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1 PROBLEM DEFINITION

Fourier transform is among the most widely used tools in computer science. Computing the Fourier
transform of a signal of length N may be done in time Θ(N log N) using the Fast Fourier Transform
(FFT) algorithm. This time bound clearly cannot be improved below Θ(N), because the output
itself is of length N . Nonetheless, it turns out that in many applications it suffices to find only
the significant Fourier coefficients, i.e., Fourier coefficients occupying, say, at least 1% of the
energy of the signal. This motivates the problem discussed in this entry: the problem of efficiently
finding and approximating the significant Fourier coefficients of a given signal (SFT, in short). A
naive solution for SFT is to first compute the entire Fourier transform of the given signal and
then to output only the significant Fourier coefficients; thus yielding no complexity improvement
over algorithms computing the entire Fourier transform. In contrast, SFT can be solved far more
efficiently in running time Θ̃(log N) and while reading at most Θ̃(log N) out of the N signal’s entries
[2]. This fast algorithm for SFT opens the way to applications taken from diverse areas including
computational learning, error correcting codes, cryptography and algorithms.

We now formally define the SFT problem, restricting our attention to discrete signals. We
use functional notation where a signal is a function f : G → C over a finite abelian group G, its
energy is ‖f‖2

2
def
= 1

|G|
∑

x∈G f(x)2, and its maximal amplitude is ‖f‖∞
def
= max {|f(x)| |x ∈ G}.1

For ease of presentation we assume without loss of generality that G = ZN1 × ZN2 × . . .× ZNk
for

N1, . . . , Nk ∈ Z+ (i.e., positive integers), and ZN is the additive group of integers modulo N .
The Fourier transform of f is the function f̂ : G → C defined for each α = (α1, . . . , αk) ∈ G by

f̂(α)
def
=

1
|G|

∑
(x1,...,xk)∈G

f(x1, . . . , xk)
k∏

j=1

ω
αjxj

Nj


where ωNj = e

i 2π
Nj is a primitive root of unity of order Nj . For any α ∈ G, valα ∈ C and τ, ε ∈ [0, 1],

we say that α is a τ -significant Fourier coefficient iff
∣∣∣f̂(α)

∣∣∣2 ≥ τ‖f‖2
2, and we say that valα is an

ε-approximation for f̂(α) iff
∣∣∣valα − f̂(α)

∣∣∣ < ε.

1For readers more accustomed to vector notation, we remark that there is a simple correspondence between vector
and functional notation. For example, a one dimensional signal (v1, . . . , vN ) ∈ CN corresponds to the function
f : ZN → C defined by f(i) = vi for all i = 1, . . . , N . Likewise, a two dimensional signal M ∈ CN1×N2 corresponds to
the function f : ZN1 × ZN2 → C defined by f(i, j) = Mij for all i = 1, . . . , N1 and j = 1, . . . , N2.
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Problem 1 (SFT).
Input: Integers N1, . . . , Nk ≥ 2 specifying the group G = ZN1 × . . . × ZNk

, a threshold τ ∈ (0, 1),
an approximation parameter ε ∈ (0, 1), and oracle access2 to f : G → C.
Output: A list of all τ -significant Fourier coefficients of f along with ε-approximations for them.

2 KEY RESULTS

The key result of this entry is an algorithm solving the SFT problem which is much much faster than
algorithms for computing the entire Fourier transform. For example, for f a Boolean function over
ZN , the running time of this algorithm is log N ·poly

(
log log N, 1

τ , 1
ε

)
, in contrast to the Θ(N log N)

running time of the FFT algorithm. This algorithm is named the SFT algorithm.

Theorem 1 (SFT algorithm [2]). There is an algorithm solving the SFT problem with running
time log |G| · poly

(
log log |G| , ‖f‖∞‖f‖2 , 1

τ , 1
ε

)
for |G| =

∏k
j=1 Nj the cardinality of G.

Remarks.

1. The above result extends to functions f over any finite abelian group G, as long as the
algorithm is given a description of G by its generators and their orders [2].

2. The SFT algorithm reads at most log |G| · poly
(
log log |G| , ‖f‖∞‖f‖2 , 1

τ , 1
ε

)
out of the |G| values

of the signal.

3. The SFT algorithm is non adaptive, that is, oracle queries to f are independent of the
algorithm’s progress.

4. The SFT algorithm is a probabilistic algorithm having a small error probability, where prob-
ability is taken over the internal coin tosses of the algorithm. The error probability can be
made arbitrarily small by standard amplification techniques.

