around since it must support such claims by
NP-witnesses). In our setting (of verifying set sizes)
the prover may claim that sets are smaller than their
actual size, but cannot significantly overestimate the
size of sets (due to the use of a lower-bound protocol).

2. The verifier can obtain (reliable) statistics regarding
the distribution of answers to random instances. In [15]
the relevant statistics is the frequency of yes-instances
in the distribution of instances of a certain size, which
in turn is provided as non-uniform advice. In our set-
ting the statistics is the expected logarithm of the size
of a random set (drawn from some distribution), and
this statistics can be generated by randomly selecting
sets such that the upper-bound protocol of [17] (and
not merely the lower-bound protocols of [22, 21]) can
be applied.

Combining the limited (“one directional”) cheating of Type 1
with the statistics of Type 2 yields approximately correct an-
swers for the questions that the verifier cares about. In [15]
this means that almost all queried instances are character-
ized correctly, while in our setting it means that for almost
all sets sizes we obtain good approximations.

The second protocol abstracts a central idea of Bogdanov
and Trevisan [11], and is based on “hiding” (from the prover)
queries of interest among queries drawn from a related dis-
tribution. This protocol can be used whenever an “NP-set”

2That is, for a witness relation R that corresponds to some
NP-set S = {x : ∃y (x, y)∈R}, we consider the sets R(x) =
{y : (x, y)∈R} for various x ∈ S.

is drawn from a distribution D and the verifier can also
sample sets from another distribution D̃ that has the fol-
lowing two properties: (a) There exists an constant-round

protocol for proving upper bounds on sets drawn from D̃,

and (b) the distribution D̃ dominates D in the sense that
PrS∼D[S] ≤ λ ·PrS∼D̃[S], where λ is polynomial in the rele-
vant efficiency parameter. We stress that the protocol pos-
tulated in (a) need not be the upper-bound protocol of [17];
it may also be a confidence by comparison protocol as out-
lined in the previous paragraph.

1.5 Organization
In Section 2, we provide an overview of our proofs as well

as a formal statement of our main results. Detailed proofs
can be found in our technical report [4]. In Section 3 we
discuss possible interpretations of our negative results.

2. OVERVIEW OF RESULTS AND PROOFS
Having observed the potential benefit of working explic-

itly with the problem of inverting a polynomial-time com-
putable function f , materializing this benefit represents the
bulk of the technical challenge and the technical novelty of
the current work.

Let us first clarify what we mean by saying that a deci-
sion problem L is (efficiently and randomly) reducible to the
problem of inverting a (polynomial-time computable) func-
tion f . We take the straightforward interpretation (while
using several arbitrary choices, like in setting the threshold
determining the definition of an inverting oracle):

Definition 1 (inverting oracles and reductions).
A function O : {0, 1}∗ → {0, 1}∗ is called an (average-case)
f -inverting oracle if, for every n, it holds that Pr[O(f(x)) ∈
f−1(f(x))] ≥ 1/2, where the probability is taken uniformly
over x ∈ {0, 1}n.

For a probabilistic oracle machine R, we denote by RO(w)
a random variable representing the output of R on input w
and access to oracle O, where the probability space is taken
uniformly over the probabilistic choices of machine R (i.e.,
its randomness).

A probabilistic polynomial-time oracle machine R is called
a reduction of L to (average-case) inverting f if, for every
w ∈ {0, 1}∗ and any f-inverting oracle O, it holds that
Pr[RO(w) = χL(w)] ≥ 2/3, where χL(w) = 1 if w ∈ L
and χL(w) = 0 otherwise.

A reduction as in Definition 1 may only establish that f
is a i.o. and weak3 one-way function (i.e., that f cannot
be inverted with probability exceeding 1/2 on every input
length), which makes our impossibility results even stronger.
Throughout this work, the function f will always be polynomial-
time computable, and for simplicity we will also assume that
it is length preserving (i.e., |f(x)| = |x| for all x).

3In contrast, the standard definition of one-way function re-
quires that any efficient inverting algorithm succeeds with
negligible probability (i.e., probability that is smaller than
1/poly(n) on all but finitely many n’s). Here we relax the
security requirement in two ways (by requiring more of a
successful inverting algorithm): first, we require that the in-
verting algorithm be successful on any input length (hence
hardness only occurs i.o.), and second that the success prob-
ability exceeds 1/2 rather than an arbitrary small 1/poly(n)
(hence the term “weak”).

Let us take a closer look at the reduction R. On input
w, it may ask polynomially many queries to the inverting
oracle. In adaptive reductions, later queries may depend
on the oracle answers to earlier queries. In non-adaptive
reductions all queries are computed in advance (based solely
on the input w and the randomness of the reduction, denoted
r). For simplicity, we will assume throughout this section
that all queries are of length |w|.

High-level structure of our proofs and their chal-
lenges. Suppose, that there exists a reduction R from de-
ciding membership in L to inverting the function f . We aim
to use this reduction to give an constant-round protocol for
L, and conclude that if L is NP-complete (or just NP-hard)
then coNP ⊆ AM. (We mention that a similar constant-
round protocol can be given for L itself, but we have no need
for the latter protocol.)

