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ABSTRACT
We propose EndoScope, a software monitoring framework
that allows users to pose declarative queries that monitor
the state and performance of running programs. Unlike most
existing monitoring tools, EndoScope is acquisitional, mean-
ing that it only instruments the portions of the program that
need to be monitored to answer queries. The use of a high
level declarative language allows EndoScope to search for ef-
ficient physical instantiations of queries by applying a suite
of optimizations, including control flow graph analysis, and
traditional database query optimization techniques, such as
predicate pushdown and join optimization, to minimize the
number of program instrumentation points and overhead to
the monitored program. Furthermore, a flexible, high level
language and the ability to attach to running programs en-
able developers to build various program analysis and moni-
toring applications beyond traditional software profilers with
EndoScope. We describe a prototype implementation of the
EndoScope framework and a simple profiler for Java pro-
grams implemented with EndoScope. We show results from
using our profiler on a collection of real-world programs, in-
cluding a TPC-C implementation using the Derby database
and the petstore application running on top of Tomcat ap-
plication server. Our results show the benefit of our opti-
mization framework and demonstrate that our declarative,
acquisitional approach can yield program instrumentation
overheads that are dramatically lower than conventional pro-
filing tools (for example, when profiling the Derby Database
running TPC-C, our system’s overhead ranges from 1% to
about 25%, whereas the fastest existing profiler we measured
imposes a minimum overhead of about 30%.)

1. INTRODUCTION
Understanding and monitoring the behavior and perfor-

mance of large software systems can be a daunting task.
Existing profiling tools are of some help, but typically im-
pose a large overhead [33] or provide only limited function-
ality (e.g., they only compute the amount of time taken by
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all functions in a program, or only sample CPU usage over
a program’s lifetime). Our goal is to build a tool that al-
lows programmers and software administrators (of web or
database servers, for example) to monitor many different
aspects of running programs (memory usage, function invo-
cations, variable values) in one framework and detect and
respond to interesting or exceptional conditions inside their
software in real time. For example:

1. A database administrator may wish to know when the
runtime of a given query exceeds some fixed threshold,
and what the system memory usage, query parameters,
and other queries running in the system were when the
condition occurred. Such performance guarantees for
queries are often required for transaction processing
systems where certain service level agreements (SLAs)
on response time with customers must be met.

2. A security specialist may wish to receive a report when-
ever a particular function is invoked or when a variable
has a certain value. For example, in a web application,
if an administrative function (e.g., creating a user ac-
count) is invoked when a global flag indicates that the
current session has administrator privileges is unset,
that may indicate a security breach or incorrect user
authentication code.

3. A compiler developer may want to continuously moni-
tor the frequency with which each function is invoked
in a program. Such information would be useful in
identifying hot spots in a program for dynamic recom-
pilation.

To assist programmers and system administrators with
these kinds of monitoring applications, we are building a
software monitoring framework called EndoScope. Endo-
Scope takes a declarative, query-based approach to soft-
ware performance monitoring. In EndoScope, users pose
queries to monitor the operation of running programs in
an SQL-like language. This language exposes the state of
programs—including the values of variables and the execu-
tion flow of threads—as a collection of data streams over
which queries can be posed. Results of queries are them-
selves data streams, which can be fed into other tools or
queries.

EndoScope is acquisitional [30] in the sense that these
data streams are not actually materialized. Instead, only
the subsets of streams needed to answer queries posed over
the program are captured and recorded. This is essential
because the cost of simply recording all of the state of a run-
ning program can be prohibitively expensive: imagine, for
example, trying to record each value taken by every variable
over the life of a running program—such instrumentation



would cause the program to run hundreds of times slower
than it would during normal execution. Because EndoScope
is acquisitional, different queries impose different overheads
on a program: finding the longest running function will re-
quire instrumenting all functions, whereas finding instances
when the response time of a function violates a particular re-
sponse time goal will require instrumenting just the function
in question.

Conventional profilers (such as gprof for C/C++ programs
and hprof for Java) are typically non-acquisitional: they
record all of the functions invoked by a program over time.
This is because they are targeted at the task of finding the
most costly portions of a program, which requires global in-
strumentation. Unfortunately, this means that existing pro-
filers are poorly suited for fine scale monitoring of just a
few functions or memory locations as they impose a severe
overhead regardless of what kind of monitoring they are per-
forming. In contrast, EndoScope’s acquisitional approach
and query-based interface allow it to instrument only the
portions of the program that are needed to answer the user’s
queries. Furthermore, by using a high-level language, Endo-
Scope’s optimizer is able to search for the lowest-overhead
instrumentation strategy that will satisfy the user’s query.
EndoScope includes a suite of optimizations, including adap-
tations of traditional ordering optimizations such as predi-
cate push down and join ordering analysis that take on a
different flavor in the case of program monitoring.

In summary, the key contributions of EndoScope frame-
work are:

1. A high level, declarative language that allows users to
monitor the performance of running programs either
locally or remotely. Results of performance monitor-
ing are exposed as data streams that can be fed into
debugging, alerting, and other tools that make use of
such data.

2. An acquisitional approach that allows it to instrument
just the portions of a running program or sample the
type of system resources that are needed to answer
user’s queries.

3. A formulation of the problem of determining the order
in which multiple system resources should be moni-
tored as a search for an optimal query plan. We then
apply traditional database cost-based query optimiza-
tion techniques in plan search.

4. A unified data model that abstracts all information
collected during a program’s runtime as data streams
to expose to the end user.

5. An implementation of a prototype system that imple-
ments our proposed streaming data model, and a soft-
ware profiler that makes use of EndoScope. The re-
sulting profiler introduces less overhead than existing
profiling tools in many cases. Our profiler also provides
a richer interface that allows users to pose queries and
triggers that are beyond those offered by existing tools.

