
Speeding up Database Applications with Pyxis

Alvin Cheung Owen Arden
Samuel Madden Andrew C. Myers

MIT CSAIL Dept of Computer Science
Cornell University

{akcheung, madden}@csail.mit.edu {owen, andru}@cs.cornell.edu

db.csail.mit.edu/pyxis

ABSTRACT
We propose to demonstrate Pyxis, a system that optimizes database
applications by pushing computation to the database server. Our
system applies program analysis techniques to the application source
code to determine pieces of application logic that should be moved
to the database server to improve performance. This frees the de-
veloper from the need to understand the intricacies of database op-
erations or learn a new programming language for stored proce-
dures. In addition, by dynamically monitoring resource utilization
on the database server, Pyxis can migrate computation between ap-
plication and database in response to workload changes. Our pre-
vious experiments have shown that Pyxis can decrease latency up
to 3× for transactional applications, and improve throughput up to
1.7× when compared to a standard implementation using embed-
ded SQL statements in application logic. We will demonstrate these
capabilities via a visualization of real-time performance as well as
an interactive code partitioning tool we have developed.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
database applications; performance; program optimization

1. INTRODUCTION
Applications that store persistent data in databases are prevalent.

Typically, such applications are written in a general-purpose pro-
gramming language like Java or Python, with SQL statement em-
bedded in the source code. The application is hosted on an applica-
tion server, while the database runs on a separate database server.
For security and performance reasons, the two servers are usually
physically separate and dedicated machines residing in the same
data center in order to decrease communication latency. Mean-
while, multiple applications are hosted on the same application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

server, and the database processes requests from multiple appli-
cations.

For transactional applications (such as e-commerce websites)
that make many accesses for small amounts of data from the database
while processing an incoming request, one common way to im-
prove application efficiency is to reduce the number of data ac-
cesses using stored procedures, as each data access incurs a net-
work roundtrip between the application and database server. The
idea of stored procedures is to group application logic between
consecutive data accesses into a new function and install that into
the database. Moving computation between the data accesses from
the application server to the database server reduces the number of
roundtrips between the two servers and thus improves efficiency.
Unfortunately, there are a number of pitfalls with this approach:

• Instead of general-purpose languages, stored procedures are
often expressed in a database-specific programming language
such as PL/SQL. Consequently, developers need to learn a
new programming language before rewriting portions of their
applications into stored procedures. In addition, developers
now need to maintain two different repositories for their ap-
plications, one for the stored procedures and another for the
application logic.

• Identifying what application logic to convert into stored pro-
cedures is not always easy. First, it is not obvious which SQL
statements result in the most data being transferred from the
database, and this makes identifying stored procedure can-
didates tricky. Second, transforming code into stored proce-
dures may require passing application state to the database,
and passing it back to the application if it is mutated. Do-
ing this correctly can incur substantial amount of code and
endless debugging sessions.

• Since server utilization can change over time, moving com-
putation to the database server does not always improve per-
formance. For instance, if the database server is already un-
der heavy load from serving other requests, pushing more
computation to it can increase latency and hurt performance.
Unfortunately, since server load is difficult to predict, the de-
veloper can only assume—and therefore, provision—the ap-
plication to be operating under a certain load, or alternatively
maintain multiple versions of the same application, each one
tailored for a different server utilization. Both of these solu-
tions are far from ideal.

To alleviate these challenges, we have developed a system called
Pyxis (for a detailed description of the Pyxis system, see our VLDB

Source
Profiler

Pyxis
Runtime

PyxIL Compiler

Application Server Database Server

Pyxis
Runtime

Load
Profiler

Static Analyzer

Partitioner

Instrumentor

Instrumented
source

Profile
information

Server load
information

Analysis
results

PyxIL
source

Partitioned
program

Partitioned
program

Application
source

RPC

Normalized
source

Figure 1: Pyxis system design

2012 paper [1]). Given a Java application with embedded SQL
statements for data accesses, Pyxis analyzes the source code and
transforms it into a new application that references a generated set
of stored procedures. The identified stored procedures are chosen
by profiling the application to determine the amount of data trans-
ferred by each database access. Because the load on the database
may vary over time, Pyxis generates several partitionings based on
different assumptions about database server load, and dynamically
chooses between them at runtime. All of this is performed without
any developer intervention or changes to the source code. In the
following, we describe the architecture of Pyxis followed by some
experimental results, and then discuss our detailed demonstration
plan of Pyxis at SIGMOD.