As in [15, 11], the main backbone of our constant-round
protocol for L is an emulation of the reduction R on input w
(i.e., the common input of the protocol), which in turn yields
an output indicating whether or not w ∈ L. Of course, the
verifier cannot emulate the reduction on its own, because the
reduction requires access to an f -inverting oracle. Instead,
the prover will play the role of the inverting oracle, thus
enabling the emulation of the reduction. Needless to say, the
verifier will check that all answers are actually f -preimages
of the corresponding queries (and for starters we will assume
that all queries are in the image of f). Since we aim at a
constant-round protocol, we send all queries to the prover
in one round, which in the case of an adaptive reduction
requires sending the randomness r of the reduction to the
prover. Note that also in the non-adaptive case, we may
as well just send r to the prover, because the prover may
anyhow be able to determine r from the queries.

The fact that r is given (explicitly or implicitly) to the
prover is the source of all difficulties that follow. It means
that the prover need not answer the queries obliviously of
other queries (or of r), but may answer the queries depend-
ing on r. In such a case, the prover’s answers (when con-
sidering all possible r) are not consistent with any single
oracle. Indeed, all these difficulties arise only in case f is
not 1-1 (and indeed in case f is 1-1 the correct answer is
fully determined by the query). We stress that the entire
point of this study is the case in which f is not 1-1. In the
special case that f is 1-1 (and length preserving), inverting f
cannot be NP-hard for rather obvious reasons (as has been
well-known for a couple of decades; cf. [12]).4

To illustrate what may happen in the general case, con-
sider a 2-to-1 function f . Note that an arbitrary reduction
of L to inverting f may fail in the rare case that the choice
of the f -preimages returned by the oracle (i.e., whether the
query y is answered by the first or second element in f−1(y))

4Intuitively, inverting such an f (which is a search problem
in which each instance has a unique solution) corresponds
to a decision problem in NP∩coNP (i.e., given (y, i) deter-
mine the i-th bit of f−1(y)). Thus, the fact that inverting
f cannot be NP-hard (unless NP = coNP) is analogous
to the fact that sets in NP ∩ coNP cannot be NP-hard
(again, unless NP = coNP). In contrast, in case f is not 1-
1, the corresponding decision problems are either not known
to be in NP∩coNP or are promise problems (cf. [14]) in the
“promise problem class” analogue of NP ∩ coNP. Recall
that promise problems in the latter class may be NP-hard
even if NP 6= coNP (see [14]).

matches the reduction’s internal coin tosses.5 This event
may occur rarely in the actual reduction (no matter which
f -inverting oracle it uses), but a cheating prover may always
answer in a way that matches the reduction’s coins (hence
violating the soundness requirement of the protocol).

A different way of looking at things is that the reduction
guarantees that, for any adequate (f -inverting) oracle O,
with probability 2/3 over the choices of r, machine R de-
cides correctly when given oracle access to O. However, it is
possible that for every r there exists an oracle Or such that
R, when using coins r, decides incorrectly when given oracle
access to Or. If this is the case (which we cannot rule out)
then the prover may cheat by answering like the bad oracle
Or.

In the rest of this section, we provide an outline of how
we deal with this difficulty in each of the two cases (i.e.,
size-verifiable functions and non-adaptive reductions).

2.1 Size-Verifiablef (Adaptive Reductions)
Recall that our aim is to present an constant-round proto-

col for L, when we are given a general (adaptive) reduction
R of the (worst-case) decision problem of L to inverting
f . We denote by q the number of queries made by R, by
R(w, r, a1, ..., ai−1) the i-th query made by R on input w and
randomness r after receiving the oracle answers a1, ..., ai−1,
and by R(w, r, a1, ..., aq) the corresponding final decision.
Recall that for simplicity, we assume that all queries are of

length n
def
= |w|. In the bulk of this subsection we assume

that, given y, one can efficiently determine |f−1(y)|.
A very simple case. As a warm-up we first assume that
|f−1(y)| ≤ poly(|y|), for every y. In this case, on common
input w, the parties proceed as follows.

1. The verifier selects uniformly coins r for the reduction,
and sends r to the prover.

2. Using r, the prover emulates the reduction as follows.
When encountering a query y, the prover uses the
lexicographically first element of f−1(y) as the ora-
cle answer (and uses ⊥ if f−1(y) = φ). Thus, it ob-
tains the corresponding list of queries y1, ..., yq, which
it sends to the verifier along with the corresponding
sets f−1(y1), ..., f

−1(yq).

3. Upon receiving y1, ..., yq and A1, ..., Aq, the verifier
checks, for every i, that |Ai| = |f−1(yi)| and that
f(x) = yi for every x ∈ Ai. Letting ai denote the lex-
icographically first element of Ai, the verifier checks
that R(w, r, a1, ..., ai−1) = yi for every i. The verifier
accepts w (as a member of L) if and only if all checks
are satisfied and R(w, r, a1, ..., aq) = 0.

Note that the checks performed by the verifier “force” the
prover to emulate a uniquely determined (perfect) inverting
oracle (i.e., one that answers each query y with the lexico-
graphically first element of f−1(y)). Thus, the correctness

5For example, given an arbitrary reduction of L to inverting
f , consider a modified reduction that tosses n additional
coins ρ1, ..., ρn, issues n additional queries, and halts without
output if and only if for i = 1, ..., n the i-th additional query
is answered with the (ρi + 1)-st corresponding preimage (in
lexicographic order). This reduction works with probability
that is very close to the original one, but a cheating prover
can always cause its emulation to halt without output.

of the reduction implies the completeness and soundness of
the above constant-round protocol.