In the remainder of this paper, we first survey related work
in Section 2. We then describe the architecture and data
model used by EndoScope and the mechanisms it uses for
determining where to instrument a running program given
a particular query in Sections 3 and 4. We present our op-
timization framework and instrumentation-based optimiza-
tions in Section 5. Section 6 discusses our Java-based imple-
mentation and demonstrates how EndoScope can be used
to implement monitoring tools. Section 7 provides perfor-

mance results showing that our implementation allows low-
overhead monitoring of real systems, including the Tomcat
application server and the Derby database, and Section 8
concludes with open research questions.

2. RELATED WORK
Profiling tools exist for all major programming languages

and platforms. We broadly classify these tools into three
categories based on the method each tool uses to capture
program information.

Sampling. Sampling based tools such as gprof [26], and
hprof [7] are implemented by halting program execution at
pre-specified times. When halted, the profiler samples the
program counter and stack. At the end of program exe-
cution, a profile is constructed by computing the number
of times the profiled program invoked each function. Such
tools are mainly used to determine the functions that were
most time-consuming over the program’s lifetime. Because
they are based on sampling, they are inadequate for answer-
ing precision-related queries, such as the number of times a
function is invoked, or for alerting the user when a specific
condition becomes true (e.g., the response time of a function
exceeds a threshold.)

Hardware Counters. Hardware-counter based tools cap-
ture program information by reading special hardware coun-
ters provided by processors, as in those included with Pen-
tium 4 and POWER4. These counters are special-purpose
registers that count the number of hardware-related events
in the system, such as the number of cache misses. Software
tools (such as DCPI [15] and oprofile [12]) sample the values
from these counters periodically. While hardware counters
capture low-level system information that might be difficult
to obtain via software programs, it is not an easy task to
infer program behavior from hardware counters since they
do not always capture software information (e.g., which line
of code affected the counter.)

Program Instrumentation. Program instrumentation tools
insert binary code (“instrumentation points”) into a pro-
gram. Instrumentation can be performed offline by examin-
ing source code, or online by analyzing execution binaries or
bytecodes. When the program reaches an instrumentation
point, it invokes a callback function in the tool, which exam-
ines the status of the running program and records relevant
information. Profilers that are built using instrumentation
include dtrace [21], shark [13], jip [9], and visualvm [14]. The
same mechanism can also be used to implement watchpoints
and breakpoints in debuggers, as in gdb [5], jdb [5], and
jswat [11]. While instrumentation provides a more precise
way to specify when to halt a running program, inserting
instrumentation points into a program can be costly, both
in terms of the up front cost in program analysis to deter-
mine places in a program to instrument, and also the extra
overhead in executing the callback functions. As a result,
profilers often don’t use program instrumentation, because
it can dramatically slow down a running program. In ad-
dition, the tool developer also needs to be careful in not
introducing any side effects (e.g., polluting call stacks or ac-
tivation records) into the profiled program when adding or
removing instrumentation points.
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Figure 1: EndoScope Framework Overview

Our current implementation of EndoScope is primarily
instrumentation-based, although it is possible to read hard-
ware counters from an EndoScope query, and we anticipate
adding sampling based methods in the future. The primary
difference between EndoScope and existing instrumentation
based tools is that the existing tools are all focused on achiev-
ing a specific task (e.g., profiling, debugging), whereas our
goal is to build a general software monitoring platform that
can be used to implement a number of different applica-
tions. As such, the interface provided by EndoScope is richer
(declarative query based) and more extensible (it is relatively
easy to add new data streams). Furthermore, EndoScope
employs a number of novel query-driven optimizations to
limit the performance impact of instrumentation. It also
simplifies the tool builders’ task in the future by allowing
them to easily and safely (without concern for corrupting
program state) specify what parts of a program they would
like to monitor.

Of course, a huge number of tools have been developed
that make use of the collected runtime data beyond tradi-
tional profilers and debuggers. For example, the HotSpot
/ JIT compilers for Java observe runtime performance and
dynamically recompile code as needed (see, for example, the
Jalapeño JVM [17] and followup work [18], and the Sun
HotSpot Compiler [8]). In addition, collecting runtime in-
formation about predicates in a program (e.g., when a vari-
able takes on a specific value) has been used in runtime bug
detection [28], invariant detectors [23], race detectors [31],
system behavior predictors [35], learning decision functions
to classify system states [22], and latency analysis [27].

3. ARCHITECTURAL OVERVIEW
EndoScope is implemented as a two-part architecture con-

sisting of a component that runs on the program execution
site (i.e., where the monitored program is being run, which
we also call the server), and a component that runs on the
machine from which the users issue queries (which we call the
client). These two parts can reside on the same machine or
on different machines to facilitate remote monitoring. Fig-
ure 1 illustrates the high-level components in the system.

The control flow in the EndoScope framework is as fol-
lows. The client (either a human user or another monitoring
tool built on top of EndoScope) enters a query at the mon-
itoring site. The query is parsed into a query plan by the
query processor. The plan optimizer at the monitoring site
then determines how the plan is to be implemented. The
portion of the query plan to be executed at the monitoring

site is given to the local stream processing engine, which
then instantiates the stream operators as required by the
query plan, while the rest of the query plan is sent to the
plan optimizer running at the program execution site. The
plan optimizer at the program execution site decides how
the query plan should be implemented along with instru-
mentation points that need to be inserted into the running
program (to observe the values of variables, entry and exit to
functions, memory usage, and so on), and subsequently asks
the stream engine and the code instrumentation module to
carry out processing tasks (i.e., instantiate stream operators
and perform any instrumentation). While the query plan is
executed, information collected from the running program
(in the form of stream tuples) is processed by the stream
engines running on both sites, and the query results are re-
turned to the user.

Given this high-level overview, we now turn to describe the
logical data model in EndoScope and explain how queries are
formulated in the system.

4. LOGICAL DATA MODEL
In this section we describe the EndoScope logical data

model along with the query language used to express mon-
itoring queries. Note that only the logical data model is
presented here; the actual implementation is discussed in
Section 6.

