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ABSTRACT
Many web applications store persistent data in databases. During
execution, such applications spend a significant amount of time
communicating with the database for retrieval and storing of per-
sistent data over the network. These network round trips represent
a significant fraction of the overall execution time for many appli-
cations and as a result increase their latency. While there has been
prior work that aims to eliminate round trips by batching queries,
they are limited by 1) a requirement that developers manually iden-
tify batching opportunities, or 2) the fact that they employ static
program analysis techniques that cannot exploit many opportuni-
ties for batching. In this paper, we present Sloth, a new system that
extends traditional lazy evaluation to expose query batching oppor-
tunities during application execution, even across loops, branches,
and method boundaries. We evaluated Sloth using over 100 bench-
marks from two large-scale open-source applications, and achieved
up to a 3× reduction in page load time by delaying computation.

1. INTRODUCTION
Most web applications are backed by database servers that are

physically separated from the servers hosting the application. Even
though the two machines tend to reside in close proximity, a typ-
ical page load spends a significant amount of time issuing queries
and waiting for network round trips to complete, with a consequent
increase in application latency. The situation is exacerbated by
object-relational mapping (ORM) frameworks such as Hibernate
and Django, which access the database by manipulating native ob-
jects rather than issuing SQL queries. These libraries automatically
translate accesses to objects into SQL, often resulting in multiple
queries (and round trips) to reconstruct a single object. For exam-
ple, even with the application and database servers hosted in the
same data center, we found that many pages spend 50% or more of
their time waiting on network communication.

Latency is important for many reasons. First, even hundreds of
milliseconds of additional latency can dramatically increase the dis-
satisfaction of web application users. For example, a 2010 study
by Akamai suggested that 57% of users will abandon a web page
that takes more than three seconds to load [9]. As another example,
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Google reported in 2006 that an extra 0.5 second of latency reduced
the overall traffic by 20% [6]. These numbers are likely worse
on modern computers where pages load faster and faster, making
it increasingly important to reduce the amount of time spent on
database queries. Second, ORM frameworks can greatly increase
load times by performing additional queries to retrieve objects that
are linked to the one that was initially requested, as a result a few
10’s of milliseconds per object can turn into seconds of additional
latency for an entire web page [12, 2, 7, 10]. Though some tech-
niques (such as Hibernate’s “eager fetching”) aim to mitigate this,
they are far from perfect as we discuss below. Finally, decreasing
latency often increases throughput: as each request takes less time
to complete, the server can process more requests simultaneously.

There are two general approaches for programs to reduce appli-
cation latency due to database queries: i) hide this latency by over-
lapping communication and computation, or ii) reduce the number
of round trips by fetching more data in each one. Latency hiding
is most commonly achieved by prefetching query results so that
the communication time overlaps with computation, and the data
is ready when the application really needs it. Both of these tech-
niques have been explored in prior research. Latency hiding, which
generally takes the form of asynchronously “prefetching” query re-
sults so that they are available when needed by the program, was
explored by Ramachandra et al. [23], where they employed static
analysis to identify queries that will be executed unconditionally
by a piece of code. The compiler can then transform the code so
that these queries are issued as soon as their query parameters are
computed, and before their results are needed. Unfortunately, for
many web applications there is not enough computation to perform
between the point when the query parameters are available and the
query results are used, which reduces the effectiveness of this tech-
nique. Also, if the queries are executed conditionally, prefetching
queries requires speculation about program execution and can end
up issuing additional useless queries.

In contrast to prefetching, most ORM frameworks allow users to
specify “fetching strategies” that describe when an object or mem-
bers of a collection should be fetched from the database in order
to reduce the number of round trips. The default strategy is usu-
ally “lazy fetching,” where each object is fetched from the database
only when it is used by the application. This means that there is a
round trip for every object, but the only objects fetched are those
that are certainly used by the application. The alternative “eager”
strategy causes the all objects related to an object (e.g., that are part
of the same collection or referenced by a foreign key) to be fetched
as soon as the object is requested. The eager strategy reduces the
number of round trips to the database by combining the queries in-
volved in fetching multiple entities (e.g., using joins). Of course,
this eager strategy can result in fetching objects that are not needed,



and, in some cases, can actually incur more round trips than lazy
fetching. For this reason, deciding when to label entities as “ea-
ger” is a non-trivial task, as evidenced by the number of questions
on online forums regarding when to use which strategy, with “it
depends” being the most common answer. In addition, for large-
scale projects that involve multiple developers, it is difficult for the
designer of the data access layer to predict how entities will be ac-
cessed in the application and therefore which strategy should be
used. Finally, fetching strategies are very specific to ORM frame-
works and fail to address the general problem which is also present
in non-ORM applications.

This paper describes a new approach for reducing the latency of
database-backed applications that combines many features of the
two strategies described. The goal is to reduce the number of round
trips to the database by batching queries issued by the application.
The key idea is to collect queries by relying on a new technique
which we call extended lazy evaluation (or simply “lazy evalua-
tion” in the rest of the paper.) As the application executes, queries
are batched into a query store instead of being executed right away.
In addition, non-database related computation is delayed until it
is absolutely necessary. As the application continues to execute,
multiple queries are accumulated in the query store. When a value
that is derived from query results is finally needed (say, when it is
printed on the console), then all the queries that are registered with
the query store are executed by the database in a single batch, and
the results are then used to evaluate the outcome of the computa-
tion. The technique is conceptually related to the traditional lazy
evaluation as supported by functional languages (either as the de-
fault evaluation strategy or as program constructs) such as Haskell,
Miranda, Scheme and Ocaml [20]. In traditional lazy evaluation,
there are two classes of computations; those that can be delayed,
and those that force the delayed computation to take place because
they must be executed eagerly. In our extended lazy evaluation,
queries constitute a third kind of computation because even though
their actual execution is delayed, they must eagerly register them-
selves with the batching mechanism so they can be issued together
with other queries in the batch.

Compared to query extraction using static analysis, our approach
batches queries dynamically as the program executes, and defers
computation as long as possible to maximize the opportunity to
overlap query execution with program evaluation. As a result, it is
able to batch queries across branches and even method calls, which
results in larger batch sizes and fewer database round trips. Unlike
fetching strategies, our approach is not fundamentally tied to ORM
frameworks. Moreover, we do not require developers to label enti-
ties as eager or lazy, as our system only brings in entities from the
database as they are originally requested by the application. Note
that our approach is orthogonal to other multi-query optimization
approaches that optimize batches of queries [16]; we do not merge
queries to improve their performance, or depend on many concur-
rent users issuing queries to collect large batches. Instead, we opti-
mize applications to extract batches from a single client, and issue
those in a single round trip to the database (which still executes the
individual query statements.)

We have implemented this approach in a new system called Sloth.
The system is targeted towards applications written in an impera-
tive language that use databases for persistent storage. Sloth con-
sists of two components: a compiler and a number of libraries for
runtime execution. Unlike traditional compilers, Sloth compiles
the application source code to execute using lazy evaluation. In
summary, our paper makes the following contributions:
• We devise a new mechanism to batch queries in database-

backed applications based on a combination of a new “lazy-ifying”

1 ModelAndView handleRequest(...) {
2 Map model = new HashMap<String, Object>();
3 Object o = request.getAttribute("patientId");
4 if (o != null) {
5 Integer patientId = (Integer) o;
6 if (!model.containsKey("patient")) {
7 if (hasPrivilege(VIEW_PATIENTS)) {
8 Patient p = getPatientService().getPatient(patientId);
9 model.put("patient", p);

10 ...
11 model.put("patientEncounters",
12 getEncounterService().getEncountersByPatient(p));
13 ...
14 List visits = getVisitService().getVisitsByPatient(p);
15 CollectionUtils.filter(visits, ...);
16 model.put("patientVisits", visits);
17 model.put("activeVisits", getVisitService().
18 getActiveVisitsByPatient(p));
19 ...
20 return new ModelAndView(portletPath, "model", model);
21 }

Figure 1: Code fragment abridged from OpenMRS

compiler and dynamic program analysis to generate the queries to
be batched. Our transformation preserves the semantics of the orig-
inal program, including transaction boundaries.
• We propose a number of optimizations to improve the quality

of the compiled lazy code.
• We built and evaluated Sloth using real-world web applica-

tions totaling over 300k lines of code. Our results show that Sloth
achieves a median speedup between 1.3× and 2.2× (depending on
network latency), with maximum speedups as high as 3.1×. Re-
ducing latency also improves maximum throughput of our applica-
tions by 1.5×.