In general, however, the size of f−1(y), for y in the range
of f may not be bounded by a polynomial in n (where
n = |y| = |w|). In this case, we cannot afford to have
f−1(y) as part of a message in the protocol (because it
is too long). The natural solution is to have the verifier
send a random hash function h : {0, 1}n → {0, 1}`, where
` = b(log2 |f−1(y)|/poly(n))c, and let the prover answer
with h−1(0`)∩f−1(y) (rather than with f−1(y)). The prob-
lem is that in this case the verifier cannot check the “com-
pleteness” of the list of preimages (because it cannot com-
pute |h−1(0`) ∩ f−1(y)|), which allows the prover to omit a
few members of h−1(0`) ∩ f−1(y) at its choice. Recall that
this freedom of choice (of the prover) may obliterate the
soundness of the protocol.

The solution is that, although we have no way of deter-
mining the size of h−1(0`) ∩ f−1(y), we do know that its
expected size is exactly |f−1(y)|/2`, where the expectation
is taken over the choice of h (assuming that a random h
maps each point in {0, 1}n uniformly on {0, 1}`). Further-
more, the prover cannot add elements to h−1(0`) ∩ f−1(y)
(because the verifier can verify membership in this set), it
can only omit elements. But if the prover omits even a sin-
gle element, it ends-up sending a set that is expected to be
noticeably smaller than |f−1(y)|/2` (because the expected
size of h−1(0`) ∩ f−1(y) is a polynomial in n). Thus, if we
repeat the process many times, the prover cannot afford to
cheat in most of these repetitions, because in that case the
statistics will deviate from the expectation by too much.

Before turning to the specific implementation of this idea,
we mention that the above reasoning corresponds to the
confidence by comparison paradigm outlined in Section 1.4.
Specifically, the prover may cheat (without being detected)
only in one direction; that is, the prover may send a proper
subset of a set of preimages under f and h (rather than
the set itself), but it cannot send elements not in this set
because membership in the set is efficiently verifiable by the
verifier.

Protocol for the general case. In the following protocol
we use families of hash functions of very high quality (e.g.,
poly(n)-wise independent ones). Specifically, in addition to
requiring that a random h : {0, 1}n → {0, 1}` maps each
point uniformly, we require that, for a suitable polynomial p
and for any S ⊆ {0, 1}n of size at least p(n) · 2`, with over-
whelmingly high probability over the choice of h it is the
case that |h−1(0`) ∩ S| < 2|S|/2`. In particular, the proba-
bility that this event does not occur is so small that, when
conditioning on this event, the expected size of |h−1(0`)∩S|
is (1±2−n)·|S|/2`. (Thus, under this conditioning and for S
as above, the variance of 2`|h−1(0`)∩ S|/|S| is smaller than
2.)

1. The verifier selects uniformly m = n·q2p(n)2 = poly(n)

sequences of coins, r(1), ..., r(m) for the reduction, and
sends them to the prover. In addition, for each k =
1, ..., m, i = 1, ..., q and ` = 1, ..., n, it selects and sends
a random hash function hk,i,` : {0, 1}n → {0, 1}`.
To streamline the following description, for j ≤ 0, we

artificially define hk,i,j such that h−1
k,i,j(0

j)
def
= {0, 1}n.

In such a case, S ∩ h−1
k,i,j(0

j) = S, and so an instruc-
tion to do something with the former set merely means
using the latter set.

2. For every k = 1, ..., m, the prover uses r(k) to emulate
the reduction as follows. When encountering the i-th

query, y
(k)
i , it determines `

(k)
i = b(log2 |f−1(y

(k)
i)|/p(n))c,

and uses the lexicographically first element of f−1(y
(k)
i)∩

h−1

k,i,`
(k)
i

(0`
(k)
i) as the oracle answer (and uses ⊥ if the

latter set is empty).6 Thus, it obtains the correspond-

ing list of queries y
(k)
1 , ..., y

(k)
q , which it sends to the

verifier along with the corresponding sets f−1(y
(k)
1) ∩

h−1

k,1,`
(k)
1

(0`
(k)
1), ..., f−1(y

(k)
q) ∩ h−1

k,q,`
(k)
q

(0`
(k)
q).

We assume that none of the latter sets has size greater
than 4p(n). Note that the bad event occurs with neg-
ligible probability, and in such a case the prover halts
and the verifier rejects. (Otherwise, all mq sets are
sent in one message.)

3. Upon receiving y
(1)
1 , ..., y

(1)
q , ..., y

(m)
1 , ..., y

(m)
q and

A
(1)
1 , ..., A

(1)
q , ..., A

(m)
1 , ..., A

(m)
q , the verifier conducts the

following checks:

(a) For every k = 1, ..., m and i = 1, ..., q, the veri-

fier checks that for every x ∈ A
(k)
i it holds that

f(x) = y
(k)
i and h

k,i,`
(k)
i

(x) = 0`
(k)
i , where `

(k)
i =

b(log2 |f−1(y
(k)
i)|/p(n))c is efficiently computable

due to the “size-computation” hypothesis. Let-

ting a
(k)
i be the lexicographically first element

of A
(k)
i , it checks that R(w, r(k), a

(k)
1 , ..., a

(k)
i−1) =

y
(k)
i .

(b) For every i = 1, ..., q, it checks that

1

m
·

m∑
k=1

2`
(k)
i · |A(k)

i |
|f−1(y

(k)
i)|

> 1− 1

100q · p(n)
(1)

where 0/0 is defined as 1.

The verifier accepts w if and only if all the foregoing
checks are satisfied and it holds that

R(w, r(k), a
(k)
1 , ..., a(k)

q) = 0

for a uniformly selected k ∈ {1, ..., m}.