4.1 Data Streams
EndoScope models data captured from monitored pro-

grams as data streams. Tuples in data streams record facts
about the monitored program at a specific time. The system
provides a number of basic streams. The basic streams are
a set of predefined streams that users can utilize in posing
monitoring queries. Users can also define new streams by
combining the basic streams (see Section 4.4 for an exam-
ple). Basic streams include:

• function start (thread name, function name,

timestamp), and function end (thread name,

function name, timestamp)

A tuple from this stream records the start (corr. end)
time of a particular function being invoked by thread
thread name.

• function duration (thread name, function name,

start time, duration)

A tuple from this stream records the start and finish
time of function invocations.

• variable value (var name, var value, timestamp)

A tuple from this stream represents the fact that vari-
able var name (can be either global or local) holds value
var value at a particular time.

• cpu usage (percent busy, percent idle, timestamp)

A tuple from this stream records CPU utilization at a
particular time.

4.2 Stream Categories
We classify all data streams, including basic streams, in

the EndoScope system into two categories based on whether
or not the stream is enumerable.



4.2.1 Enumerability of Streams and Implications
We define an enumerable stream as one whose values are

defined only at particular points in time. Such streams are
the same as streams that conventional stream DBMSs pro-
vide. An example is the function start stream, which is de-
fined only when functions are invoked. Enumerable streams
can be used directly in queries to the EndoScope system.

On the contrary, non-enumerable streams are those whose
values are defined at any point in time.

In EndoScope, we do not allow non-enumerable streams
to be directly used in queries because such streams have
an infinite number of elements per unit time. For example,
although it makes logical sense for a user to request to be
notified whenever a new tuple arrives at the function start

stream (a discrete-valued, enumerable stream), it does not
make sense for a user to be notified of every value of the
cpu usage stream (which is a continuously-valued non-enumerable
stream), because the load on a CPU is defined at every in-
stant in time. Instead, we require that before non-enumerable
streams can be used in queries, special quantifying opera-
tions need to be applied, as discussed next.

4.2.2 Quantifying Operations
We currently support two different quantifying operations

that allow non-enumerable streams to be used in EndoScope
queries.

• Joining a non-enumerable stream with an enumerable
stream. Examples of such a join includes joining the
cpu usage stream with the function start stream on
the timestamp of each arriving tuple in function start.

• A sampling operation that periodically records the value
of a stream at fixed time intervals. Logically this is
equivalent to joining the stream with a non-enumerable
one with periodically-arriving tuples.

4.3 Operations on Streams
In this section, we review the stream operations Endo-

Scope provides. Rather than providing detailed semantics,
we briefly discuss the behavior of each operation and illus-
trate its uses through a series of examples in Section 4.4.

4.3.1 Conventional Operations
EndoScope provides the standard select, project, and win-

dowed aggregate operations on streams as in traditional DBMSs.
Users can define additional enumerable or non-enumerable
streams based on existing streams using the create stream

statement.

4.3.2 Sampling and Joins
EndoScope includes several other types of stream opera-

tions. The SAMPLE(stream name, interval) operator takes
a non-enumerable stream and samples it at regular intervals,
which, as discussed in Section 4.2.2, allows non-enumerable
streams to be used in EndoScope queries.

Our data model also supports a window-based join opera-
tion similar to that in CQL [16]. The operation involves two
streams and performs a join on tuples based on the speci-
fied join condition and a time window. A special stream1
FOLLOWED BY stream2 option can be given so that a tuple
arriving at stream1 at time tA will only be joined with tuples
from stream2 that arrived later than tA within the same time
window. We provide this option for convenience, the same

results can be achieved by adding a comparison predicate on
time. This option is needed to express queries such as join-
ing the function start and cpu usage streams, where the
user might be interested in the amount of CPU utilization
after a certain function has begun execution.

4.3.3 Triggers
The EndoScope data model also allows users to specify ac-

tions to be performed when certain conditions occur, much
like database triggers. Such functionality can be used, for ex-
ample, to generate an exception report to the end user when
a servlet in web server takes longer than expected time to
execute, or to invoke dynamic recompilation routines upon
identification of a code hotspot.

4.4 Query Examples
In this section, we give a few query examples to illustrate

the data model in EndoScope.

SELECT *

FROM SAMPLE(cpu_usage, 100ms)

This query quantifies the cpu usage stream by sampling it
every 100ms. This query represents a function that conven-
tional profilers provide, although such tools do not usually
allow the user to specify the sampling interval.

SELECT fd.function_name, AVG(fd.duration),

percent_busy

FROM function_duration fd

WINDOW JOIN

SAMPLE(cpu_usage, 100ms) as cu

WINDOW 1min

WHERE fd.duration > 1s

AND cu.percent_busy > 70%

AND fd.function_name IN (f1, f2, f3,...)

GROUP BY fd.function_name

This query monitors a set of functions, and return the names
of those whose average runtime exceeds one second when the
CPU utilization is more than 70%. This query is useful to a
user who is interested in identifying functions that ran for an
excessive amount of time when the system is heavily loaded.

CREATE STREAM long_running_functions

AS ( SELECT fd.function_name AS function_name,

fd.duration AS duration

FROM function_duration fd

WHERE fd.duration > 1s

AND fd.function_name IN (f1, f2, f3,...) )

SELECT lf.function_name, AVG(lf.duration)

FROM long_running_functions lf,

WINDOW JOIN

SAMPLE(cpu_usage, 100ms) as cu

WINDOW 1min

WHERE cu.percent_busy > 70%

GROUP BY lf.function_name

This query produces the same result as the previous query
but illustrates creating new data streams from existing ones.

CREATE TRIGGER sample_cpu

ON function_duration f1

WINDOW JOIN



function_duration f2

WINDOW 1min

f1 FOLLOWED BY f2

WHEN f1.duration > 5s AND f2.duration > 5s

AND f1.function_name = ‘foo’

AND f2.function_name = ‘bar’

BEGIN SAMPLE(cpu_usage, 100ms)

END

This query samples CPU utilization every 100ms whenever
function foo is invoked after bar is called, and the two calls
are within one minute apart, where both functions end up
taking longer than five seconds to execute. This query might
be generated by a user who suspects that the two functions
together are responsible for loading the CPU.

