StatusQuo: Making Familiar Abstractions
Perform Using Program Analysis

Alvin Cheung Owen Arden

Samuel Madden Andrew C. Myers
Armando Solar-Lezama

MIT Cornell

Developing Database Applications

Application M >

Logic

Application Server SQL Database

1/8/2013 CIDR 13 2

Developing Database Applications

Application .
I_OgiC ;"sf’?f'.:;,'%f; .

Stored | [
Procedures | L.

= ;

Application Server SQL Database

1/8/2013 CIDR 13

Developing Database Applications

Language Choice for Application Logic

Program analysis to the rescue!

Application Distribution

1/8/2013

StatusQuo

* Express application logic in ways that
programmers are comfortable with

* Job of compiler & runtime to determine
the most efficient implementation

1/8/2013 CIDR 13

Two Key Technologies

* Infer queries from imperative code

* Migrate computation between servers
for optimal performance

1/8/2013 CIDR 13 6

Relational Operations in

Imperative Code

List getUsersWithRoles () {
List users = getUsersFromDB();
List roles = getRolesFromDB();

List results = new ArraylList();

for (User u : users) { 2 SELECT * FROM user
for (Role r : roles) { g SELECT * FROM role

if (u.roleld == r.id)
results.add(u); }}
return results; }

List getUsersWithRoles () {

[::::i> return executeQuery(
“SELECT

u FROM users u, roles r
convert to WHERE u.roleld == r.id

ORDER BY wu.roleld, r.id”; }

1/8/2013 CIDR '13 7

Relational Operations in

Imperative Code

List getUsersWithRoles () {
List users = getUsersFromDB();
List roles = getRolesFromDB();

List results = new ArraylList();

oal

Find a variable that
for (User u : users) {

for (Role r : roles) {

we can rewrite into a

if (u.roleld == r.id) SQL expression
results.add(u); }}
return results;e3——— post-condition variable

List getUsersWithRoles () {

[::::i> return executeQuery(
“SELECT

u FROM users u, roles r
convert to WHERE u.roleld == r.id

ORDER BY wu.roleld, r.id”; }

1/8/2013 CIDR 13 8

Query By Synthesis (QBS)

* ldentify potential code fragments

—i.e., regions of code that fetches persistent
data and return values

* Find SQL expressions for post-condition
variables

* Try to prove that those expressions
preserve program semantics

— if so, convert the code!

1/8/2013 CIDR 13

Initial Code Fragments

ldentification

* Find program points that retrieve
persistent data

* Run an inter-procedural analysis that:

— determine where persistent data are used
— delimit code fragment to analyze

1/8/2013 CIDR 13 10

Search for Post-Condition

Expressions

List getUsersWithRoles () {
List users = query(select *x from users);
List roles = query(select * from roles);

List results = [];
for (User u : users) {
for (Role r : roles) {
if (u.roleld == r.id)
results = results : [] }}
return results; }

Relations involved:
users, roles

Possible expressions to consider for results:
O (users) top,(users) Tt c(users W, roles)
T (0 (users) M, roles) otherexpressionsinvolvingusers, roles

1/8/2013 CIDR 13 11

Constraints for Post-Condition

Expressions

List getUsersWithRoles () {
List users = query(select * from users);
List roles = query(select * from roles);

List results = L[I; results = 7 ., (users[0 .. i] M, je1q -
for (User u : users) { ——> outer loop invariant
for (Role r : roles) {
if (u.roleld == r.id)
results = results : [] }} results= 71 . (usersX i .q-iqroles)
return results; } > post-condition expression

qroles)

If outer loop invariant is true and outer loop terminates

then post-condition expression is true

Still need a smarter
way to search

1/8/2013 CIDR 13 12

Hoare-style program verification

Search for Post-Condition

Expressions and Invariants
* Use program synthesis as search engine

Symbolic desc. of
search space

Program synthesizer

Solution
constraints

Expression that
satisfies all the
constraints

Symbolic manipulation

Counter-example driven search

1/8/2013 CIDR 13 13

Experiments

1/8/2013

Real-world Evaluation

Wilos (project management application) — 62k LOC

Operation type # Fragments # Fragments
found converted
Projection 1 1
Selection 13 10
Join / 7
Aggregation 11 10

Total 33 28

Performance Evaluation:

oln Que

1000K —=>
~~original (lazy)

“Finferred (lazy) &

—_
-
S
A

Nested-loop join - Hash join!
10K O(nz) O(n)

Execution time (ms)

P

—_
A
LON

100 I 1 T T]
0 20K 40K 60K 80K T00K
Number of roles / users in DB

1/8/2013 CIDR 13 16

Developing Database Applications

Application .
I_Ogic 1:';”?5\;:,'?;:3 y

Stored | [
Procedures | L.