In the following, we first describe how Sloth works through a
motivating example in Sec. 2. Then, we explain our compilation
strategy in Sec. 3, followed by optimizations to improve generated
code quality in Sec. 4. We describe our prototype implementation
in Sec. 5, and report our experimental results using both real-world
benchmarks in Sec. 6.

2. OVERVIEW
In this section we give an overview of Sloth using the code frag-

ment shown in Fig. 1. The fragment is abridged from OpenMRS [8],
an open-source patient record web application written in Java. It
is hosted using the Spring web framework and uses the Hibernate
ORM library to manage persistent data. The application has been
deployed in numerous countries worldwide since 2006.

The application is structured using the Model-View-Control (MVC)
pattern, and the code fragment is part of a controller that builds a
model to be displayed by the view after construction. The con-
troller is invoked by the web framework when a user logs-in to the
application to view the dashboard for a particular patient. The con-
troller first creates a model (a HashMap object), populates it with
appropriate patient data based on the logged-in user’s privileges,
and returns the populated model to the web framework. The web
framework then passes the partially constructed model to other con-
trollers which may add additional data, and finally to the view cre-
ator to generate HTML output.

As written, this code fragment can issue up to four queries; the
queries are issued by calls of the form getXXX on the data access
objects, i.e., the Service objects, following the web framework’s
convention. The first query in Line 8 fetches the Patient object
that the user is interested in displaying and adds it to the model. The
code then issues queries on Lines 12 and 14, and Line 18 to fetch
various data associated with the patient, and adds this data to the



model as well. It is important to observe that of the four round trips
that this code can incur, only the first one is essential—without the
result of that first query, the other queries cannot be constructed.
In fact, the results from the other queries are only stored in the
model and not used until the view is actually rendered. This means
that in principle, the developer could have collected the last three
queries in a single batch and sent it to the database in a single round
trip. The developer could have gone even further, collecting in a
single batch all the queries involved in building the model until the
data from any of the queries in the batch is really needed—either
because the model needs to be displayed, or because the data is
needed to construct a new query. Manually transforming the code
in this way would have a big impact in the number of round trips
incurred by the application, but would also impose an unacceptable
burden on the developer. In the rest of the section, we describe how
Sloth automates such transformation with only minimal changes to
the original code, and requires no extra work from the developer.

An important ingredient to automatically transform the code to
batch queries is lazy evaluation. In most traditional programming
languages, the evaluation of a statement causes that statement to
execute, so any function calls made by that statement are executed
before the program proceeds to evaluating the next statement. In
lazy evaluation, by contrast, the evaluation of a statement does not
cause the statement to execute; instead, the evaluation produces a
Thunk: a place-holder that stands for the result of that computation,
and it also remembers what the computation was. The only state-
ments that are executed immediately upon evaluation are those that
produce output (e.g., printing on the console), or cause an exter-
nally visible side effect (e.g., reading from files). When such a
statement executes, the thunks corresponding to all the values that
flow into that statement will be forced, meaning that the delayed
computation they represented will finally be executed.

The key idea behind our approach is to modify the basic machin-
ery of lazy evaluation so that when a thunk is created, any queries
performed by the statement represented by the thunk are added to a
query store kept by the runtime to batch queries. Because the com-
putation has been delayed, the results of those queries are not yet
needed, so the queries can accumulate in the query store until any
thunk that requires the result of such queries is forced; at that point,
the entire batch of queries is sent to the database for processing in
a single round trip. This process is illustrated in Figure 2; during
program execution, Line 8 issues a call to fetch the Patient ob-
ject that corresponds to patientId (Q1). Rather than executing the
query, Sloth compiles the call to register the query with the query
store instead. The query is recorded in the current batch within the
store (Batch 1), and a thunk is returned to the program (represented
by the gray box in Fig. 2). In Line 12, the program needs to access
the patient object p to generate the queries to fetch the patient’s
encounters (Q2) followed by visits in Line 14 (Q3). At this point
the thunk p is forced, Batch 1 is executed, and its results (rs1) are
recorded in the query cache in the store. A new non-thunk object
p’ is returned to the program upon deserialization from rs1, and
p’ is memoized in order to avoid redundant deserializations. After
this query is executed, Q2 and Q3 can be generated using p’ and
are registered with the query store in a new batch (Batch 2). Un-
like the patient query, however, Q2 and Q3 are not executed within
handleRequest since their results are not used (thunks are stored in
the model map in Lines 12 and 16). Note that even though Line 15
uses the results of Q3 by filtering it, our analysis determines that
the operation does not have externally visible side effects and is
thus delayed, allowing Batch 2 to remain unexecuted. This leads to
batching another query in Line 18 that fetches the patient’s active
visits (Q4), and the method returns.

Query:'getPatient(patientId)       [Q1]'
Result:'null$ Batch1'

Query:'getPatient(patientId)'''''''''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')'''''[Q2] 
Result:'null$ Batch'2'

Query:'getPatient(patientId)''''' ''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')''''[Q2] 
Result:'null$
Query:'getVisitsByPatient(p')'''''''''''''[Q3] 
Result:'null$ Batch'2'

Query:'getPatient(patientId)''''''''''''''''[Q1] 
Result:'rs1$ Batch'1'

Query:'getEncountersByPatient(p')  [Q2] 
Result:'null$
Query:'getVisitsByPatient(p')      [Q3] 
Result:'null$
Query:'getActiveVisitsByPatient(p')[Q4] 
Result:'null$ Batch'2'

8'
getPatient(..)$

getPatient(..)$

12' getEncounters(p')$

getEncounters(p')$

14' getVisits(p')$

getVisits(p')$

18'
getActiveVisits(p')$

getActiveVisits(p')$

Program'line' Contents'of'the'Query'Store' Database'

getPatient(..)$

rs1$

Batch'2'will'be'executed''
when'the'next'database'
connecEon'happens''
(not'shown)'

Batch'1’s'results'are''
cached'in'the''
query'store'

p._force()$

p'$=$deserialize(rs1)$

p._force()$

p'$

p._force()$

p'$

Figure 2: Operational diagram of the example code fragment

Depending on subsequent program path, Batch 2 might be ap-
pended with further queries. Q2, Q3, and Q4 may be executed later
when the application needs to access the database to get the value
from a registered query, or they might not be executed at all if the
application has no further need to access the database.

This example shows how Sloth is able to perform much more
batching than either the existing “lazy” fetching mode of Hibernate
or prior work using static analysis [23]. Hibernate’s lazy fetching
mode would have to evaluate the results of the database-accessing
statements such as getVisitsByPatient(p) on Line 14 as its re-
sults are needed by the filtering operation, leaving no opportunity
to batch. In contrast, Sloth places thunks into the model and delays
the filtering operation, which avoid evaluating any of the queries.
This enables more queries to be batched and executed together in
a subsequent trip to the database. Static analysis also cannot per-
form any batching for these queries, because it cannot determine
what queries need to be evaluated at compile time as the queries
are parameterized (such as by the specific patient id that is fetched
in Line 8), and also because they are executed conditionally only if
the logged-in user has the required privilege.