5. QUERY EVALUATION TECHNIQUES
Upon receiving a query, the EndoScope query processor

parses and creates a query plan. The query optimizer then
decides how the plan should be implemented. The opti-
mizer’s goal is to create a query plan that satisfies the user’s
monitoring request while introducing the minimal amount
of overhead, in terms of system resources such as CPU cy-
cles and memory, to the program being monitored. In En-
doScope, query evaluation proceeds in four steps: query
rewrite, plan placement, plan implementation, and finally
stream instantiation and implementation of instrumentation
points. In this section, we describe each of these steps, along
with a number of optimization techniques that can be used.

5.1 Query Rewrite
The first step in query evaluation is to perform a number

of query rewrite operations similar to those performed in
standard DBMS, such as applying selections as early as pos-
sible, and eliminating common subexpressions. The details
can be found in textbooks such as [24].

5.2 Plan Placement
Traditional program monitoring tools assume that the tool

is running at the same site as the monitored program. Re-
cently developed tools such as Google perf [6] and jip [9]
enable remote monitoring of programs by allowing the mon-
itoring client to connect to the monitored program via a
network port created by the monitoring tool. In such archi-
tectures, an important question to consider is where to place
the query execution code. Obviously the collected data needs
to be generated at the site where the monitored program is
executed, but it is unclear where the rest of the processing
should be done.

We illustrate the placement tradeoff with an example: con-
sider a query that involves monitoring the execution time of
all functions and computes a complex aggregate function
that generates tuples at a low rate from all the tuples re-
ceived. There are two alternatives for query evaluation:

1. The program execution site (server) can send all tu-
ples to the monitoring (client) site for processing. The
server then does not need to execute the aggregate
function at all, but the continuous sending of generated
tuples might consume a substantial amount of network
bandwidth at the server, which can be detrimental to
network-bound programs such as web servers.

2. The server can perform the aggregation on site, and
only send the final results to the client. This greatly

reduces network bandwidth, but the execution of the
complex aggregate predicate might take up a substan-
tial number of CPU cycles at the server, which could
also have negative impacts on the monitored program.

Given these two alternatives, we can compute the cost for
each plan that captures the tradeoff between CPU utiliza-
tion and network bandwidth. We define the cost of a query
plan to be the amount of extra time introduced to the moni-
tored program, and assume that we are not concerned about
resource usage on the client. For the purposes of deciding
where to place the query operators, the cost of instrumen-
tation does not need to be considered (since they are the
same in both plans). Hence, we define the cost of a plan as
roughly the number of tuples produced by the monitors (N)
times the server-side per-tuple processing time (Ttup) plus
the number of tuples output by the server side processing
(N ′) times the time to send a tuple over the network (Tnet).
That is:

N × Ttup + N ′ × Tnet

For plan 1, the per-tuple processing time includes process-
ing the aggregate function, whereas for plan 2, there is no
per-tuple processing, but substantially more tuples to send
over the network than in plan 1. Here, we use network trans-
mission time as a proxy for network load: if the program exe-
cution site is low on network resources, then the time needed
to send one tuple to client will increase, which follows from
Little’s Law [29], stating that the arrival rate of tuples has
an inverse relationship with the per tuple processing time.
As a result, plan 1 is favored. If instead the server is short
on CPU cycles, then the time needed to process one tuple
will increase, favoring plan 2. An alternative to formulating
both costs in terms of total time would be to frame it as a
multi-resource (network and CPU) optimization problem, or
to search for a processing-optimal plan subject to constraints
on network bandwidth.

In general, of course, there are many choices of where
and how to “split” an arbitrary program between client and
server. In addition, many applications, especially long-running
ones, will tend to have different resource usage profiles at
different times, which argues for an adaptive approach that
periodically re-evaluates the resource profile of the moni-
tored application and reassigns different parts of the query
evaluation operations to different sites. These topics have
been widely addressed in the literature [32, 19, 34]; the ma-
jor difference in EndoScope is that the general optimization
problem is focused on minimizing performance impact on the
profiled application rather than on load balancing, and on
choosing where to place code instrumentation (as we discuss
in the next section.)

This is another example of where a database perspective
on performance monitoring is beneficial: every other remote
monitoring tool that we are aware of treats the monitoring
job as a monolithic task, which cannot be split between the
two sites.

5.3 Query Plan Implementation
After the query plan is divided between the program exe-

cution and remote monitoring sites, the next step is to order
the operators and choose the physical operator instantia-
tions, including how and when to insert monitoring points
that acquire data from the running program. We illustrate
this process through another example, in this case the second



query from Section 4.4. This query consists of a join between
the function duration and cpu usage streams on execution
time and CPU utilization. Here we assume cpu usage is dis-
cretized at frequency fusage. There are at least three dif-
ferent strategies the join can be executed, where the only
difference among the three is the ordering of the two opera-
tors that constitutes the join:

1. Monitor the runtime of the set of specified functions
and sample CPU utilization from the start, checking
predicates on both streams.

2. Start monitoring the specified functions and check the
time taken for each invocation. If any of the monitored
functions exceeds the threshold of one second in execu-
tion time, then immediately start sampling CPU uti-
lization and check the results, and stop sampling when
none of the specified functions exceeds the execution
time threshold.

3. Start sampling the CPU, and each time utilization
crosses the 70% boundary, immediately begin the mon-
itoring of the specified functions, and stop monitoring
if CPU utilization drops.

The first strategy, which is what a conventional streaming
DBMS would do (because most streaming databases aren’t
acquisitional in nature), introduces the most overhead to the
monitored program, as it incurs the costs of both monitoring
all functions and CPU sampling. It is unclear, however,
which of the other two strategies is preferable. For instance,
if the specified set of functions is invoked rarely and each of
them takes a short time to execute, then Strategy 2 appears
optimal. On the other hand, if the set of functions is invoked
very frequently with short execution times, then Strategy
3 appears preferable. Section 7 provides empirical data to
support these observations.