2. SYSTEM OVERVIEW
In this section we describe the architecture of Pyxis and how

Pyxis determines the amount of computation to be pushed to the
database server. Fig. 1 shows the overall design of the system.
Given the source code of a Java application with embedded SQL
commands, Pyxis first benchmarks the application to gauge its work-
load, then makes use of the collected information along with results
from static code analysis to determine an optimal partitioning of
the application between the two servers. After that, the partitioned
code is compiled and given to the Pyxis runtimes on the servers
for execution. In the following, we describe each of these steps in
detail.

2.1 Initial Benchmarking and Code Analysis
Given the application source code, Pyxis first instruments, com-

piles, and deploys the application as-is on the servers in order to
collect workload information. The source code is automatically in-
strumented to collect information such as the number of times that
each statement is executed, the network latency between the ap-
plication and database servers, etc. Such information is needed in
order to determine an optimal partitioning of the application source
code. Pyxis assumes that there is an underlying pattern in the work-
load. Should the workload change, the developer can simply ask

the system to benchmark again and generate a new partition of the
application.

Meanwhile, the static analyzer component of Pyxis constructs a
partition graph of the source code. The partition graph is a type of
program dependence graph (PDG) [2]. A PDG is similar to a con-
trol flow graph, with nodes representing statements and edges con-
necting nodes that have control dependencies between them. In ad-
dition to control flow edges, however, the graph also records infor-
mation about definitions and uses of program variables throughout
the code. Constructing the partition graph requires having points-to
information of the program variables. That information is currently
obtained using an object-sensitive analysis [3]. After the partition
graph is constructed, it is augmented with data collected during ini-
tial benchmarking: each node labeled with the number of times it
was executed, and each variable annotated with its size in terms of
bytes, as that represents the amount of data that needs to be trans-
ferred between the two servers should the partitioned program has
a data dependency on that variable.

2.2 Partitioning Source Code
Given the partition graph, the partitioner devises a linear pro-

gram that will determine the optimal partitioning of the source code
when solved. The linear program is formulated by first defining
an indicator variable ni for each node and ei for each edge in the
graph. ni is set to 1 if the program statement that corresponds to the
node is to be executed on the database server (and 0 means that it is
to be executed on the application server), and ei is assigned to 1 if
the nodes connected by the edge are assigned on different servers.
The objective of the linear program is to minimize the overall la-
tency of the application due to data and control transfers between
the servers, i.e.

∑
ei ∗ wei , where wei is a weight representing the

latency cost of satisfying a dependency remotely. These weights
are set using the collected benchmarking data. To avoid pushing
too much computation to the database server, the linear program is
subject to an overall budget constraint of

∑
ni ∗ wni < c, where

wni is the number of times that statement i was executed during
benchmarking, and c is the amount of CPU resources that is avail-
able on the database server. Solving the program gives us an as-
signment of each statement to a server, and Pyxis automatically
generates partitions of the program under different values of c in
order to accommodate different actual server loads. At the end of
the process, the partitioner generates a PyxIL (Pyxis Intermediate
Language) program, which has the same syntax as the original Java
source, except that each statement is annotated to indicate which
server it is intended to be executed on.

2.3 Executing Partitioned Code
After the partitioning process, the PyxIL compiler takes in the

generated program to produce two Java programs to be executed on
the runtime components residing on the two servers. The two com-
piled programs operate on a distributed heap, and program control
migrates between the two during execution. By communicating via
the runtime components on the servers to pass control and data, the
two Java programs implement the semantics of the original appli-
cation.

Compilation of PyxIL programs is mostly straight-forward, ex-
cept that for ease of maintaining transfer of control between the
two servers during execution, the input source is compiled to con-
tinuation passing style [4]. In addition, the compiler also inserts
appropriate method calls in the two compiled programs to keep the
distributed heap in sync. For instance, if the partitioner determines
that program statements s1 and s2 are to be executed on the two
servers respectively, and that s2 uses a variable v that is defined by

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

Time (sec)

Manual
Pyxis
JDBC

Figure 2: Dynamic switching experiment results

s1, then the compiler will insert a method call to forward the value
of v before the transferring control to the remote servers.