There are some languages such as Haskell that execute lazily
by default, but Java has no such support. Furthermore, we want
to tightly control how lazy evaluation takes place so that we can
calibrate the tradeoffs between execution overhead and the degree
of batching achieved by the system. We would not have such tight
control if we were working under an existing lazy evaluation frame-
work. Instead, we rely on our own Sloth compiler to transform the
code for lazy evaluation. At runtime, the transformed code relies
on the Sloth runtime to maintain the query store. The runtime also
includes a custom JDBC driver that allows multiple queries to be
issued to the database in a single round trip, as well as extended ver-
sions of the application framework, ORM library, and application
server that can process thunks (we currently provide extensions to
the Spring application framework, the Hibernate ORM library, and
the Tomcat application server, to be described in Sec. 5). For mono-
lithic applications that directly use the JDBC driver to interact with
the database, developers just need to change such applications to
use the Sloth batch JDBC driver instead. For applications hosted
on application servers, developers only need to host them on the
Sloth extended application server instead after compiling their ap-
plication with the Sloth compiler.
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Figure 3: Architecture of the Sloth Compiler, with * marking those
components used for optimization

3. COMPILING TO LAZY SEMANTICS
In this section we describe how Sloth compiles the application

source code to be evaluated lazily. Figure 3 shows the overall ar-
chitecture of the Sloth compiler, the details of which are described
in this section and next.

3.1 Code Simplification
To ease the implementation, the Sloth compiler first simplifies

the input source code. All looping constructs are converted to
while (true), where the original loop condition is converted into
branches with control flow statements in their bodies, and assign-
ments are broken down to have at most one operation on their
right-hand-side. Thus an assignment such as x = a + b + c will
be translated to t = a + b; x = t + c;, with t being a temporary
variable. Type parameters (generics) are also eliminated, and inner
and anonymous classes are extracted into stand-alone ones.

3.2 Thunk Conversion
After simplification, the Sloth compiler converts each statement

of the source code into extended lazy semantics. For clarity, in the
following we present the compilation through a series of examples
using concrete Java syntax. However, beyond recognizing methods
that issue queries (such as those in the JDBC API), our compilation
is not Java-specific, and we formalize the compilation process in
Sec. 3.8 using an abstract kernel language.

In concrete syntax, each statement in the original program is re-
placed with an allocation of an anonymous class derived from the
abstract Thunk class after compilation, with the code for the original
statement placed inside a new _force class method. To “evaluate”
the thunk, we invoke this method, which executes the original pro-
gram statement and returns the result (if any). For example, the
following statement:

int x = c + d;

is compiled into lazy semantics as:

Thunk<int> x =
new Thunk<int>() {
Integer _force() { return c._force() + d._force(); }
};

There are a few points to note in the example. First, all variables
are converted into Thunk types after compilation. For instance, x
has type Thunk<int> after compilation, and likewise for c and d. As
a consequence, all variables need to be evaluated before carrying
out the actual computation inside the body of _force. Secondly,
to avoid redundant evaluations, we memoize the return value of

_force so that subsequent calls to _force will return the memoized
value instead (the details of which are not shown).

While the compilation is relatively straightforward, the mecha-
nism presented above can incur substantial runtime overhead, as
the compiled version of each statement incurs allocation of a Thunk
object, and all computations are converted to method calls. Sec. 4
describes several optimizations that we have devised to reduce the
overhead. Sec. 6.6 quantifies the overhead of lazy semantics, which
shows that despite some overhead, it is generally much less than the
savings we obtain from reducing round trips.

3.3 Compiling Query Calls
Method calls that issue database queries, such as JDBC execute-

Query calls, and calls to ORM library APIs that retrieve entities
from persistent storage are compiled differently from ordinary method
calls. In particular, we want to extract the query that would be ex-
ecuted from such calls and record it in the query store so it can
be issued when the next batch is sent to the database. To facili-
tate this, the query store consists of the following components: a)
a buffer that stores the current batch of queries to be executed and
associates a unique id with each query, and b) a result store that
contains the results returned from batches previously sent to the
database; the result store is a map from the unique query identifier
to its result set. The query store API consists of two methods:
• QueryId registerQuery(String sql): Add the sql query to

the current batch of queries and return a unique identifier to the
caller. If sql is an INSERT, UPDATE, ABORT, COMMIT, or SELECT ...
INTO the current batch will be immediately sent to the database to
ensure these updates are not left lingering in the query store. On
the other hand, the method avoids introducing redundant queries
into the batch, so if sqlmatches another query already in the query
buffer, the identifier of the first query will be returned.
• ResultSet getResultSet(QueryId id): check if the result set

associated with id resides in the result store; if so, return the cached
result. Otherwise, issue the current batch of queries in a single
round trip, process the result sets by adding them to the result store,
and return the result set that corresponds to id.

To use the query store, method calls that issue database queries
are compiled to a thunk that passes the SQL query to be executed in
the constructor. The thunk registers the query to be executed with
the query store using registerQuery in its constructor and stores
the returned QueryId as its member field. The _forcemethod of the
thunk then calls getResultSet to get the corresponding result set.
For ORM library calls, the result sets are passed to the appropriate
deserialization methods in order to convert the result set into heap
objects that are returned to the caller.

Note that creating thunks associated with queries require evalu-
ating all other thunks that are needed in order to construct the query
itself. For example, consider Line 8 of Fig. 1, which makes a call
to the database to retrieve a particular patient’s data:
Patient p = getPatientService().getPatient(patientId);

In the lazy version of this fragment, patientId is converted to a
thunk that is evaluated before the SQL query can be passed to the
query store:
Thunk<Patient> p = new Thunk<Patient>(patientId) {
{ this.id = queryStore.regQuery(

getQuery(patientId._force())); }
Patient _force() {
return deserialize(queryStore.getResultSet(id));
} }

Here, getQuery calls an ORM library method to generate the SQL
string and substitutes the evaluated patientId in it, and deserialize
reconstructs an object from a SQL result set.



3.4 Compiling Method Calls
In the spirit of laziness, it would be ideal to delay executing

method calls as long as possible (in the best case, the result from
the method call is never needed and therefore we do not need to ex-
ecute the call). However, method calls might have side effects that
change the program heap, for instance changing the values of heap
objects that are externally visible outside of the application (such
as a global variable). The target of the call might be a class exter-
nal to the application, such as a method of the standard JDK, where
the Sloth compiler does not have access to its source code (we call
such methods “internal” otherwise). Because of that, method calls
are compiled differently according to the type of the called method
as follows. Method labeling is done as one of the analysis passes in
the Sloth compiler, and the thunk conversion pass uses the method
labels during compilation.

Internal methods without side effects. This is the ideal case
where we can delay executing the method. The call is compiled
to a thunk with the method call as the body of the _force method.
Any return value of the method is assigned to the thunk. For exam-
ple, if int foo(Object x, Object y) is an internal method with
no side effects, then:

int r = foo(x, y);
is compiled to:
Thunk<int> r = new Thunk<int>(x, y) {
int _force() { return this.foo(x._force(), y._force()); }
};

Internal methods with externally visible side effects. We cannot
defer the execution of such method due to their externally visible
side effects. However, we can still defer the evaluation of its ar-
guments until necessary inside the method body. Thus, the Sloth
compiler generates a special version of the method where its pa-
rameters are thunk values, and the original call site are compiled to
calling the special version of the method instead. For example, if
int bar(Object x) is such a method, then:

int r = bar(x);
is compiled to:

Thunk<int> r = bar_thunk(x);

with the declaration of bar_thunk as
Thunk<int> bar_thunk(Thunk<Object> x).