Analysis of the Protocol. We first note that the ad-
ditional checks added to this protocol have a negligible ef-
fect on the completeness condition: the probability that ei-

ther |f−1(y
(k)
i) ∩ h−1

k,i,`
(k)
i

(0`
(k)
i)| > 4p(n) for some i, k or

that Eq. (1) is violated for some i is exponentially van-
ishing.7 Turning to the soundness condition, we note that
the checks performed by the verifier force the prover to use

6Note that if |f−1(y
(k)
i)| = 0 then the oracle answer is de-

fined as ⊥. The formally inclined reader may assume that
in this case log2 0 is defined arbitrarily.
7Recall that here we refer to the case that A

(k)
i = f−1(y

(k)
i)∩

h−1

k,i,`
(k)
i

(0`
(k)
i). Thus, regarding Eq. (1), we note that the

l.h.s is the average of m independent random variables,
each having constant variance. Applying Chernoff bound,
the probability that Eq. (1) is violated is upper-bounded by
exp(−Ω(m/(100q · p(n))2)) = exp(−Ω(n)).

A
(k)
i ⊆ T

(k)
i

def
= f−1(y

(k)
i) ∩ h−1

k,i,`
(k)
i

(0`
(k)
i). Also, with over-

whelmingly high probability, for every i = 1, ..., q, it holds
that

1

m
·

m∑
k=1

2`
(k)
i · |T (k)

i |
|f−1(y

(k)
i)|

< 1 +
1

100q · p(n)
(2)

Combining Eq. (1) and Eq. (2), and recalling that A
(k)
i ⊆

T
(k)
i (and |f−1(y

(k)
i)| < 2p(n) · 2`

(k)
i), it follows that (1/m) ·∑m

k=1(|T
(k)
i \A

(k)
i |/2p(n)) < 2/(100q·p(n)) for every i. Thus,

for each i, the probability over a random k that A
(k)
i 6=

T
(k)
i is at most 1/25q. It follows that for a random k, the

probability that A
(k)
i = T

(k)
i for all i’s is at least 1− (1/25).

In this case, the correctness of the reduction implies the
soundness of the foregoing constant-round protocol.

Extension. The foregoing description presumes that the
verifier can determine the size of the set of f -preimages of
any string. The analysis can be easily extended to the case
that the verifier can only check the correctness of the size
claimed and proved by the prover. That is, we refer to the
following definition.

Definition 2 (Size Verifiable). We say that a func-
tion f : {0, 1}∗ → {0, 1}∗ is size verifiable if there is a constant-
round proof system for the set {(y, |f−1(y)|) : y ∈ {0, 1}∗}.

A natural example of a function that is size verifiable (for
which the relevant set is not known to be in BPP) is the
integer multiplication function. That is, we consider the
function that maps pairs of integers (which are not neces-
sarily prime or of the same length) to their product. In this
case the set {(y, |f−1(y)|) : y ∈ {0, 1}∗} is in NP (i.e., the
NP-witness is the prime factorization) but is widely believed
not to be in BPP (e.g., it is believed to be infeasible to dis-
tinguish product of two (n/2)-bit random primes from the
product of three (n/3)-bit long random primes).

Theorem 3 (Adaptive Reductions). Unless coNP ⊆
AM, there exists no reduction (even not an adaptive one)
from deciding an NP-hard language to inverting a size-verifiable
polynomial-time computable function.

In other words, it is unlikely that the existence of size-
verifiable one-way functions can be based on NP-hardness.
We note that the result can be extended to functions that are
“approximately size-verifiable” (covering the “approximable
preimage-size” function of [23] as a special case).

Remark 4. The proof of Theorem 3 does not utilize the
fact that the oracle accessed by the reduction is allowed to
err on some of the queries. Thus, the proof holds also for
the case of reductions to the task of inverting f in the worst-
case (i.e., inverting f on every image). It follows that, un-
less coNP ⊆ AM, there exist no reductions from NP to
inverting in the worst-case a size-verifiable polynomial-time
computable function.

2.2 Non-Adaptive Reductions (Generalf)
We now turn to outline the proof of our second main re-

sult. Here we place no restrictions on the function f , but do
restrict the reductions.

Theorem 5 (General Functions). Unless coNP ⊆
AM, there exists no non-adaptive reduction from decid-
ing an NP-complete language to inverting a polynomial-time
computable function.

Considering the constant-round protocol used in the adap-
tive case, we note that in the current case the verifier cannot
necessarily compute (or even directly verify claims about)
the size of sets of f -preimages of the reduction’s queries.
Indeed, known lower-bound protocols (cf. [22]) could be
applied to these sets, but known upper-bound protocols
(cf. [17]) cannot be applied because they require that the ver-
ifier has a random secret member of these sets. Fortunately,
using the techniques described in Section 1.4 allows to over-
come this difficulty (for the case of non-adaptive reductions),
and to obtain constant-round protocols (rather than merely
non-uniform constant-round protocols) for coNP (thus, im-
plying coNP ⊆ AM).

Here R is a non-adaptive reduction of some set L ∈ NP
to the average-case inverting of an arbitrary (polynomial-
time computable) function f , and our goal again is to show
that L ∈ AM. We may assume, without loss of generality,
that the queries of R(w, ·) are identically distributed (but
typically not independently distributed), and represent this
distribution by the random variable Rw; that is, Pr[Rw =

y] = |{r ∈ {0, 1}n
′
: R(w, r)=y}|/2n′

, where n′ denotes the
number of coins used by R(w, ·).