Here, again, there is a tradeoff between the overhead intro-
duced by monitoring all executed functions and the overhead
introduced by CPU sampling, aggregated over the lifetime
of the query. The overhead introduced by function moni-
toring with the CPU and function invocation stream can be
factored into three components:

1. The set of functions F to be monitored

2. The frequencies with which each currently monitored
function i ∈ F is invoked (fi) as well as the frequency
with which the CPU is set to be sampled (fcpu). Clearly,
fi depends on the actual rate at which function i is
called (we call this f ′

i) but also on the fraction of time
during which function i is monitored by EndoScope.
Similarly, fcpu depends on fusage, but also on the frac-
tion of time CPU utilization is monitored.

3. The cost of sampling the CPU (Ccpu) and of monitor-
ing a single invocation of a function (Cfun). We discuss
the measurement of these costs in Section 7.

We can now devise a simple cost model for a query that
monitors a collection of functions and the CPU as follows:X

i∈F

(fi × Cfun) + fcpu × Ccpu

Clearly, if we add other streams (e.g., that monitor the
value of variables in the running program), there would be
additional terms in this expression.

The three plans differ in the frequency with which each
function and the CPU are sampled. For plan 1:

fcpu = fusage

fi = f ′
i , ∀i ∈ F

That is, we must sample the CPU at the rate specified in
the query and capture each call of each function in F .

Suppose that the fraction of time during which any func-
tion in F runs for longer than one second over the program’s
lifetime is Tlong. Then the cost of plan 2 is:

fcpu = fusage × Tlong

fi = f ′
i , ∀i ∈ F,

Here we only have to sample the CPU when a function ex-
ceeds the threshold.

Finally, suppose that the fraction of time during which
the CPU utilization exceeds 70% is Tbusy. Then, the cost of
plan 3 is:

fcpu = fusage

fi = f ′
i × Tbusy, ∀i ∈ F

Here, we always sample the CPU, but only have to sample
functions when the CPU utilization is above 70%.

Comparing the three plans, we see that plans 2 and 3 are
clearly preferred over plan 1 (since Tlong and Tbusy are both
≤ 1). However, to select between plans 2 and 3 we need to
be able to accurately compute Tlong and Tbusy, as well as
the f ′

is, all of which change throughout the lifetime of the
monitored program. This problem is quite tricky, as these
values may vary significantly over the program lifetime and
may change rapidly from one extreme to another. This again
suggests that an adaptive approach to plan selection may be
in order.

5.4 Program Instrumentation
The last stage in query plan execution is to instantiate

the streams and instrumentation points that are needed.
Because of EndoScope’s acquisitional nature, all streams,
including the basic streams, are instantiated only when a
query arrives that make use of the stream. In this context
stream instantiation refers to the creation of the necessary
data structures such as buffers for the stream to begin receiv-
ing and forwarding of tuples, and registering the stream with
the streams management engine. The same is true for instru-
mentation points, where no parts of the monitored program
are instrumented or sampled prior to the arrival of queries
that request such actions be performed.

We have identified a number of optimization possibilities
in stream implementation. For example, streams can be im-
plemented using different data structures based on their type
(enumerable versus non-enumerable), and tuples and query
operators can also be prioritized in terms of their processing
order as in ACQP [30].

On the other hand, instrumentation points can also be im-
plemented in different ways. To record the amount of time
a function takes to execute, the most direct manner would
be to insert callback invocations at the entry and exit points
within each monitored functions. However, prior work in the
software engineering community [20] has discussed a num-
ber of techniques that can be used to reduce the number of
instrumentation points needed, including using the function
call graph to infer the relationships among the monitored



functions, which might be useful to further reduce overhead
to the monitored program.

6. IMPLEMENTATION
We have implemented a prototype of the EndoScope frame-

work to monitor Java programs. We chose the Java language
mostly due to the dynamic class redefinition functionalities
introduced in Java 1.5. We envision that our implementation
can also be extended to native (e.g., C or C++) programs
in the future. As mentioned in Section 3, the EndoScope ar-
chitecture is divided between the monitoring client and the
site where the monitored program executes. The two parts
can potentially run on two different JVMs, each with its own
copy of the EndoScope class library. Each part consists of
threads that carry out different functions by using a num-
ber of modules as described below. The current system is
implemented in about 8K lines of code.

6.1 Stream Processing
We first describe the components related to stream pro-

cessing that are common to both the client and program
execution sites.

6.1.1 Tuple Representation
Each tuple in EndoScope is implemented as a set of fields,

with each field representing an attribute. Currently the sys-
tem supports fields of type integer, long, double, and char-
acter strings.

6.1.2 Stream Operators
Each of the stream operations discussed in Section 4 is

implemented as a stream operator object. Each operator
consists of an input buffer for incoming tuples, along with
other structures as needed to carry out its operation (e.g.,
predicates for selection, aggregation objects that compute
the value of the aggregate, etc). Each operator is also aware
of the downstream operators that are connected to it.

Each stream operator supports two functions: addTuple

and processTuple. The addTuple function is called by tu-
ple generators (such as system monitors) or other operators
when they want to push new tuples into the input buffer
of an operator. The processTuple function is called by the
stream processing engine (discussed in Section 6.1.4) to pro-
cess the tuples currently residing in the input buffer(s).

To implement triggering, operators can be annotated with
trigger rules that are fired whenever a tuple arrives on one of
an operators inputs. A trigger is implemented as a predicate-
action pair, where the predicate is a condition to be checked
on the arriving tuples, and the action represents the task(s)
to be performed when the predicate evaluates to true. The
current supported actions include adding or removing instru-
mentation points and resource monitoring. A trigger can be
declared as a one-time trigger, i.e., activated forever once
the predicate evaluates to true, or continuous, i.e., the asso-
ciated action is performed each time when an incoming tuple
satisfies the predicate and is undone when an incoming tuple
does not satisfy the predicate.

The EndoScope system currently provides an implemen-
tation of the following query operators:

1. A stream scan operator that simply passes all tuples
it receives in the input buffer and pushes them to the
downstream operators connected to it.
Each basic stream is implemented as a stream scan

operator coupled with a tuple generator, such as a
code instrumentation callback function, or a system
resource monitor. The tuple generator invokes the
addTuple function on the basic stream operator after
a new tuple is created (say as a result of sampling).
We have currently implemented the function start,
function end, function duration, cpu usage, and
variable value (for local variables) basic streams.