External methods. We cannot defer the execution of external
methods unless we know that they are side-effect free. Since we
do not have access to their source code, the Sloth compiler does
not change the original method call during compilation, except for
forcing the arguments and receiver objects as needed. As an exam-
ple, Line 3 in Fig. 1:

Object o = request.getAttribute("patientId");

is compiled to:
Thunk<Object> o = new LiteralThunk(
request._force().getAttribute("patientId"));

As discussed earlier, since the types of all variables are converted
to thunks, the (non-thunk) return value of external method calls are
stored in LiteralThunk objects that simply returns the non-thunk
value when _force is called, as shown in the example above.

3.5 Class Definitions and Heap Operations
For classes that are defined by the application, the Sloth com-

piler changes the type of each member field to Thunk to facilitate
accesses to field values under lazy evaluation. For each publicly
accessible final fields, the compiler adds an extra field with the
original type, with its value set to the evaluated result of the corre-
sponding thunk-ified version of the field. These fields are created

so that they can be accessed from external methods. Publicly ac-
cessible non-final fields cannot be made lazy.

In addition, the Sloth compiler changes the type of each parame-
ter in method declarations to Thunk to facilitate method call conven-
tions discussed in Sec. 3.4. Like public fields, since public methods
can potentially be invoked by external code (e.g., the web frame-
work that hosts the application, or by JDK methods such as calling
equals while searching for a key within a Map object), the Sloth
compiler generates a “dummy” method that has the same declara-
tion (in terms of method name and parameter types) as the orig-
inal method, The body of such dummy methods simply invokes
the thunk-converted version of the corresponding method. If the
method has a return value, then it is evaluated on exit. For instance,
the following method:

public Foo bar (Baz b) { ... }

is compiled to two methods by the Sloth compiler:

// to be called by internal code
public Thunk<Foo> bar_thunk (Thunk<Baz> b) { ... }
// to be called by external code
public Foo bar (Baz b) {
return bar_thunk(new LiteralThunk(b))._force(); }

With that in mind, the compiler translates object field reads to
simply return the thunk fields. However, updates to heap objects
are not delayed in order to ensure consistency of subsequent heap
reads. In order to carry out the write, however, the receiver object
needs to be evaluated if it is a thunk. Thus, the following statement:

Foo obj = ...
obj.field = x;

is compiled to:
Thunk<Foo> obj = ...
obj._force().field = x;

Notice that while the target of the heap write is evaluated (obj in
the example), the value that is written (x in the example) is a thunk
object, meaning that it can represent computation that has not been
evaluated yet.

3.6 Evaluating Thunks
In previous sections, we discussed the basic compilation of state-

ments into lazy semantics using thunks. In this section we describe
when thunks are evaluated, i.e., when the original computation that
they represent is actually carried out.

As mentioned in the last section, the target object in field reads
and writes are evaluated when encountered. However, the value of
the field and the object that is written to the field can still be thunks.
The same is applied to array accesses and writes, where the target
array and index are evaluated before the operation.

For method calls where the execution of the method body is not
delayed, the target object is evaluated prior to the call if the called
method is non-static. While our compiler could have deferred the
evaluation of the target object by converting all member methods
into static class methods, it is likely that the body of such methods
(or further methods that are invoked inside the body) accesses some
fields of the target object and will end up evaluating the target ob-
ject. Thus, there is unlikely any significant savings in delaying such
evaluation. Finally, when calling external methods all parameters
are evaluated as discussed.

In the basic compiler, all branch conditions are evaluated when
if statements are encountered. Recall that all loops are canoni-
calized into while (true) loops with the loop condition rewritten
using branches. We present an optimization to this restriction in
Sec. 4.2 below. Similarly, statements that throw exceptions, obtain



c ∈ constant ::= True | False | literal
el ∈ assignExpr ::= x | e.f

e ∈ expr ::= c | el | {fi = ei} | e1 op e2 | ¬ e | f (e) | ea[ei ] | R(e)

c ∈ command ::= skip | el := e | if(e) then c1 else c2 |
while(True) do c | W (e) | c1 ; c2

op ∈ binary op ::= ∧ | ∨ | > | < | =

Figure 4: Input language

locks on objects (synchronized), and that spawn new threads of
control are not deferred. Finally, thunk evaluations can also hap-
pen when compiling statements that issue queries, as discussed in
Sec. 3.3.

3.7 Limitations
There are two limitations that we do not currently handle. First,

because of delayed execution, exceptions that are thrown by the
original program might not occur at the same program point in the
Sloth-compiled version. For instance, the original program might
throw an exception in a method call, but in the Sloth-compiled ver-
sion, the call might be deferred until the thunk corresponding to the
call is evaluated. While the exception will still be thrown eventu-
ally, the Sloth-compiled program might have executed more code
than the original program before hitting the exception.

Second, since the Sloth compiler changes the representation of
member fields in each internal class, we currently do not support
custom deserializers. For instance, one of the applications used in
our experiments reads in an XML file that contains the contents of
an object before the application source code is compiled by Sloth.
As a result, the compiled application fails to re-create the object as
its representation has changed. We manually fixed the XML file to
match the expected types in our benchmark. In general, we do not
expect this to be common practice, given that Java already provides
its own object serialization routines.

3.8 Formal Semantics
We now formally define the extended lazy evaluation outlined

above. For the sake of presentation, we describe the semantics in
terms of the language shown in Fig. 4. The language is simple,
but will help us illustrate the main principles behind extended lazy
evaluation that can be easily applied not just to Java but to any other
object-oriented language. For lack of space, this section provides
only an outline of the semantic rules and the main idea behind the
soundness proof, the complete semantics are described in [15].

The main constructs to highlight in the language are the expres-
sion R(e) which issues a database read query derived from the
value of expression e, and W (e) a statement that issues a query
that can mutate the database, such as INSERT or UPDATE.

We first define the standard execution semantics of the language.
Expression evaluation is defined through a set of rules that takes
a program state s and an expression e, and produces a new pro-
gram state along with the value of the expression. The state s of
the program is represented by a tuple (D,σ, h), where D is the
database that maps queries to their result sets, σ is the environment
that maps program variables to expressions, and h is the program
heap that maps addresses to expressions.

As an example, the rule to evaluate the binary expression e1 op e2
is shown below.

〈s, e1〉 → 〈s′, v1〉 〈s′, e2〉 → 〈s′′, v2〉 v1 op v2 → v

〈s, e1 op e2〉 → 〈s′′, v〉

The notation above the line describes how the subexpressions e1
and e2 are evaluated to values v1 and v2 respectively. The result

of evaluating the overall expression is shown below the line and it
is the result of applying op to v1 and v2, together with the state as
transformed by the evaluation of the two subexpressions.

As another example, the evaluation of a read query R(e) must
first evaluate the query e to a query string v , and then return the
result of consulting the database D ′ with this query string. Note that
the evaluation of e might itself modify the database, for example if
e involves a function call that internally issues an update query,
so the query v must execute on the database as it is left after the
evaluation of e:

〈(D,σ, h), e〉 → 〈(D′,σ, h′), v〉
〈(D,σ, h),R(e)〉 → 〈(D′,σ, h′),D′[v ]〉

The rest of the evaluation rules are standard and are included in [15].
To describe lazy evaluation, we augment the state tuple s with the

query store Q, which maps a query identifier to a pair (q, rs) that
represents the SQL query q and its corresponding result set rs . rs
is initially set to null (∅) when the pair is created. We model thunks
using the pair (σ, e), where σ represents the environment for look-
ing up variables during thunk evaluation, and e the expression to
evaluate. In our Java implementation the state is implemented as
fields in each generated Thunk class, and e is the expression in the
body of the _force method.