Actually, our constructions do not rely on the non-adaptivity
of the reduction R, but rather on the fact that its queries
are distributed according to a single distribution (i.e., Rw)
that depends on w. We note that the treatment can be ex-
tended to the case that, for every i, the i-th query of R is
distributed in a manner that depends only on w and i (but
not on the answers to prior queries).

A simple case (queries distributed as f(Un)). We first
consider the (natural) case that R’s queries are distributed

identically to Fn
def
= f(Un), where Un denotes the uniform

distribution over {0, 1}n. Augmenting the protocol (for the
general case) presented in Section 2.1, we require the prover

to provide |f−1(y
(k)
i)| along with each query y

(k)
i made in

the emulation of R(w, r(k)).8 In order to verify that the
claimed set sizes are approximately correct, we require the
prover to provide lower-bound proofs (cf., [22]) and employ
the confidence by comparison paradigm. Specifically, to pre-
vent the prover from understating these set sizes, we com-

8Actually, a small modification is required for handling the
following subtle problem that refers to the possible control
of the prover on the hashing function being used in its an-
swer. Recall that the hashing function in use (for query
y) is determined by ` = b(log2 |f−1(y)|/p(n))c, but in the
setting of Section 2.1 the verifier knows |f−1(y)| and thus
the prover has no control on the value of `. In the cur-
rent context, the prover may be able to cheat a little about
the value of |f−1(y)|, without being caught, and this may
(sometimes) cause a change of one unit in the value of `
(and thus allow for a choice among two hash functions). We
resolve this problem by having the verifier “randomize” the
value of |f−1(y)| such that, with high probability, cheat-
ing a little about this value is unlikely to affect the value
of `. Specifically, as a very first step, the verifier selects
uniformly ρ ∈ [0, 1] (and sends it to the prover), and the
prover is asked to set ` = b(ρ + log2 sy/p(n))c (rather than
` = b(log2 sy/p(n))c), where sy is prover’s claim regarding
the size of |f−1(y)|.

pare the value of (1/qm) ·
∑q

i=1

∑m
k=1 log2 |f−1(y

(k)
i)| to the

expected value of log2 |f−1(f(Un))|, where here and below
we define log2 0 as −1 (in order to account for the case of
queries that have no preimages). Analogously to [15], one
may suggest that the latter value (i.e., E[log2 |f−1(Fn)|]) be
given as a non-uniform advice, but we can do better: We
require the prover to supply E[log2 |f−1(f(Un))|] and prove
its approximate correctness using the following protocol.

The verifier uniformly selects x1, ..., xm ∈ {0, 1}n,
computes yi = f(xi) for every i, sends y1, ..., ym

to the prover and asks for |f−1(y1)|, ..., |f−1(ym)|
along with lower and upper bound constant-round
interactive proofs. (As usual, the lower-bound
AM-protocol of [22] (or [21]) can be applied be-
cause membership in the corresponding sets can
be easily verified.) The point is that the upper-
bound protocol of [17] can be applied here, be-
cause the verifier has secret random elements of
the corresponding sets.

Recall that the lower-bound protocol (of [22] or [21]) guar-
antees that the prover cannot overstate any set size by more
than an ε = 1/poly(n) factor (without risking detection
with overwhelmingly high probability). Thus, we will as-
sume throughout the rest of this section that the prover
never overstates set sizes (by more than such a factor). The
analysis of understated set sizes is somewhat more delicate,
firstly because (as noted) the execution of upper-bound pro-
tocols requires the verifier to have a secret random element
in the set, and secondly because an understatement by a
factor of ε is only detected with probability ε (or so). Still
this means that the prover cannot significantly understate
many sets sizes and go undetected. Specifically, if the prover
understates the size of f−1(yi) by more than an ε factor
for at least n/ε of the yi’s then it gets detected with over-
whelmingly high probability. Using a suitable setting of pa-
rameters, this establishes the value of E[log2 |f−1(f(Un))|]
up to a sufficiently small additive term, which suffices for
our purposes. Specifically, as in Section 2.1, such a good
approximation of E[log2 |f−1(f(Un))|] forces the prover not

to understate the value of |f−1(y
(k)
i)| by more than (say)

a 1/10p(n) factor for more than (say) m/10 of the possi-
ble pairs (i, k). (Note that, unlike in Section 2.1, here we
preferred to consider the sum over all (i, k)’s rather than q
sums, each corresponding to a different i.)9

A special case (no “heavy” queries). We now allow
Rw to depend on w, but restrict our attention to the natu-
ral case in which the reduction does not ask a query y with
probability that exceeds Pr[Fn = y] by too much. Specifi-
cally, suppose that Pr[Rw = y] ≤ poly(|y|) · Pr[Fn = y], for
every y. In this case, we modify the foregoing protocol as
follows.

Here it makes no sense to compare the claimed

value of (1/qm)·
∑q

i=1

∑m
k=1 log2 |f−1(y

(k)
i)| against

E[log2 |f−1(Fn)|]. Instead we should compare
the former (claimed) average to E[log2 |f−1(Rw)|].
Thus, the verifier needs to obtain a good approx-
imation to the latter value. This is done by gen-

9We stress that in both cases both choices can be made. We
note that, when analyzing the completeness condition, one
may prefer to analyze the deviation of the individual sums
(for each i).

erating many yi’s as before (i.e., yi = f(xi) for
uniformly selected xi ∈ {0, 1}n) along with fewer
but still many yi’s sampled from Rw, and send-
ing all these yi’s (in random order) to the prover.
Specifically, for t ≥ maxy∈{0,1}∗{Pr[Rw = y]/Pr[Fn =
y]}, we generate t times more yi’s from Fn, and
so each yi received by the prover is at least as
likely to come from Fn than from Rw.