2. Selection, projection, and aggregation operators im-
plemented on top of the stream scan operator. For
instance, a selection operator is a stream scan opera-
tor coupled with a predicate. When processTuple is
called on a selection operator, each tuple in the buffer
is checked against the predicate, and is pushed to op-
erators downstream if the predicate evaluates to true.
Projection and aggregation are implemented in a sim-
ilar manner.

3. Two special operators, the network send and network
receive operators, are implemented to transmit tuples
between the program execution site and the client site.
To reduce network overhead, tuples are sent in batches
from the program execution site to the client site. The
protocol works as follows: when the processTuple func-
tion is invoked on the network send operator, the oper-
ator sends a control message to the client via a network
socket telling it the number of tuples in the batch to
be sent, along with the query id and query operator on
the client side for which the tuples are intended. Upon
receiving the batch of tuples, the communication mod-
ule on the client side puts the batch of tuples in the
input buffer of the network receive operator. When
the processTuple function is called on the network re-
ceive operator, it finds the query operator(s) that the
tuples were intended for, and puts the tuples in their
corresponding input buffer(s).

4. For debugging purposes, we have implemented output
operators that print the received tuples to standard
output or to a file.

6.1.3 Query Plans
A query plan is simply a collection of interconnected query

operators. In order to support plan optimization, we also
maintain in each query plan runtime statistics such as the
number of tuples received by each operator, how long the
current plan has been executing, and so on.

6.1.4 Stream Processing Engine
The stream processing engine is a thread that processes

tuples in the system. Tuples enter the system initially as
they are created by a monitor (such as callback functions
or system resource samplers), and are pushed into the input
buffer of one of the basic stream operators by invoking the
addTuple function. When enough tuples have arrived at the
basic stream operator, it informs the stream processing en-
gine that it is ready to process tuples by placing itself in the
stream processing engine’s operator queue. The processing
engine periodically dequeues an operator from the operator
queue and invokes its processTuple function, which pro-
cesses an incoming tuple and produces new tuples as needed.
The operator then pushes the new tuples to operators that
are connected to it downstream by invoking their addTuple

function, and the same process repeats until the tuple is
dropped by an operator or reaches the top-most operator in



the query plan.
Obviously, operator fairness is an important issue here.

In our earlier implementation, we had a tuple queue rather
than an operator queue in the processing engine, where tu-
ples instead of operators to be processed are enqueued. We
found that implementation to be more fair in terms of the
amount of processing time allocated to each operator over
time, but the overall overhead introduced was higher, due
a larger number of enqueue and dequeue invocations. A fu-
ture direction would be to devise a mechanism that balances
fairness and efficiency.

6.2 EndoScope Client
The EndoScope client provides the following functionali-

ties that are built on top of the stream processing modules
described above.

6.2.1 Query Parser
A front-end query parser processes incoming monitor queries

into equivalent query plans made up of stream operators as
explained in Section 6.1.3.

6.2.2 Plan Optimizer
Although we have not implemented the plan optimizer

in the current system, in the full implementation the opti-
mizer will take the query plan created by the query parser
and determine the division of the query plan between the
client and the program execution site, along with deciding
how each of the stream operators in the client portion of the
query plan should be implemented, based on the cost model
to be formulated from the discussion in Section 5. For eval-
uation purposes, we hand-optimized each of the incoming
query plans, and manually divided the plan up into a local
and remote portion.

6.3 Program Execution Site Modules
EndoScope operates a number of modules within the same

JVM as that of the monitored program. To enable monitor-
ing by EndoScope, the user adds an -agentlib command
line option to the JVM pointing to the EndoScope jar file,
and gives all other options and parameters to the JVM as
usual. No change to the JVM is needed.

6.3.1 Listener Thread
Once started, EndoScope runs a listener thread inside the

executed program that listens on a specified port, waiting for
incoming connections from clients. When a client connection
is established, the client sends the query plan to be executed
to the program execution site, which is then passed to the
plan optimizer running there.

6.3.2 Plan Optimizer
Like the plan optimizer on the client side, we envision that

a similar module would exist at the program execution site,
except that at the program execution site the decisions to
be made for each incoming query plan consist of choosing
the implementation of stream operators along with instru-
mentation points. This process is manually performed in the
current system.

6.3.3 Monitoring and Code Instrumentation
To sample system resource usage, EndoScope invokes a

native library that reads the /proc filesystem for CPU and

memory utilization at fixed time intervals as requested in
the query plan.

For code instrumentation, EndoScope makes use of the In-
strumentation classes that Java provides. This set of classes
allows a program to be transformed by user-specified byte-
code transformation routines, and also to intercept the nor-
mal class loading procedure for a new class so that a runtime-
modified version of class with different bytecode can be loaded.
In EndoScope, none of the methods or system resources are
monitored initially. When a new query plan arrives that
requests code instrumentation to be performed on specific
classes or methods (monitoring of all classes or all methods
within a class is also supported), the EndoScope instrumen-
tation module first checks to see if the requested classes have
been loaded. If so, it asks the JVM to transform the loaded
classes. Otherwise, the module records the names of the
classes to be instrumented and performs the transformation
when the requested classes are loaded. Code instrumenta-
tion is done using the ASM [4] bytecode analyzer, with Endo-
Scope providing the routines that perform the addition and
removal of callback functions in the bytecode stream. We
have also implemented a call graph analyzer that constructs
a call graph of the newly loaded class. After code instrumen-
tation and call graph generation, the instrumented classes
are returned to the JVM to continue the loading process.
We currently do not instrument classes that are provided
by the Sun JVM or classes from the EndoScope package to
avoid circularity.