As discussed in Sec. 3.2, to evaluate the expression e1 op e2
using lazy evaluation, we first create thunk objects v1 and v2 for
e1 and e2 respectively, and then create another thunk object that
represents the op. Formally this is described as:

〈s, e1〉 → 〈s′, v1〉 〈s′, e2〉 → 〈s′′, v2〉
v1 = (s′, e′1) v2 = (s′′, e′2)

v = (σ′ ∪ σ′′, e′1 op e′2)

〈s, e1 op e2〉 → 〈s′′, v〉

Note that the environment for v is the union of the environments
from v1 and v2 since we might need to look up variables stored in
either of them.

On the other hand, as discussed in Sec. 3.3, under lazy evaluation
query calls are evaluated by first forcing the evaluation of the thunk
that corresponds to the query string, and then registering the query
with the query store. This is formalized as:

〈(Q,D,σ, h), e〉 → 〈(Q′,D′,σ, h′), (σ′, e)〉 id is a fresh identifier
force(Q′,D′, (σ′, e)) → 〈Q′′,D′′, v〉 Q′′′ = Q′′[id → (v , ∅)]

〈(Q,D,σ, h),R(e)〉 → 〈(Q′′′,D′′,σ, h′), ([ ], id)〉

The force function above is used to evaluate thunks, similar to that
described in the examples above using Java. force(Q,D, t) takes in
the current database D and query store Q and returns the evaluated
thunk along with the modified query store and database. When
force encounters an id in a thunk, it checks the query store to see
if that id already has a result associated with it. If it does not, it
issues as a batch all the queries in the query store that do not yet
have results associated with them, and then assigns those results
once they arrive from the database.

Using the semantics outlined above, we have proven the equiv-
alence of standard and lazy semantics by showing that if evaluat-
ing command c on program state 〈Q,D,σ, h〉 results in the new
state 〈Ds ,σs , hs〉 under standard semantics, and 〈Ql ,Dl ,σl , hl〉 un-
der lazy semantics, then after forcing all thunk objects in σl and hl ,
we have Dl = Ds , σl = σs , and hl = hs , regardless of the order in
which the thunks are forced. The proof is included in [15].

4. BEING EVEN LAZIER
In the previous section, we described how Sloth compiles source

code into lazy semantics. However, as noted in Sec. 3.2, there



can be substantial overhead if we follow the compilation procedure
naively. In this section, we describe three optimizations. The goal
of these optimizations is to generate more efficient code and to fur-
ther defer computation. As discussed in Sec. 2, deferring computa-
tion delays thunk evaluations, which in turn increases the chances
of obtaining larger query batches during execution time. Like the
previous section, we describe the optimizations using concrete Java
syntax for clarity, although they can all be formalized using the lan-
guage described in Fig. 4.

4.1 Selective Compilation
The goal of compiling to lazy semantics is to enable query batch-

ing. Obviously the benefits are observable only for the parts of
the application that actually issue queries, and simply adds runtime
overhead for the remaining parts of the application. Thus, the Sloth
compiler analyzes each method to determine whether it can pos-
sibly access the database. The analysis is a conservative one that
labels a method as using persistent data if it:
• Issues a query in its method body.
• Calls another method that uses persistent data. Because of

dynamic dispatch, if the called method is overridden by any of its
subclasses, we check if any of the overridden versions is persistent,
and if so we label the call to be persistent.
• Accesses object fields that are stored persistently. This is done

by examining the static object types that are used in each method,
and checking whether it uses an object whose type is persistently
stored. The latter is determined by checking for classes that are
populated by query result sets in its constructor (in the case of
JDBC), or by examining the object mapping configuration files for
ORM frameworks.

The analysis is implemented as an inter-procedural, flow-insensitive
dataflow analysis [21]. It first identifies the set of methods m con-
taining statements that perform any of the above. Then, any method
that calls m is labeled as persistent. This process continues until
all methods that can possibly be persistent are labeled. For meth-
ods that are not labeled as persistent, the Sloth compiler does not
convert their bodies into lazy semantics—they are compiled as is.
For the two applications used in our experiments, our results show
about 28% and 17% of the methods do not use persistent data, and
those are mainly methods that handle application configuration and
output page formatting (see Sec. 6.5 for details).

4.2 Deferring Control Flow Evaluations
In the basic compiler, all branch conditions are evaluated when

an if statement is encountered, as discussed in Sec. 3.6. The ratio-
nale is that the outcome of the branch affects subsequent program
path. We can do better, however, based on the intuition that if nei-
ther branch of the condition creates any changes to the program
state that are externally visible outside of the application, then the
entire branch statement can be deferred as a thunk like other simple
statements. Formally, if none of the statements within the branch
contains: i) calls that issue queries; or ii) thunk evaluations as dis-
cussed in Sec. 3.6 (recall that thunks need to be evaluated when
their values are needed in operations that cannot be deferred, such
as making changes to the program state that are externally visible),
then the entire branch statement can be deferred. For instance, in
the following code fragment:

if (c) a = b; else a = d;

The basic compiler would compile the code fragment into:

if (c._force())
a = new Thunk0(b) { ... };
else
a = new Thunk1(d) { ... };

which could result in queries being executed as a result of evaluat-
ing c. However, since the bodies of the branch statements do not
make any externally visible state changes, the whole branch state-
ment can be deferred as:

ThunkBlock tb = new ThunkBlock2(b, d) {
void _force () {
if (c._force()) a = b._force(); else a = d._force();
} }
Thunk<int> a = tb.a();

where the evaluation of c is further delayed. The ThunkBlock class
is similar to the Thunk class except that it defines methods (not
shown above) that return thunk variables defined within the block,
such as a in the example. Calling _force on any of the thunk out-
puts from a thunk block will evaluate the entire block, along with
all other output objects that are associated with that thunk block. In
sum, this optimization allows us to delay thunk evaluations, which
in turn might increase query batches sizes.

To implement this optimization, the Sloth compiler first iterates
through the body of the if statement to determine if any thunk
evaluation takes place, and all branches that are deferrable are la-
beled. During thunk generation, deferrable branches are translated
to thunk objects, with the original statements inside the branches
constituting the body of the _force methods. Variables defined in-
side the branch are assigned to output thunks as described above.
The same optimization is applied to defer loops as well. Recall that
all loops are converted into while (true) loops with embedded
control flow statements (break and continue) inside their bodies.
Using similar logic, a loop can be deferred if all statements inside
the loop body can be deferred.