The prover will be asked to provide all |f−1(yi)|’s
along with lower-bound proofs, and afterwards
(i.e., only after committing to these |f−1(yi)|’s)
the verifier will ask for upper-bound proofs for
those yi’s generated via Fn (for which the verifier
knows a secret and uniformly distributed xi ∈
f−1(yi)).

Recall that the prover cannot significantly overstate the
size of any |f−1(yi)| (i.e., overstate it by more than an
ε = 1/poly(n) factor). If the prover significantly understates
the sizes of too many of the |f−1(yi)|’s, then it is likely to
similarly overstate also the sizes of many |f−1(yi)|’s that cor-
respond to yi’s that were generated by sampling Fn. But in
this case, with overwhelmingly high probability, the prover
will fail in at least one of the corresponding upper-bound
proofs.

The general case (dealing with “heavy” queries).
We now allow Rw to depend arbitrarily on w, without any
restrictions whatsoever. For a threshold parameter t to
be determined later, we say that a query y is t-heavy if
Pr[Rw = y] > t · Pr[Fn = y]. (In the special case, we as-
sumed that there are no poly(n)-heavy queries.) Observe
that the probability that an element sampled according to
Fn is t-heavy is at most 1/t, and thus modifying an in-
verting oracle such that it answers t-heavy queries by ⊥ ef-
fects the inverting probability of the oracle by at most 1/t.
Thus, for t ≥ 2, if we answer t-heavy queries by ⊥ (and
answer other f -images with a preimage), then we emulate
a legitimate inverting oracle (which inverts f with proba-
bility at least 1/2) and the reduction R is still supposed to
work well.10 Referring to y as t-light if it is not t-heavy,
we note that t-light queries can be handled as in the fore-
going special case (provided t ≤ poly(n)), whereas t-heavy
queries are accounted for by the previous discussion. The
problem is to determine whether a query is t-heavy or t-
light, and certainly we have no chance of doing so if many
(reduction) queries are very close to the threshold (e.g., if

Pr[Rw = y] = (t± n−ω(1)) ·Pr[Fn = y] for all y’s). Thus, as
in [11], we select the threshold at random (say, uniformly in
the interval [2, 3]). Next, we augment the foregoing protocol
as follows.

• We ask the prover to provide for each query y
(k)
i , also

the value of Pr[Rw = y
(k)
i], or equivalently the size of

{r : R(w, r) = y
(k)
i }. In addition, we ask for lower-

bound proofs of these set sizes.

• Using lower and upper bound protocols (analogously
to the simple case)11, we get an estimate of E[log2 |{r :
R(w, r) = Rw}|]. We let the verifier check that this

10This is the first (and only) place where we use the average-
case nature of the reduction R.

11In the simple case we got an estimate of E[log2 |f−1(Fn)|],
while relying on our ability to generate samples of Fn along

value is sufficiently close to the claimed value of (1/qm)·∑q
i=1

∑m
k=1 log2 |{r : R(w, r) = y

(k)
i }|, thus prevent-

ing an understating of the size of almost all the sets

{r : R(w, r) = y
(k)
i }.

Hence, combining these two items, the verifier gets a

good estimate of the size of {r : R(w, r) = y
(k)
i } for all

but few (i, k)’s. That is, the verifier can confirm that
for almost all the (i, k)’s the claimed (by prover) size

of {r : R(w, r) = y
(k)
i } is approximately correct.

• Using the claimed (by the prover) values of Pr[Rw =

y
(k)
i] and Pr[Fn = y

(k)
i], the verifier makes tentative

decisions regarding which of the y
(k)
i ’s is t-light.

Note that for most (i, k), the prover’s claim about

Pr[Rw = y
(k)
i] is approximately correct, whereas the

claim about Pr[Fn = y
(k)
i] can only be understated

(by virtue of the lower-bound protocol employed for

the set f−1(y
(k)
i)).

Using a protocol as in the special case, the verifier ob-
tains an estimate of E[log2 |f−1(R′

w)|], where R′
w de-

notes Rw conditioned on being t-light, and checks that
this value is sufficiently close to the claimed average of

log2 |f−1(y
(k)
i)|, taken only over t-light y

(k)
i ’s. In ad-

dition, the verifier checks that the fraction of t-light

y
(k)
i ’s (among all y

(k)
i ’s) approximates the probability

that Rw is t-light.

We note that estimating E[log2 |f−1(R′
w)|] is done by

generating yi’s as in the special case, but with t ∈
[2, 3] as determined above, and while asking for the
value of both Pr[Rw = yi] and Pr[Fn = yi] for all yi’s,
and afterwards requiring upper-bound proofs for one
of these values depending on whether yi was sampled
from Rw or Fn. These values will serve as basis for
determining whether each yi is t-heavy or t-light, and
will also yield an estimate of the probability that Rw

is t-light.

Recall that the verifier accepts w if and only if all the fore-
going checks (including the ones stated in the adaptive case)
are satisfied.