Application Distribution

1/8/2013 CIDR "3 17

Running Example

discount = executeQuery("select discount from customers
where 1id = " + cid);

totalAmount = orderTotal * (1 — discount);

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)

printToConsole("Only " + credit + " in account!”);
else

executeUpdate("update customer set credit = " +
(credit — totalAmount) + " where id = " + cid);

1/8/2013 CIDR 13 18

DB

APP

DB

APP

DB

Actual Execution

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)

printToConsole("Only " + credit + " in account!”);
else
executeUpdate("update customer set credit = " +

(credit — totalAmount) + " where id = "

+ cid);

1/8/2013 CIDR 13

19

Actual Execution

discount = executeQuery("select discount from customers

n

DB

.!@#$ - .
network communication

APP | totalAmount = orderTotal * (1 — discount):

.!@#$ - .
network communication

credit = executeQuery("select credit from customers

n

DB

.!@#$ - .
network communication

if (credit < totalAmount
APP "

printToConsole("Qn "+ jit + " in account!”);
1@#$
else network communication
executeUpdate("update customer set credit = " +
DB

(credit — totalAmount) + " where id = "

+ cid);

1/8/2013 CIDR 13

20

Speeding up Execution

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);
DB

credit = executeQuery("select credit from customers
where id = " + cid);

if (credit < totalAmount)

APP printToConsole("Only " + credit + " in account!");

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

1/8/2013 CIDR 13 21

Speeding up Execution

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);

DB data dependency
Icrediti: executeQuery("seléet credit from customers

control dependency

credit|+ " in account!"”);

if (credit < totalAmount)
printToConsole("Only " +

AP,

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

1/8/2013 CIDR 13 22

Speeding up Execution

discount = executeQuery("select discount from customers
where id = " + cid);

totalAmount = orderTotal * (1 — discount);
data dependency

DB

credit |= executeQuery("seléet credit from customers DB Server

control dependency

credit|+ " in account!"”);

if (credit < totalAmount)
printToConsole("Only " +

AP,

else

executeUpdate("update customer set credit = " +

DB (credit — totalAmount) + " where id = " + cid);

1/8/2013 CIDR 13 23

Introducing Pyxis

 “Store-procedurizes” DB apps and
pushes computation to the DB

» Adaptively controls the amount of
computation pushed to DB for optimal
performance

* No programmer intervention required

1/8/2013 CIDR 13 24

Using Pyxis

1/8/2013

How Pyxis Works

"”"“L Deploy

Monitor

TR

App Server DB Server

1/8/2013 CIDR 13 26

How Pyxis Works

‘ Partition

Monitor

App Server DB Server

1/8/2013 CIDR 13 27

Generating Program Partitions

* Deploy and profile application as-is
* Construct a dependence graph of

program statements
— captures both control and data flow

* Formulate linear program from profile
data and dependence graph

— solution gives a partitioning of the source
code

1/8/2013 CIDR 13 28

Executing Partitioned Programs

* Pyxis compiler translates partitioned
code into standard Java code

* Pyxis runtime executes compiled Java

code

— runtime is just another Java program
running on a standard JVM

— includes monitoring component to
determine partition switching

1/8/2013 CIDR 13 29

Experiments

1/8/2013

Experiment Setup

* TPC-C Java implementation
— 20 terminals issuing new order transactions
— DB server has 16 cores total

— Compared against two implementations:
* JDBC: everything on app server except for JDBC stmts

* Manual: custom “store procedurized”
implementation where everything is on the DB server

1/8/2013 CIDR 13 31

All Cores Available

2 % Pyxis generated implementation:
3 3x latency reduction
o 1.7x thruput increase
>
10 - M—."M
—
51 00 3(I)O 5(I)O 7(I)O 960 1 1I00 1 3I00

Average Thruput (xact/ s)
CIDR 13

1/8/2013 32

StatusQuo

Ease DB application development

Convert imperative program statements
into declarative SQL

Fully automatic code partitioning using
application and server characteristics

db.csail.mit.edu/statusquo

1/8/2013 CIDR 13 33