4.3 Coalescing Thunks
The basic compilation described in Sec. 3.2 results in new Thunk

objects being created for each computation that is delayed. Due
to the temporary variables that are introduced as a result of code
simplification, the number of operations (and thus the number of
Thunk objects) can be much larger than the number of lines of Java
code. This can substantially slow down the compiled application.
As an optimization, the thunk coalescing pass merges consecutive
statements into thunk blocks to avoid allocation of thunks. The
idea is that if for two consecutive statements s1 and s2, and that s1
defines a variable v that is used in s2 and not anywhere after in the
program, then we can combine s1 and s2 into a thunk block with s1
and s2 inside its _force method (provided that both statements can
be deferred as discussed in Sec. 3). This way, we avoid creating the
thunk object for v that would be created under basic compilation.
As an illustrative example, consider the following code fragment:

int foo (int a, int b, int c, int d) {
int e = a + b;
int f = e + c;
int g = f + d;
return g; }

Under basic compilation, the code fragment is compiled to:
1 Thunk<int> foo (Thunk<int> a, b, c, d) {
2 Thunk<int> e = new Thunk0(a, b) { ... }
3 Thunk<int> f = new Thunk1(e, c) { ... }
4 Thunk<int> g = new Thunk2(f, d) { ... }
5 return g; }

Notice that three thunk objects are created, with the additions in the
original code performed in the _force methods inside the defini-
tions of classes Thunk0, Thunk1 and Thunk2, respectively. However,
in this case the variables e and f are not used anywhere, i.e., they
are no longer live, after Line 4. Thus we can combine the first three
statements into a single thunk, resulting in the following:



Thunk<int> foo (Thunk<int> a, b, c, d) {
ThunkBlock tb = new ThunkBlock3(a, b, c, d) { ... }
Thunk<int> g = tb.g();
return g; }

The optimized version reduces the number of object allocations
from 3 to 2: one allocation for ThunkBlock3 and another one for the
Thunk object representing g that is created within the thunk block.
In this case, the _force method inside the ThunkBlock3 class con-
sists of statements that perform the addition in the original code.
As described earlier, the thunk block keeps track of all thunk val-
ues that need to be output, in this case the variable g.

This optimization is implemented in multiple steps in the Sloth
compiler. First, we identify variables that are live at each program
statement. Live variables are computed using a dataflow analysis
that iterates through program statements in a backwards manner
to determine the variables that are used at each program statement
(and therefore must be live).

After thunks are generated, the compiler iterates through each
method to combine consecutive statements into thunk blocks. The
process continues until no statements can be further combined within
each method. After that, the compiler examines the _forcemethod
of each thunk block and records the set of variables that are de-
fined. For each such variable v, the compiler checks to see if all
statements that use of v are also included in the same thunk block
by making use of the liveness information. If so it does not need to
create a thunk object for v. This optimization significantly reduces
the number of thunk objects that need to be allocated and thus im-
proves the efficiency of the generated code as shown in Sec. 6.5.

5. IMPLEMENTATION
We have implemented a prototype of Sloth. The Sloth compiler

is built on top of Polyglot [22]. We have implemented a query
store for the thunk objects to register and retrieve query results. To
issue the batched queries in a single round trip, we extended the
MySQL JDBC driver to allow executing multiple queries in one
executeQuery call, and the query store uses the batch query driver
to issue queries. Once received by the database, our extended driver
executes all read queries in parallel. In addition, we have also made
the following changes to the application framework to enable them
process thunk objects that are returned by the hosted application.
Our extensions are not language specific and can be applied to
other ORM and app hosting frameworks. Besides the extensions
to JDBC driver and JPA layer, the other changes are optional and
were done to further increase query batching opportunities.

JPA Extensions. We extended the Java Persistence API (JPA) [5]
to allow returning thunk objects from calls that retrieves objects
from the database. For example, JPA defines a method Object
find(Class, id) that fetches the persistently stored object of type
Class with id as its object identifier. We extended the API with
a new method Thunk<Object> find_thunk(Class, id) that per-
forms the same functionality except that it returns a thunk rather
than the requested object. We implemented this method in the Hi-
bernate ORM library. The implementation first generates a SQL
query that would be issued to fetch the object from the database,
registers the query with the query store, and returns a thunk object
to the caller. Invoking the _forcemethod on the returned thunk ob-
ject forces the query to be executed, and Hibernate will then deseri-
alize the result into an object of the requested type before returning
to the caller. Similar extensions are made to other JPA methods.
Note that our extensions are targeted to the JPA not Hibernate—
we implemented them within Hibernate as it is a popular open-
source implementation of JPA and is also used by the applications

in our experiments, and the extensions were implemented using
about 1000 lines of code.

Spring Extensions. We extended the Spring web application frame-
work to allow thunk objects be stored and returned during model
construction within the MVC pattern. This is a minor change that
consists of about 100 lines of code.

JSP API Extensions. We extended the JavaServer Pages (JSP)
API [4] to enable thunk operations. In particular, we allow thunk
objects to be returned while evaluating JSP expressions. We also
extended the JspWriter class from the JSP API that generates the
output HTML page when a JSP is requested. The class provides
methods to write different types of objects to the output stream.
We extended the class with a writeThunk method that write thunk
objects to the output stream. writeThunk stores the thunk to be
written in a buffer, and thunks in the buffer are not evaluated until
the writer is flushed by the web server (which typically happens
when the entire HTML page is generated). We have implemented
our JSP API extensions in Tomcat, which is a popular open-source
implementation of the JSP API. This is also a minor change that
consists of about 200 lines of code.

6. EXPERIMENTS
In this section we report our experiment results. The goals of

the experiments are to: i) evaluate the effectiveness of Sloth at
batching queries, ii) quantify the change in application load times,
and iii) measure the overhead of running applications using lazy
evaluation. All experiments were performed using Hibernate 3.6.5,
Spring 3.0.7, and Tomcat 6 with the extensions mentioned above.
The web server and applications were hosted on a machine with
8GB of RAM and 2.8GHz processor, and data was stored in an un-
modified MySQL 5.5 database with 47GB of RAM and 12 2.4GHz
processors. Unless stated there was a 0.5ms round trip delay be-
tween the two machines (this is the latency of the group cluster ma-
chines). We used the following applications for our experiments:
• itracker version 3.1.5 [3]: itracker is an open-source software

issue management system. The system consists of a Java web ap-
plication built on top of the Apache Struts framework and uses Hi-
bernate to manage storage. The project has 10 contributors with
814 Java source files with a total of 99k lines of Java code.
• OpenMRS version 1.9.1 [8]: OpenMRS is an open-source

medical record system that has been deployed in numerous coun-
tries. The system consists of a Java web application built on top of
the Spring web framework and uses Hibernate to manage storage.
The project has over 70 contributors. The version used consists of
1326 Java source files with a total of 226k lines of Java code. The
system has been in active development since 2004 and the code
illustrates various coding styles for interacting with the ORM.

We created benchmarks from the two applications by manually
examining the source code to locate all web page files (html and jsp
files). Next, we analyzed the application to find the URLs that load
each of the web pages. This resulted in 38 benchmarks for itracker,
and 112 benchmarks for OpenMRS. Each benchmark was run by
loading the extracted URL from the application server via a client
that resides on the same machine as the application server.

We also tested with TPC-C and TPC-W coded in Java [11]. Be-
cause the implementations display the query results immediately
after issuing them, there is no opportunity for batching. We only
use them to measure the runtime overhead of lazy evaluation.

6.1 Page Load Experiments



In the first set of experiments, we compared the time taken to
load each benchmark from the original and the Sloth-compiled ver-
sions of the applications. For each benchmark, we started the web
and database servers and measured the time taken to load the entire
page. Each measurement was the average of 5 runs. For bench-
marks that require user inputs (e.g., patient ID for the patient dash-
board, project ID for the list of issues to be displayed), we filled
the forms automatically with valid values from the database. We
restarted the database and web servers after each measurement to
clear all cached objects. For OpenMRS, we used the sample database
(2GB in size) provided by the application. For itracker, we created
an artificial database (0.7GB in size) consisting of 10 projects and
20 users. Each project has 50 tracked issues, and none of the issues
has attachments. We did not define custom scripts or components
for the projects that we created. We also created larger versions of
these databases (up to 25 GB) and report their performance on se-
lected benchmarks in Section 6.4, showing that our gains continue
to be achievable with much larger database sizes.