Ignoring the small probability that we selected a bad thresh-
old t as well as the small probability that we come across a
query that is close to the threshold, we analyze the foregoing
protocol as follows. We start by analyzing the queries yi’s
used in the sub-protocol for estimating E[log2 |f−1(R′

w)|].
We first note that, by virtue of the lower and upper bound
proofs, for almost all queries yi’s generated by Rw, the sizes
of {r : R(w, r) = yi} must be approximately correct. Next,
employing a reasoning as in the special case, it follows that
for almost all t-light queries yi’s we obtain correct estimates
of the size of their f -image (i.e., we verify that almost all
the sizes claimed by the prover for the |f−1(yi)|’s are ap-
proximately correct). It follows that we correctly charac-
terize almost all the t-light yi’s generated by Rw as such.
As for (almost all) t-heavy queries yi’s generated by Rw,
we may wrongly consider them t-light only if the prover
has significantly overstated the size of their preimage, be-

cause we have a good estimate of {r : R(w, r) = y
(k)
i } for

with a uniformly distributed member of f−1(Fn). Here we
rely on our ability to generate samples of Rw along with a
uniformly distributed member of {r : R(w, r) = Rw}.

(almost all) these yi’s. Recalling that an overstatement of

|f−1(y
(k)
i)| is detected with overwhelmingly high probabil-

ity (by the lower-bound protocol), it follows that almost all
t-heavy queries yi’s generated by Rw are correctly charac-
terized as such. Thus, the characterization of almost all yi’s
(generated by Rw) as t-light or t-heavy is correct, and so is
the estimate of the probability that Rw is t-light. Recalling
that for almost all the t-light yi’s generated by Rw we have a
correct estimate of |f−1(yi)|, we conclude that the estimate
of E[log2 |f−1(R′

w)|] is approximately correct.
Next we employ parts of the foregoing reasoning to the

y
(k)
i ’s. Recalling that, for almost all queries y

(k)
i , we ob-

tained correct estimates of the size of {r : R(w, r) = y
(k)
i }

(and that |f−1(y
(k)
i)| cannot be overstated), we conclude

that we correctly characterize almost all t-heavy queries as
such. The comparison to the estimated probability that Rw

is t-light guarantees that the prover cannot claim too many

t-light y
(k)
i ’s as t-heavy, which implies that we have correctly

characterized almost all y
(k)
i ’s as t-light or t-heavy. Recalling

that |f−1(y
(k)
i)| can only be understated (due to the lower-

bound proofs) and using the estimate of E[log2 |f−1(R′
w)|] as

an approximate lower-bound, it follows that the claims made

regarding almost all the |f−1(y
(k)
i)|’s are approximately cor-

rect. Thus, as in the special case, the correctness of the re-
duction implies the completeness and soundness of the fore-
going constant-round protocol.

Remark 6. In contrast to Remark 4, dealing with general
one-way functions (even in the non-adaptive case) requires
referring to the average-case nature of the reduction; that
is, we must use the hypothesis that the reduction yields the
correct answer even in case that the inverting oracle fails
on some inputs (as long as the measure of such inputs is
adequately small). This average-case hypothesis is required
since there exist reductions from NP to inverting in the
worst-case some (general) polynomial-time computable func-
tion (see [18, Chap. 2, Exer. 3]).

3. DISCUSSION: INTERPRETATIONS OF
OUR NEGATIVE RESULTS

Negative results of the type obtained in this work (as
well as in [15, 11]) can be interpreted in several ways: The
straightforward view is that such results narrow down the
means by which one can base one-way functions on NP-
hardness. Namely, under the assumption that coNP is not
contained in AM, our results show that (1) non-adaptive
randomized reductions are not suitable for basing one-way
functions on NP-hardness, and (2) that one-way functions
based on NP-hardness can not be size verifiable (e.g., can-
not be regular with an efficiently recognizable range).

Another interpretation is that these negative results are
an indication that (worst-case) complexity assumptions re-
garding NP as a whole (i.e., NP 6⊆ BPP) are not sufficient
to base one-way functions on. But this does not rule out
the possibility of basing one-way functions on the worst-
case hardness of a subclass of NP (e.g., the conjecture that
NP ∩ coNP 6⊆ BPP). This is the case because our results
(as previous ones) actually show that certain reductions of
the (worst-case) decision problem of a set S to (average-
case) inverting of f imply that S ∈ AM ∩ coAM. But
no contradiction is obtained if S belongs to NP ∩ coNP

anyhow. Indeed, the decision problems related to lattices
that are currently known to have worst-case to average-case
reductions belong to NP ∩ coNP (cf. [3, 29] versus [1]).

Yet another interpretation is that these negative results
suggest that we should turn to a more relaxed notion of
a reduction, which is uncommon in complexity theory and
yet is applicable in the current context. We refer to “non
black-box” reductions in which the reduction gets the code
(of the program) of a potential probabilistic polynomial-time
inverting algorithm (rather than black-box access to an arbi-
trary inverting oracle). The added power of such (security)
reductions was demonstrated a few years ago by Barak [7,
8].

Remark 7. Recall that Remark 4 asserts that, unless
coNP ⊆ AM, there exist no reductions from NP to invert-
ing in the worst-case a size-verifiable polynomial-time com-
putable function. In contrast, it is known that reductions
do exist from NP to inverting in the worst-case some (gen-
eral) polynomial-time computable function (see [18, Chap. 2,
Exer. 3]). This yields a (structural complexity) separation
between size-verifiable polynomial-time computable functions
on one hand and general polynomial-time computable func-
tions on the other hand, (assuming as usual coNP 6⊆ AM).