The SFT algorithm of [2] follows a line of works solving the SFT problem for restricted function
classes. Goldreich and Levin [9] gave an algorithm for Boolean functions over the group Zk

2 =
{0, 1}k. The running time of their algorithm is polynomial in k, 1

τ and 1
ε . Mansour [11] gave an

algorithm for complex functions over groups G = ZN1 × . . . × ZNk
provided that N1, . . . , Nk are

powers of two. The running time of his algorithm is polynomial in log |G| , log
(
maxα∈G

∣∣∣f̂(α)
∣∣∣) , 1

τ

and 1
ε . Gilbert et.al. [6] gave an algorithm for complex functions over the group ZN for any positive

integer N . The running time of their algorithm is polynomial in log N, log
maxx∈ZN

f(x)

minx∈ZN
f(x) , 1

τ and 1
ε .

Akavia et.al. [2] gave an algorithm for complex functions over any finite abelian group. The latter
[2] improves on [6] even when restricted to functions over ZN in achieving log N · poly(log log N)
rather poly(log N) dependency on N . Subsequent works [7] improved the dependency of [6] on τ
and ε.

3 APPLICATIONS

We survey applications of the SFT algorithm [2] in the areas of computational learning theory,
coding theory, cryptography, and algorithms.

2We say that an algorithm is given oracle access to a function f over G, if it can request and receive the value
f(x) for any x ∈ G in unit time.
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3.1 Applications in Computational Learning Theory

A common task in computational learning is to find a hypothesis h approximating a function f ,
when given only samples of the function f . Samples may be given in a variety of forms, e.g.,
via oracle access to f . We consider the following variant of this learning problem: f and h are
complex functions over a finite abelian group G = ZN1 × . . .× ZNk

, the goal is to find h such that
‖f − h‖2

2 ≤ γ‖f‖2
2 for γ > 0 an approximation parameter, and samples of f are given via oracle

access.
A straightforward application of the SFT algorithm gives an efficient solution to the above

learning problem, provided that there is a small set Γ ⊆ G s.t.
∑

α∈Γ

∣∣∣f̂(α)
∣∣∣2 > (1− γ

3 )‖f‖2
2. The

learning algorithm operates as follows. It first runs the SFT algorithm to find all α = (α1, . . . , αk) ∈
G that are γ

|Γ| -significant Fourier coefficients of f along with their γ
|Γ|‖f‖∞ -approximations valα, and

then returns the hypothesis

h(x1, . . . , xk)
def
=

∑
α is γ/|Γ|-significant

valα ·
k∏

j=1

ω
αjxj

Nj

This hypothesis h satisfies that ‖f −h‖2
2 ≤ γ‖f‖2

2. The running time of this learning algorithm and
the number of oracle queries it makes is polynomially bounded by log |G|, ‖f‖∞/‖f‖2, |Γ| ‖f‖∞/γ.

Theorem 2. Let f : G → C be a function over G = ZN1 × . . .×ZNk
, and γ > 0 an approximation

parameter. Denote t = min
{
|Γ| |Γ ⊆ G s.t.

∑
α∈Γ

∣∣∣f̂(α)
∣∣∣2 > (1− γ

3 )‖f‖2
2

}
. There is an algorithm

that given N1, . . . , Nk, γ, and oracle access to f , outputs a (short) description of h : G → C s.t. ‖f−
h‖2

2 < γ‖f‖2
2. The running time of this algorithm is log |G| ·poly(log log |G| , ‖f‖∞/‖f‖2, t‖f‖∞/γ).

More examples of function classes that can be efficiently learned using our SFT algorithm are
given in [3].

3.2 Applications in Coding Theory

Error correcting codes encode messages in a way that allows decoding, that is, recovery of the
original message, even in the presence of noise. When the noise is very high, unique decoding
may be infeasible, nevertheless it may still be possible to list decode, that is, to find a short list of
messages containing the original message. Codes equipped with an efficient list decoding algorithm
have found many applications (see [10] for a survey).

Formally, a binary code is a subset C ⊆ {0, 1}∗ of codewords each encoding some message.
We denote by CN,x ∈ {0, 1}N a codeword of length N encoding a message x. The normalized

Hamming distance between a codeword CN,x and a received word w ∈ {0, 1}N is ∆(CN,x, w)
def
=

1
N |{ i ∈ ZN |CN,x(i) 6= w(i)}| where CN,x(i) and w(i) are the i-th bits of CN,x and w, respectively.
Given w ∈ {0, 1}N and a noise parameter η > 0, the list decoding task is to find a list of all messages
x such that ∆(CN,x, w) < η. The received word w may be given explicitly or implicitly; we focus
on the latter where oracle access to w is given.