We loaded all benchmarks with the applications hosted on the
unmodified web framework and application server, and repeated
with the Sloth-compiled applications hosted on the Sloth extended
web framework using the ORM library and web server discussed
in Sec. 5. For all benchmarks, we computed the speedup ratios as:

load time of the original application
load time of the Sloth compiled application

Fig. 5(a) and Fig. 6(a) show the CDF of the results (result de-
tails are described in [15]), where we sorted the benchmarks ac-
cording to their speedups for presentation purposes (and similarly
for other experiments). The results show that the Sloth compiled
applications loaded the benchmarks faster compared to the origi-
nal applications, achieving up to 2.08× (median 1.27×) faster load
times for itracker and 2.1× (median 1.15×) faster load times for
OpenMRS. Figure 5(b) and Fig. 6(b) show the ratio of the number
of round trips to the database, computed as:

# of database round trips in original application
# database round trips in Sloth version of application

For itracker, the minimum number of round trip reductions was
27 (out of 59 round trips) while the maximum reduction was 95 (out
of 124 original round trips). For OpenMRS, the minimum number
of reductions was 18 (out of 100 round trips) and the maximum
number was 1082 (out of 1705 round trips). Although these may
seem like large numbers of round trips for a single web page, issues
such as the 1+N issue in Hibernate [12] make it quite common for
developers to write apps that issue hundreds of queries to generate
a web page in widely used ORM frameworks.

Finally, Fig. 5(c) and Fig. 6(c) show the CDF of the ratio of the
total number of queries issued for the applications. In OpenMRS,
the Sloth-compiled application batched as many as 68 queries into a
single batch. Sloth was able to batch multiple queries in all bench-
marks, even though the original applications already make exten-
sive use of the eager and lazy fetching strategies provided by Hi-
bernate. This illustrates the effectiveness of applying lazy evalu-
ation in improving performance. Examining the generated query
batches, we attribute the performance speedup to the following:

Avoiding unnecessary queries. For all benchmarks, the Sloth-
compiled applications issued fewer total number of queries as com-
pared to the original (ranging from 5-10% reduction). The reduc-
tion is due to the developers’ use of eager fetching to load entities
in the original applications. Eager fetching incurs extra round trips
to the database to fetch the entities and increases query execution

time, and is wasteful if the fetched entities are not used by the ap-
plication. As noted in Sec. 1, it is very difficult for developers to
decide when to load objects eagerly during development. Using
Sloth, on the other hand, frees the developer from making such de-
cisions while improving application performance.

Batching queries. The Sloth-compiled applications batched a sig-
nificant number of queries. For example, one of the OpenMRS
benchmarks (encounterDisplay.jsp) loads observations about a
patient’s visit. Observations include height, blood pressure, etc,
and there were about 50 observations fetched for each patient. Load-
ing is done as follows: i) all observations are first retrieved from
the database (Line 3); ii) each observation is iterated over and its
corresponding Concept object (i.e., the textual explanation of the
observed value) is fetched and stored into a FormField object (Line
4). The FormField object is then put into the model similar to Fig. 1
(Line 8). The model is returned at the end of the method and the
fetched concepts are displayed in the view.

1 if (Context.isAuthenticated()) {
2 FormService fs = Context.getFormService();
3 for (Obs o : encounter.getObsAtTopLevel(true)) {
4 FormField ff = fs.getFormField(form, o.getConcept(),..);
5 ...
6 obsMapToReturn.put(ff, list);
7 }}
8 map.put("obsMap", obsMapToReturn);
9 return map;

In the original application, the concept entities are lazily fetched
by the ORM during view generation, and each fetch incurs a round
trip to the database. It is difficult to statically analyze the code to
extract the queries that would be executed in presence of the au-
thentication check on Line 1, and techniques such as [13] will re-
quire a detailed inter-procedural analysis of the loop body to ensure
that the methods invoked are side-effect free in order to apply loop
fission. On the other hand, since the fetched concepts are not used
in the method, the Sloth-compiled application batches all the con-
cept queries and issues them in a single batch along with others.
This results in a dramatic reduction in the number of round trips
and an overall reduction of 1.17× in page load time.

Finally, there are a few benchmarks where the Sloth-compiled
application issued more queries than the original, as shown in Fig. 6(c)
This is because the Sloth-compiled application registers queries
to the query store whenever they are encountered during execu-
tion, and all registered queries are executed when a thunk that re-
quires data to be fetched is subsequently evaluated. However, not
all fetched data are used. The original application, with its use
of lazy fetching, avoided issuing those queries and that results in
fewer queries executed. In sum, while the Sloth-compiled appli-
cation does not necessarily issue the minimal number of queries
required to load each page, our results show that the benefits in re-
ducing database round trips outweigh the costs of executing a few
extra queries.

6.2 Throughput Experiments
Next, we compared the throughput of Sloth-compiled applica-

tion and the original. We fixed the number of browser clients, and
each client repeatedly loaded pages from OpenMRS for 10 min-
utes (clients wait until the previous load completes, and then load a
new page.) As no standard workload was available, the pages were
chosen at random from the list of benchmarks described earlier. We
changed the number of clients in each run, and measured the result-
ing total throughput across all clients. The results (averaged across
5 runs) are shown in Figure 7.
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Figure 5: itracker benchmark experiment results
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Figure 6: OpenMRS benchmark experiment results
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Figure 7: Throughput experiment results

The results show that the Sloth-compiled application has better
throughput than the original, reaching about 1.5× the peak through-
put of the original application. This is expected as the Sloth version
takes less time to load each page. Interestingly, the Sloth version
achieves its peak throughput at a lower number of clients com-
pared to the original. This is because given our experiment setup,
both the database and the web server were under-utilized when
the number of clients is low, and throughput is bounded by net-
work latency. Hence, reducing the number of round trips improves
application throughput, despite the overhead incurred on the web
server from lazy evaluation. However, as the number of clients in-
creases, the web server becomes CPU-bound and throughput de-
creases. Since the original application does not incur any CPU
overhead, it reaches the throughput at a higher number of clients,
although the overall peak is lower due to network round trips.

6.3 Time Breakdown Comparisons
Reducing the total number of queries issued by the application

reduces one source of load time. However, there are other of sources
of latency. To understand the issues, we measured the amount of
time spent in the different processing steps of the benchmarks: ap-
plication server processing, database query execution, and network
communication. We first measured the overall load time for load-
ing the entire page. Then, we instrumented the application server
to record the amount of time spent in processing, and modified
our batch JDBC driver to measure the amount of time spent in
query processing on the database server. We attribute the remain-

ing time as network communication. We ran the experiment across
all benchmarks and measured where time was spent while load-
ing each benchmark, and computed the sum of time spent in each
phase across all benchmarks. The results for the two applications
are shown in Fig. 8.
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Figure 8: Time breakdown of benchmark loading experiments

For the Sloth-compiled applications, the results show that the ag-
gregate amount of time spent in network communication was sig-
nificantly lower, reducing from 226k to 105k ms for itracker, and
43k to 24k ms for OpenMRS. This is mostly due to the reduction
in network round trips. In addition, the amount of time spent in
executing queries also decreased. We attribute that to the reduction
in the number of queries executed, and to the parallel processing of
batched queries on the database by our batch driver. However, the
portion of time spent in the application server was higher for the
Sloth compiled versions due to the overhead of lazy evaluation.

6.4 Scaling Experiments
In the next set of experiments, we study the effects of round trip

reduction on page load times. We ran the same experiments as
in Sec. 6.1, but varied the amount network delay from 0.5ms be-
tween the application and database servers (typical value for ma-
chines within the same data center), to 10ms (typical for machines
connected via a wide area network and applications hosted on the
cloud). Figure 9 shows the results for the two applications.