7. EXPERIMENTS
The goal of this section is to study the performance of

the EndoScope framework, including the effects of the ac-
quisitional approach and how it scales as the amount of in-
strumentation grows, and the plausibility and effectiveness
of our optimizations. To offer a point of comparison with
other tools, we implemented a simple Java program profiler
on top of EndoScope and compared its performance with
other Java profilers, since we could not find Java tools that
perform some of the more sophisticated monitoring tasks
described in the introduction.

7.1 General Experimental Setup
The experiments were run on a desktop machine with a

dual core 3.2 GHz Pentium D processor and 4 GB of main
memory. We used JDK 1.6.0 release 1 and created a JVM
with a 2 GB heap for each run under Linux (RedHat Fedora
Core 7).

In the experiments we chose the following publicly avail-
able Java program profilers for comparison:

• visualvm [14] Beta version. Visualvm is an instrumentation-
based profiler with a graphical interface. The tool pro-
vides monitoring of heap size and status of threads
while the program executes. We attempted to use the
CPU and memory profiling functionalities in our ex-
periments, but doing so crashes the tool. Thus we re-
port the overhead from using only heap size and thread
status monitoring.

• jip [9] version 1.1.1. jip is a sampling-based profiler
similar to hprof.

• jrat [10] version 1 beta 1. jrat is an instrumentation-
based profiler that monitors all classes and memory



while a program executes, and provides a graphical
tool to view the profiled results afterwards.

• hprof [7] is sampling-based profiler written in C. It is
Sun’s reference implementation that illustrates the use
of the Java JVM Tool Interface. The tool provides
methods and memory profiling, and is part of the JDK
release.

We then compared the performance of the suite of profilers
on the following reference programs:

• SimpleApp, a test program that comes with Apache
Derby [1] version 10.3.2.1. Derby is a fully featured
Java SQL database originally developed as CloudScape
and then released as open source. SimpleApp opens a
JDBC connection, creates a database and table, and
runs a few insert, select, and update statements, fol-
lowed by a transaction commit.

• A implementation of a TPC-C-like benchmark in Java.
The following parameters were used to set up TPC-C
data:

– Total number of warehouses: 3

– Number of districts per warehouse: 10

– Number of customers per district: 3000

– Number of orders per district: 3000

– Maximum number of items per transaction: 15

We performed two set of experiments on this data. The
first consisted of a single thread executing 250 trans-
actions, and the second 20 threads each executing 10
transactions. The transactions were created at ran-
dom, and the Apache Derby database was used.

• The petstore reference application [2] using the Apache
Derby database. The application was hosted on Apache
Tomcat version 6.0.14 [3]. In each run, we created a
workload of 200 random http requests to the petstore
from a remote machine. To simulate customers brows-
ing the store, each request asks for a valid webpage
that is hosted on the application.

Note that in each scenario we are able to profile not only
the user application but also the database and web server
that hosted the application, as they are all implemented in
Java.

7.2 Runtime Overhead Experiments
In the first set of experiments, we measured the overhead

of EndoScope by progressively varying the proportion of
methods monitored. First, we monitored all methods and
computed the average execution time of each across a num-
ber of target program runs. We then created a profile by
ranking the methods according to the number of times each
of them was invoked over the program’s lifetime.

We then performed a second set of runs where we varied
the proportion of methods monitored, starting with monitor-
ing the 10% of methods that were called the fewest number of
times according to our previously created profile, then mon-
itoring the 20% of all methods, and so on, until we reach
100%. This methodology was used as a means to gradu-
ally increase the total number of instrumentation points we
introduce into the system. We measured the total program
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Figure 2: Time to execute SimpleApp using different
profilers

runtime under each run, and compared it with the base (i.e.,
no profiling), along with profiling using other tools, which do
not support varying the number of monitored methods.

Figures 2 and 3 show the execution time of the SimpleApp
and TPC-C applications as a function of the percentage
of methods profiled (labeled as “Method Mon.” in Fig-
ure 3). Also shown are the corresponding execution times
when other profilers are used to profile all methods. The
numbers presented are the average over 3 runs. Note that
since SimpleApp is a relatively simple program, thus the ex-
ecution time obtained using different profilers do not differ
significantly from each other (with a difference of only 9 sec-
onds between the fastest and slowest). We obtained similar
CPU overheads when running on the petstore applications,
with CPU overheads generally lower than SimpleApp and
slightly higher than TPC-C. In all cases, the number of tu-
ples generated scales approximately linearly with the per-
centage of program monitored.

We also implemented method-local variable monitoring
(i.e., data watchpoints) by compiling the source with debug
symbols, and monitoring all Java bytecode store instructions
at runtime, checking each store instruction to see if it writes
to a monitored local variable (debug information is used to
extract variable names.) As in the method monitoring ex-
periment, we varied the fraction of local variables profiled
and measured the overhead. The results are also shown in
Figure 3 (“Var. Mon.”), demonstrating a similar trend as
the method monitoring experiment. We were not able to
compare with other profilers as none of them provide a sim-
ilar feature.

Figures 4 shows the number of tuples generated by TPC-C
in the method monitoring and local variable monitoring ex-
periments; note that both experiments scale nearly linearly
with the fraction of the program that is profiled. Other ap-
plications show a similar trend.

The graphs show that our profiler is comparable to other
profilers in terms of maximum overhead introduced, and that
both the overhead and number of tuples created scale lin-
early when the number of instrumentation points increases.
In fact, when the percentage of monitored methods is small,
we outperform other profilers by a significant amount ex-
cept when running trivial programs like SimpleApp. This
illustrates the power of our acquisitional approach: by only
instrumenting the code that is needed, it is possible to satisfy
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the user’s request for program monitoring while introducing
little overhead on the monitored program.

7.3 Join Operator Ordering Experiments
Next, we investigated the effect of join operator reordering

by implementing the three query plans from Section 5.3. The
plans are implemented using standard query operators sup-
plied by EndoScope, and trigger actions are included which
start CPU sampling when the execution time of any func-
tion exceeds the specified threshold (for plan 2), and starts
function monitoring when CPU utilization crosses the spec-
ified boundary (for plan 3). We vary the percentage of func-
tions monitored in the same manner as in the experiment de-
scribed in Section 7.2. We used the TPC-C single-threaded
application as base (the petstore application shows similar
trends), and Figure 5 shows our results.