The output is then compiled using a standard Java compiler and
the results are sent to the runtime components for deployment. The
Pyxis runtime is simply a Java program running on a standard JVM
on the two servers. The runtime on the database server, however,
includes a monitor component that periodically samples the amount
of resources that are available on the database server. As mentioned
in Sec. 2.2, the partitioner generates multiple versions of the appli-
cation assuming different CPU loads on the database server. Using
the real-time information from the monitor component, the runtime
dynamically switches among the different pre-generated partitions
based on the current server load in order to achieve optimal appli-
cation performance.

2.4 Experiments
We have previously measured the resulting programs generated

by Pyxis under different scenarios [1]. As an example, we imple-
mented the TPC-C benchmark in Java using embedded JDBC SQL
statements hosted on an application server that issues queries to the
database server with of 16 CPU cores. There is a 0.2ms roundtrip
network latency between the two servers. We executed a workload
consisting of 20 warehouses and 20 clients issuing new order trans-
actions simultaneously with a combined rate of 500 transactions per
second. We chose a workload of new order transactions as that one
is the most complex in terms of lines of code and involves the most
number of queries. We measured the average latency of processing
transactions over a 10-minute period.

To measure the effectiveness of Pyxis in improving application
performance, we first asked the system to generate a partition of
the application assuming that the application has full access to all
16 cores of the database server. After that, we asked the system
to generate another partition for the case when only half of the
cores available. During the experiment, we first allow the appli-
cation to use all cores that are available on the database server, then
about three minutes into the experiment, we reduce the number of
cores available to approximately half. Fig. 2 shows the measured
latency over the 10 minute period. For comparison purposes, we
include two other reference implementations of the same bench-
mark: JDBC, which is the original version of the application with
embedded JDBC SQL statements; and Manual, which is a custom
“stored-procedurized” version of the benchmark where most of the
application logic is manually rewritten to execute on the database
server rather than the application server.

The results illustrate the ability of Pyxis to achieve optimal ap-

plication performance. They demonstrate Pyxis runtime’s ability
to choose the optimal partition given the current server utilization.
When there is sufficient amount of CPU resources available on the
database server in the beginning of the experiment, the Pyxis run-
time chooses a partition that resembles the Manual implementation,
where most of the application logic is executed on the database
server. On the other hand, when only limited resources are avail-
able, the runtime automatically switches to process incoming trans-
actions using a partition where most of the application logic on the
application server instead. In comparison, the JDBC implemen-
tation maintains high latencies throughout the experiment due to
the excess number of network rountrips incurred during transaction
processing. Meanwhile, the Manual implementation incurs low la-
tency in the beginning when resources are plentiful, but latency in-
creases as the database becomes heavily utilized. In contrast, Pyxis
is able to capture the “best of both worlds” by first choosing a parti-
tion that resembles the Manual implementation when resources are
available, and then switching to a JDBC-like implementation when
resources are limited. We have performed similar experiments us-
ing the TPC-W benchmark with similar results.

3. DEMONSTRATION SCENARIO
We have implemented a prototype of the Pyxis system. The sys-

tem currently takes in source code of applications written in Java
that uses JDBC to connect to the database server for queries. We
plan to demonstrate the end-to-end ability of Pyxis to automatically
achieve the optimal application performance under different server
load conditions. From the application source code, the audience
will be able to see Pyxis in action by viewing how the system par-
titions the source code under different server load conditions, and
how the runtime component dynamically chooses among the pre-
generated partition to serve incoming requests. To that end, the
demonstration will consist of two components:

Code visualization. We will provide a tool to visualize the appli-
cation source code as a result of code partitioning. As shown in
Fig. 3, given a CPU resource budget and benchmarking data (as
shown in the left panel of Fig. 3), the tool will send the source code
to the Pyxis partitioner to generate a partition between the applica-
tion and database servers. The tool will then show the results of the
partition by highlighting the original application source code based
on where each statement is allocated to.