While the number of round trips and queries executed remained
the same as before, the results show that the amount of speedup dra-
matically increases as the network round trip time increases (more
than 3× for both applications with round trip time of 10ms). This
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Figure 9: Network scaling experiment results

indicates that reducing the number of network round trips is a sig-
nificant factor in reducing overall load times of the benchmarks, in
addition to reducing the number of queries executed.

Next, we measured the impact of database size on benchmark
load times. In this experiment, we varied the database size (up
to 25 GB) and measured the benchmark load times. Although the
database still fits into the memory of the machine, we believe this is
representative of the way that modern transactional systems are ac-
tually deployed, since if the database working set does not fit into
RAM, system performance drops rapidly as the system becomes
I/O bound. We chose two benchmarks that display lists of entities
retrieved from the database. For itracker, we chose a benchmark
that displays the list of user projects (list_projects.jsp) and var-
ied the number of projects stored in the database; for OpenMRS,
we chose a benchmark that shows the observations about a patient
(encounterDisplay.jsp), a fragment of which was discussed in
Sec. 6.1, and varied the number of observations stored. The results
are shown in Fig. 10(a) and (b) respectively.
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Figure 10: Database scaling experiment results

The Sloth-compiled applications achieved lower page load times
in all cases, and they also scaled better as the number of entities
increases. This is mostly due to query batching. For instance, the
OpenMRS benchmark batched a maximum of 68, 88, 480, 980, and
1880 queries as the number of database entities increased. Exam-
ining the query logs reveals that queries were batched as discussed
in Sec. 6.1. While the numbers of queries issued by two versions of
the application are the same proportionally as the number of entities
increases, the experiment shows that batching reduces the overall
load time significantly, both because of the fewer round trips to the
database and the parallel processing of the batched queries. The
itracker benchmark exhibits similar behavior.

6.5 Optimization Experiments
In this experiment we measured the effects of the optimizations

presented in Sec. 4. First, we study the effectiveness of selective
compilation. Figure 11 shows the number of methods that are iden-
tified as persistent in the two applications. As discussed Sec. 4.1,
non-persistent methods are not compiled to lazy semantics.

Next, we quantify the effects of the optimizations by compar-
ing the amount of time taken to load the benchmarks. We first
measured the time taken to load all benchmarks from the Sloth-
compiled applications with no optimizations. Next, we turned each

Application # persistent methods # non-persistent methods
OpenMRS 7616 2097

itracker 2031 421
Figure 11: Number of persistent methods identified
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Figure 12: Performance of Sloth on two benchmarks as optimiza-
tions are enabled. SC=Selective computation, TC=Thunk Coalesc-
ing, BD=Branch Deferral.

of the optimizations on one at a time: selective compilation (SC),
thunk coalescing (TC), and branch deferral (BD), in that order. We
recompiled each time and Fig. 12 shows the resulting load time for
all benchmarks as each optimization was turned on.

In both applications, branch deferral is the most effective in im-
proving performance. This makes sense as both applications have
few statements with externally visible side-effects, which increases
the applicability of the technique. In addition, as discussed in Sec. 4.2,
deferring control flow statements further delays the evaluation of
thunks, which allows more query batching to take place.

Overall, there was more than a 2× difference in load time be-
tween having none and all the optimizations for both applications.
Without the optimizations, we would have lost all the benefits from
round trip reductions, i.e., the actual load times of the Sloth-compiled
applications would have been slower than the original.

6.6 Overhead Experiments
In the final experiment, we measured the overhead of lazy eval-

uation. We use TPC-C and TPC-W for this purpose. We chose im-
plementations that use JDBC directly for database operations and
do not cache query results. The TPC-W implementation is a stan-
dalone web application hosted on Tomcat. Since each transaction
has very few queries, and the query results are used almost imme-
diately after they are issued (e.g., printed out on the console in the
case of TPC-C, and converted to HTML in the case of TPC-W),
there are essentially no opportunities for Sloth to improve perfor-
mance, making these experiments a pure measure of overhead of
executing under lazy semantics.

We used 20 warehouses for TPC-C (initial size of the database
is 23GB). We used 10 clients, with each client executing 10k trans-
actions, and measured the time taken to finish all transactions. For
TPC-W, the database contained 10,000 items (about 1 GB on disk),
and the implementation omitted the think time. We used 10 em-
ulated browsers executing 10k transactions each. The experiments
were executed on the same machines as in the previous experiments
with optimizations turned on. Figure 13 show the results.

As expected, the Sloth compiled versions were 5-15% slower
than the original, due to lazy semantics. However, given that the
Java virtual machine is not designed for lazy evaluation, we believe
these overheads are reasonable, especially given the significant per-
formance gains observed in real applications.

6.7 Discussion
Our experiments show that Sloth can batch queries and improve

performance across different benchmarks. While Sloth does not
execute the batched queries until any of their results are needed



Transaction type Original time (s) Sloth time (s) Overhead
TPC-C

New order 930 955 15.8%
Order status 752 836 11.2%
Stock level 420 459 9.4%
Payment 789 869 10.2%
Delivery 626 665 6.2%

TPC-W
Browsing mix 1075 1138 5.9%
Shopping mix 1223 1326 8.5%
Ordering mix 1423 1600 12.4%

Figure 13: Overhead experiment results

by the application, other execution strategies are possible. For in-
stance, each batch can be executed asynchronously as it reaches a
certain size, or periodically based on current load on the database.
Choosing the optimal strategy would be an interesting future work.

7. RELATED WORK
Lazy evaluation was first introduced for lambda calculus [18],

with one of the goals to increase the expressiveness of the language
by allowing programmers to define infinite data structures and cus-
tom control flow constructs. Lazy evaluation is often implemented
using thunks in languages that do not readily support it [19, 27]. In
contrast, the extended lazy evaluation proposed in this paper is fun-
damentally different: rather than its traditional uses, Sloth uses lazy
evaluation to improve application performance by batching queries,
and Sloth is the first system to do so to our knowledge. As our tech-
niques are not specific to Java, they can be implemented in other
languages as well, including those that already support lazy evalu-
ation, by extending the language runtime with query batching.

Batching query plans and sharing query results are well-known
query optimization techniques [16, 25], and there is also work on
re-ordering transactions using developer annotations [24]. How-
ever, they aim to combine queries issued by multiple concurrent
clients, whereas Sloth batches queries that are issued by the same
client over time, although we can make use of such techniques
to merge Sloth-generated query batches from multiple clients for
further performance improvement. There is work on using static
analysis to expose batching opportunities for queries [17, 13] and
remote procedure calls [28]. However, their batching ability is lim-
ited due to the imprecision of static analysis. While Sloth does
not suffer from precision issues, it incurs some runtime overhead.
Thus it would be interesting to combine both techniques to achieve
a low-overhead yet high-precision system.

As discussed in Sec. 1, data prefetching is another means to re-
duce database round trips. Prefetching has been studied theoreti-
cally [26] and implemented in open source systems [1], although
they all require programmer annotations to indicate what and when
to prefetch. Finally, there is work on moving application code to
execute in the database as stored procedures to reduce the number
of round trips [14], which is similar to our goals. In comparison,
Sloth does not require program state to be distributed.
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9. CONCLUSIONS
In this paper we presented Sloth, a new compiler and runtime that

speeds up database applications by eliminating round trips between
the application and database servers. By delaying computation us-
ing lazy semantics, our system reduces round trips to the database

substantially by batching multiple queries and issuing them in a
single batch. Along with a number of optimization techniques, we
evaluated Sloth on different real-world applications. Our results
show that Sloth outperforms existing approaches in query batch-
ing, and delivers substantial reduction (up to 3×) in application
execution time with modest worst-case runtime overheads.
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