Goldreich and Levin [9] gave a list decoding algorithm for Hadamard codes, using in a cruicial
way their algorithm solving the SFT problem for functions over the Boolean cube.

The SFT algorithm of [2] for the case of functions over ZN is a key component in a list decoding
algorithm given by Akavia et.al. [2]. This list decoding algorithm is applicable to a large class of
codes. For example, it is applicable to the code Cmsb = {CN,x : ZN → {0, 1}}x∈Z∗N ,N∈Z+ whose
codewords are CN,x(j) = msbN (j · x mod N) for msbN (y) = 1 iff y ≥ N/2 and msbN (y) = 0
otherwise. More generally, this list decoding algorithm is applicable to any Multiplication code CP
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for P a family of balanced and well concentrated functions, as defined below. The running time of
this list decoding algorithm is polynomial in log N and 1/(1− 2η), as long as η < 1

2 .
Abstractly, the list decoding algorithm of [2] is applicable to any code that is “balanced”, “well

concentrated” and “recoverable”, as defined next. A code is balanced if Prj∈ZN
[CN,x(j) = 0] =

Prj∈ZN
[CN,x(j) = 1] for every codeword CN,x. A code is well concentrated if its codewords can be

approximated by a small number of significant coefficients in their Fourier representation, and those
Fourier coefficients have small gcd with N . A code is recoverable if there is an efficient algorithm
mapping each Fourier coefficient α to a short list of codewords for which α is a significant Fourier
coefficient.

The key property of concentrated codes is that received words w share a significant Fourier
coefficient with all close codewords CN,x. The high level structure of the list decoding algorithm of
[2] is therefore as follows. First it runs the SFT algorithm to find all significant Fourier coefficients α
of the received word w. Second for each such α, it runs the recovery algorithm to find all codewords
CN,x for which α is significant. Finally, it outputs all those codewords CN,x.

Definition 1 (Multiplication Codes [2]). Let P = {PN : ZN → {0, 1}}N∈Z+ be a family of functions.
We say that CP = {CN,x : ZN → {0, 1}}x∈Z∗N ,N∈Z+ is a multiplication code for P if for every
N ∈ Z+ and x ∈ Z∗

N , the encoding CN,x : ZN → {0, 1} of x is defined by

CN,x(j) = P (j · x mod N)

Definition 2 (Well concentrated [2]). Let P = {PN : ZN → C}N∈Z+ be a family of functions.
We say that P is well concentrated if ∀N ∈ Z+, γ > 0, ∃Γ ⊆ ZN s.t. (i) |Γ| ≤ poly (log N/γ),

(ii)
∑

α∈Γ

∣∣∣P̂N (α)
∣∣∣2 ≥ (1 − γ)‖PN‖2

2, and (iii) for all α ∈ Γ, gcd(α, N) ≤ poly (log N/γ) (where
gcd(α, N) is the greatest common divisor of α and N).

Theorem 3 (List decoding [2]). Let P = {PN : ZN → {0, 1}}N∈Z+ be a family of efficiently com-
putable3, well concentrated and balanced functions. Let CP = {CN,x : ZN → {0, 1}}x∈Z∗N ,N∈Z+ be

the multiplication code for P. Then there is an algorithm that, given N ∈ Z+
N , η < 1

2 and oracle
access to w : ZN → {0, 1}, outputs all x ∈ Z∗

N for which ∆(CN,x, w) < η. The running time of this
algorithm is polynomial in log N and 1/(1− 2η).

Remarks.

1. The requirement that P is a family of efficiently computable functions can be relaxed. It
suffices to require that the list decoding algorithm receives or computes a set Γ ⊆ ZN with
properties as specified in Definition 2.

2. The requirement that P is a family of balanced functions can be relaxed. Denote bias(P) =
minb∈{0,1} infN∈Z+ Prj∈ZN

[PN (j) = b]. Then the list decoding algorithm of [2] is applicable
to CP even when bias(P) 6= 1

2 , as long as η < bias(P).

3.3 Applications in Cryptography

Hard-core predicates for one-way functions are a fundamental cryptographic primitive, which is
central for many cryptographic applications such as pseudo-random number generators, semantic
secure encryption, and cryptographic protocols. Informally speaking, a Boolean predicate P is a
hard-core predicate for a function f if P (x) is easy to compute when given x, but hard to guess with
a non-negligible advantage beyond 50% when given only f(x). The notion of hardcore predicates

3P = {PN : ZN → {0, 1}}N∈Z+ is a family of efficiently computable functions if there is algorithm that given any
N ∈ Z+ and x ∈ ZN outputs PN (x) in time poly(log N).