Acknowledgments
The research of Adi Akavia was supported in part by NSF
grant CCF0514167. The research of Oded Goldreich was
partially supported by the Israel Science Foundation (grant
No. 460/05). The research of Shafi Goldwasser was sup-
ported in part by NSF CNS-0430450, NSF CCF0514167,
Sun Microsystems, and the Minerva Foundation. Dana Moshkovitz
is grateful to Muli Safra for supporting her visit to MIT,
where this research has been initiated.

4. REFERENCES
[1] D. Aharonov and O. Regev. Lattice Problems in NP

intersect coNP. In 45th FOCS, 2004.

[2] W. Aiello and J. Hastad. Perfect Zero-Knowledge
Languages can be Recognized in Two Rounds. In 28th
FOCS, pages 439–448, 1987.

[3] M. Ajtai. Generating hard instances of lattice
problems. In 28th STOC, pages 99–108, 1996.

[4] A. Akavia, O. Goldreich, S. Goldwasser, and
D. Moshkovitz. On Basing One-Way Functions on
NP-Hardness. In preparations, to be posted on ECCC.

[5] L. Babai. Trading Group Theory for Randomness. In
17th STOC, pages 421–429, 1985.

[6] L. Babai and S. Laplante. Stronger seperations for
random-self-reducability, rounds, and advice. In IEEE
Conference on Computational Complexity 1999, pages
98–104, 1999.

[7] B. Barak. How to Go Beyond the Black-Box
Simulation Barrier. In 42nd FOCS, pages 106–115,
2001.

[8] B. Barak. Constant-Round Coin-Tossing with a Man
in the Middle or Realizing the Shared Random String
Model. In 43th FOCS, pages 345–355, 2002.

[9] S. Ben-David, B. Chor, O. Goldreich, and M. Luby.
On the Theory of Average Case Complexity. JCSS,
Vol. 44, No. 2, April 1992, pages 193–219.

[10] M. Blum and S. Micali. How to Generate
Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J. on Comput., Vol. 13,
pages 850–864, 1984. Preliminary version in 23rd
FOCS, 1982.

[11] A. Bogdanov and L. Trevisan. On worst-case to
average-case reductions for NP problems. In 44th
FOCS, pages 308–317, 2003.

[12] G. Brassard. Relativized Cryptography. In 20th
FOCS, pages 383–391, 1979.

[13] G. Di-Crescenzo and R. Impagliazzo.
Security-preserving hardness-amplification for any
regular one-way function In 31st STOC, pages
169–178, 1999.

[14] S. Even, A.L. Selman, and Y. Yacobi. The Complexity
of Promise Problems with Applications to Public-Key
Cryptography. Inform. and Control, Vol. 61, pages
159–173, 1984.

[15] J. Feigenbaum and L. Fortnow. Random
self-reducibility of complete sets. SIAM J. on
Comput., Vol. 22, pages 994–1005, 1993.

[16] J. Feigenbaum, L. Fortnow, C. Lund, and D.
Spielman. The power of adaptiveness and additional
queries in random self-reductions. Computational
Complexity, 4:158–174, 1994.

[17] L. Fortnow, The Complexity of Perfect
Zero-Knowledge. In [28], pages 327–343, 1989.
Extended abstract in 19th STOC, pages 204–209,
1987.

[18] O. Goldreich. Foundation of Cryptography – Basic
Tools. Cambridge University Press, 2001.

[19] O. Goldreich, R. Impagliazzo, L.A. Levin,
R. Venkatesan, and D. Zuckerman. Security
Preserving Amplification of Hardness. In 31st FOCS,
pages 318–326, 1990.

[20] O. Goldreich, H. Krawczyk and M. Luby. On the
Existence of Pseudorandom Generators. SIAM J. on
Comput., Vol. 22, pages 1163–1175, 1993.

[21] O. Goldreich, S. Vadhan and A. Wigderson. On
interactive proofs with a laconic provers.
Computational Complexity, Vol. 11, pages 1–53, 2003.

[22] S. Goldwasser and M. Sipser. Private Coins versus
Public Coins in Interactive Proof Systems. In [28],
pages 73–90, 1989. Extended abstract in 18th STOC,
pages 59–68, 1986.

[23] I. Haitner, O. Horvitz, J. Katz, C.Y. Koo, R. Morselli,
and R. Shaltiel. Reducing complexity assumptions for
statistically-hiding commitment. In Eurocrypt,
Springer, LNCS 3494, pages 58–77, 2005.

[24] E. Hemaspaandra, A.V. Naik, M. Ogiwara, and
A.L. Selman. P-Selective Sets, and Reducing Search to
Decision vs. Self-reducibility. JCSS, Vol. 53 (2), pages
194–209, 1996.

[25] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A
Pseudorandom Generator from any One-way Function.
SIAM J. on Comput., Vol. 28, pages 1364–1396, 1999.

[26] R. Impagliazzo and L.A. Levin. No Better Ways to
Generate Hard NP Instances than Picking Uniformly
at Random. In 31st FOCS, 1990, pages 812–821.

[27] J. Katz and L. Trevisan. On The Efficiency Of Local
Decoding Procedures For Error-Correcting Codes. In
32nd STOC, pages 80–86, 2000.

[28] S. Micali, editor. Advances in Computing Research: a
research annual, Vol. 5 (Randomness and
Computation), 1989.

[29] D. Micciancio and O. Regev. Worst-case to
Average-case Reductions Based on Gaussian
Measures. In 45th FOCS, pages 372–381, 2004.

[30] A.C. Yao. Theory and Application of Trapdoor
Functions. In 23rd FOCS, pages 80–91, 1982.