As a side note, from our experiments we found that the
time needed to execute the callback functions from an instru-
mentation point is around 0.1-0.2ms, while the time needed
to take a CPU sample from the /proc filesystem together
with the post-processing time is around 0.3-0.5ms. Note
that the graph demonstrates the tradeoff between the cost
of function monitoring and CPU sampling. It is clear that
when the set of functions to be monitored is large, then plan
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Figure 5: Execution time of three different TPC-C
instrumentation plans.
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Figure 6: Execution time of three different TPC-
C instrumentation plans, profiling long running but
rarely called functions first.

3 is better. It is not as clear, however, that plan 2 is the win-
ner when the set of functions to be monitored is small. It
turns out that is due to the fact that in the cases where the
proportion of methods that are monitored are small in our
experiment, the methods that we chose to monitor did not
actually exceed the pre-specified threshold. Thus CPU sam-
pling was never triggered. Figure 6 show the results when we
ran the experiments again, but ensured that the first meth-
ods to be profiled were infrequently invoked (making their
profiling overhead low) but had execution times that were
high. In this case, plan 2 is indeed preferable up to about
20% of the program being instrumented.

This experiment illustrates the difficulty in constructing
a good plan cost estimator. The cost estimator needs to be
aware of not only the overhead in CPU sampling and func-
tion monitoring, but also how often the triggers are executed,
as discussed in Section 5.3.

7.4 Plan Placement Experiments
We next performed two experiments to validate the query

optimization approaches proposed in Sections 5.2 and 5.3.
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Figure 7: Query plan placement comparison for
TPC-C.

For the plan placement experiment, we monitored all method
calls. We then created two special query operators to study
the effects of CPU and network load. The first special opera-
tor is created to mimic a complex aggregate function. When
its processTuple method is invoked, the operator scans all
tuples in the incoming buffer, then pauses for c milliseconds
on each tuple to simulate computation. After that, 10% of
the incoming tuples are forwarded to downstream operators.
We also created a special network send operator. For each
batch of tuples in its incoming buffer, the operator delays for
n milliseconds prior to sending the batch out. We intend n
to model the queuing time of tuples in a real system, which
is affected by buffering and congestion delays.

We simulated CPU load by varying c, with the idea that
if the program execution site is running CPU intensive jobs,
the amount of time needed for the complex aggregate func-
tion to process each tuple, c, should increase. Otherwise it
should be fairly constant. The same idea applies to n as
well.

We study the strategies for plan placement by implement-
ing the two query plans as proposed in Section 5.2. In the
first plan, the monitoring site forwards all tuples from the
function call monitor to the special network send operator
which, after delaying for n seconds, sends each batch of tu-
ples to the monitoring client that hosts the complex aggre-
gate function operator (the runtime of the aggregate function
operator is not of our concern in this case since it runs on
the client site). In the second plan, the aggregate function is
executed at the monitoring site with delay c on each tuple,
after which outputs of the aggregate operator are sent to the
client using the network send operator with n = 0, i.e., we
assume that the network is under normal conditions and that
sending a small amount of aggregate data does not introduce
any extra overhead on top of normal network delay.

We ran the TPC-C single threaded application and mea-
sured the amount of time needed for program completion in
the two plans. The results are shown in Figure 7. Note that
both c and n vary with the X axis in this figure; c increases
from left to right while n decreases. We performed the same
experiment on the petstore application with similar results.

The results confirm our intuition about plan placement.
When the program execution site is CPU loaded, pushing the
complex aggregate function to the client is optimal. On the
other hand, if the program execution site is running network

intensive jobs, it is more preferable to reduce the need for
network bandwidth by executing the aggregate function on
site. The goal of the optimizer, then, is to be aware of the
load on the CPU and network, and be able to switch between
the two plans in an adaptive manner.

8. CONCLUSIONS AND FUTURE WORK
In this paper we introduced EndoScope, a flexible, low

overhead, query-driven and acquisitional software monitor-
ing framework. We demonstrated the framework by using it
to implement a simple Java profiler, and showed that its per-
formance in real world software monitoring is substantially
lower in overhead than existing tools. It is also amenable to
a number of database style optimizations and more flexible
than many existing profiling tools. Below we highlight a few
problems for future research.
Data Stream Implementations: Section 4.2.1 discussed
a classification scheme for data streams. An interesting
question is to further investigate properties of each type
of stream, similar to the analysis regarding which types of
streams can be used in queries. A related question is to inves-
tigate data structures for implementing the different stream
types, and correlate that with query plan optimization.

Cost Model: The discussion on query plan optimizations
showed the need for new cost models in searching for optimal
query plans, and demonstrated that query plans will need to
be adaptive over the lifetime of the query.

Approximate Query Answers: Our current system fo-
cuses on getting exact answers for queries, but there are
situations where approximate answers are already sufficient
(in sampling based profilers, for example). An interesting
direction would be to consider query answer approximation
as an optimization strategy, and design additional language
features that enable formulating approximate queries.

An API for System Monitoring: Many monitoring tools
allow users to interactively define new probes and monitors
(e.g., visualvm [14]) or pass in command line options to in-
struct the monitor what data to collect (e.g., gprof [26]).
On the other hand, users typically interact with data stream
processors by issuing SQL like queries on a console or via a
“driver” like API such as JDBC. However, since the goal of
EndoScope is to provide an infrastructure where tools that
make use of runtime information can be built, it would be
more beneficial to the tool developer if the infrastructure ex-
poses a library-like API in the spirit of the D Language [21]
or WaveScript [25].

Monitoring Distributed Applications: It would be use-
ful to extend EndoScope’s two-part architecture by having
the ability to monitor programs that run on distributed sys-
tems (such as monitoring Internet mail servers or distributed
databases) and allow multiple clients to connect to the mon-
itoring system simultaneously. Correlating events that oc-
cur on different machines and presenting them in a coherent
fashion to the end user is an interesting challenge.
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