Live system demonstration. The second component of our demon-
stration will consist of a running OLTP-style application (such as
TPC-C or TPC-W) that has been deployed using Pyxis on the appli-
cation and database servers. We will pre-generate a set of partitions
using Pyxis with different CPU budgets, and allow the Pyxis run-
time to choose which partition to serve the incoming requests.

For comparison purposes, we will also provide reference imple-
mentations of the same application deployed as-is, and another im-
plementation where most of the application logic is moved to the
database server, similar to the Manual implementation in Sec. 2.4.
Each version of the application will be running on a separate set of
application and database servers.

To monitor the performance of the three versions of the applica-
tion, we will demonstrate a monitoring tool (a screenshot is shown
in Fig. 4). The tool will plot the average latencies in serving the
transactions that finished within the last few minutes. The tool
is connected to the database server and can control the amount
of CPU resources that are available dynamically. For the Pyxis
deployed version of the application, the tool will also show the
percentage of transactions that are served using the different pre-

Figure 3: Screenshot of the code visualization tool

generated partitions of the source code, along with the monitoring
statistics collected by the runtime component to decide which code
partition to use for new incoming requests.

3.1 Storyline
Using the tools above, we plan to walk through the audience in

the following manner:

Introduction. We will first explain to the audience our system
using a set of slides and poster. The goal is for the audience to
understand the challenges in developing efficient database applica-
tions, the Pyxis system design, and how our system can help in this
regard.

Code partitioning demonstration. Next, we will demonstrate the
partitioner component of Pyxis by showing code partitioning in ac-
tion. We will provide the source code of a transactional database
application and the benchmarking data that are previously collected.
The audience will be able to see the partition that is generated by
the partitioner component using the code visualization tool. In ad-
dition, the audience will be able to interact with the tool by chang-
ing the amount of CPU resources that are available on the database
server, and asking the partitioner to generate new partitions.

Runtime system demonstration. Finally, we will demonstrate our
live application deployment. Using the monitoring tool, the audi-
ence will get a sense of how the Pyxis runtime component is able to
make the optimal decision in deciding the partition to use when an
incoming request arrives. To demonstrate the dynamic switching
of the runtime component, the audience can interact with the tool
by changing the amount of CPU resources that are available on
the database server. The audience will see that the Pyxis deployed
version of the application is able to achieve the lowest latencies
across different CPU utilization conditions, whereas the reference
implementations perform optimally only under one specific load
conditions.

3.2 Take-away Message
Using the demonstration, we would like to convey the following

ideas to the audience:

Figure 4: Screenshot of the application monitoring tool

• Our Pyxis prototype is effective in improving database ap-
plication performance. The system is able to automatically
determine the best way to deploy a database application to
minimize the latency in processing transactions.

• Our system is able to perform optimization in a completely
automatic manner, without any user intervention, changes to
the source code, or need to deploy any custom language run-
times or database systems.

• The idea of combining static program analysis and dynamic
runtime monitoring in improving application performance,
and how similar ideas can be applied in increasing program-
mers’ productivity and security of database applications.

4. ACKNOWLEDGMENTS
The authors are grateful for the support of Intel Corporation,

NSF grants 1065219 and 0964409, and ONR grant N00014-13-
1-0089. Owen Arden is supported by the Department of Defense
through the National Defense Science & Engineering Graduate Fel-
lowship Program.

5. REFERENCES
[1] A. Cheung, O. Arden, S. Madden, and A. C. Myers.

Automatic partitioning of database applications. PVLDB,
5(11):1471–1482, 2012.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM
Transactions on Programming Languages and Systems,
9(3):319–349, July 1987.

[3] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your
contexts well: understanding object-sensitivity. ACM
SIGPLAN Notices, 46(1):17–30, 2011.

[4] The SML/NJ Fellowship. Standard ML of New Jersey.
http://www.smlnj.org/.

	Introduction
	System Overview
	Initial Benchmarking and Code Analysis
	Partitioning Source Code
	Executing Partitioned Code
	Experiments

	Demonstration Scenario
	Storyline
	Take-away Message

	Acknowledgments
	References