4



was introduced by Blum and Micali [4]. Goldreich and Levin [9] showed a randomized hardcore
predicate for any one-way function, using in a crucial way their algorithm solving the SFT problem
for functions over the Boolean cube.

Akavia et.al. [2] introduce a unifying framework for proving that a predicate P is hard-core
for a one-way function f . Applying their framework they prove for a wide class of predicates –
segment predicates– that they are hard-core predicates for various well known candidate one-way
functions. Thus showing new hard-core predicates for well known one-way function candidates as
well as reproving old results in an entirely different way.

Elaborating on the above, a segment predicate is any assignment of Boolean values to an arbi-
trary partition of ZN into poly(log N) segments, or dilations of such an assignment. Akavia et.al.
[2] prove that any segment predicate is hard-core for any one-way function f defined over ZN for
which, for a non-negligible fraction of the x’s in ZN , given f(x) and y, one can efficiently compute
f(xy) (where xy is multiplication in ZN ). This includes the following functions: the exponentiation
function EXPp,g : Zp → Z∗

p defined by EXPp,g(x) = gx mod p for each prime p and a generator
g of the group Z∗

p; the RSA function RSA : Z∗
N → Z∗

N defined by RSA(x) = ex mod N for each
N = pq a product of two primes p, q, and e co-prime to N ; the Rabin function Rabin : Z∗

N → Z∗
N

defined by Rabin(x) = x2 mod N for each N = pq a product of two primes p, q; and the elliptic
curve log function defined by ECLa,b,p,Q = xQ for each elliptic curve Ea,b,p(Zp) and Q a point of
high order on the curve.

The SFT algorithm is a central tool in the framework of [2]: Akavia et.al. take a list decoding
methodology, where computing a hard-core predicate corresponds to computing an entry in some
error correcting code, predicting a predicate corresponds to access to an entry in a corrupted
codeword, and the task of inverting a one-way function corresponds to the task of list decoding a
corrupted codeword. The codes emerging in [2] are multiplication codes (see Definition 1 above),
which are list decoded using the SFT algorithm.

Definition 3 (Segment predicates [2]). Let P = {PN : ZN → {0, 1}}N∈Z+ be a family of predicates
that are non-negligibly far from constant4.

• We say that PN is a basic t-segment predicate if PN (x+1) 6= PN (x) for at most t x’s in ZN .

• We say that PN is a t-segment predicate if there exist a basic t-segment predicate P ′ and
a ∈ ZN which is co-prime to N s.t. ∀x ∈ ZN , PN (x) = P ′(x/a).

• We say that P is a family of segment predicates if ∀N ∈ Z+, PN is a t(N)-segment predicate
for t(N) ≤ poly(log N).

Theorem 4 (Hardcore predicates [2]). Let P be a family of segment predicates. Then, P is hard-
core for RSA,Rabin,EXP,ECL, under the assumption that these are one-way functions.

3.4 Application in Algorithms

Our modern times are characterized by information explosion incurring a need for faster and faster
algorithms. Even algorithms classically regarded efficient —such as the FFT algorithm with its
Θ(N log N) complexity— are often too slow for data-intensive applications, and linear or even
sub-linear algorithms are imperative. Despite the vast variety of fields and applications where
algorithmic challenges arise, some basic algorithmic building blocks emerge in many of the existing
algorithmic solutions. Accelerating such building blocks can therefore accelerate many existing
algorithms. One of these recurring building blocks is the Fast Fourier Transform (FFT) algorithm.
The SFT algorithm offers a great efficiency improvement over the FFT algorithm for applications

4A family of functions P = {PN : ZN → {0, 1}}N∈Z+ is non-negligibly far from constant if ∀N ∈ Z+ and b ∈ {0, 1},
Prj∈ZN [PN (j) = b] ≤ 1− poly(1/ log N).
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where it suffices to deal only with the significant Fourier coefficients. In such applications, replacing
the FFT building block with the SFT algorithm accelerates the Θ(N log N) complexity in each
application of the FFT algorithm to poly(log N) complexity [1]. Lossy compression is an example of
such an application [1, 5, 8]. Let us elaborate. A central component in several transform compression
methods (e.g., JPEG) is to first apply Fourier (or Cosine) transform to the signal, and then discard
many of its coefficients. To accelerate such algorithms —instead of computing the entire Fourier
(or Cosine) transform— the SFT algorithm can be used to directly approximate only the significant
Fourier coefficients. Such an accelerated algorithm achieves compression guarantee as good as the
original algorithm (and possibly better), but with running time improved to poly(log N) in place
of the former Θ(N log N).
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