
Integrating Refactoring Support into a
Java Development Tool

Dirk Bäumer, Erich Gamma, and Adam Kiezun
Object Technology International

Oberdorfstrasse 8
CH-8001 Zurich

{dirk_baeumer, erich_gamma, adam_kiezun}@oti.com

Manual program refactoring is tedious and error prone.
Several refactoring tools have recently emerged for Java.
Most of them are add-ons to existing Java development
environments [6; 4]. The Eclipse Java tooling [1] is a new
open source development environment that comes with
integrated refactoring support for Java. Its distinctive
characteristics are:

• refactoring support is built on top of an
infrastructure that was designed with a focus on
refactoring.

• refactoring is seamlessly integrated into the user
interface and always available at the developers’
fingertips.

• the set of available refactorings can be extended
by other contributors.

• undo support to enable exploratory refactoring.

Implementing a refactoring typically involves the following
three steps (see Figure 1 and [2]):

1. Determining the set of compilation units affected
by a refactoring. Consider the refactoringSelf
Encapsulate Field. Fowler [2] defines it as
follows: “Create getting and setting methods for
the field and use only those to access the field.” In
this example all compilation units referencing the
field and the one declaring the field belong to the
set of affected compilation units.

2. Analyzing the program structure itself (e.g. the
methods of a type, the control flow inside a
method, etc.) is necessary to implement a refactor-
ing. In the Self Encapsulate Fieldrefactoring
information about the value assigned to the field is
needed. In addition, the transformation of a read-
write access depends on the kind of the read-write.
Code likeint i= field++; must be transformed into
int i= getField(); setField(i + 1);.

3. Transforming the program.

Detecting Affected Code: a program database is used to
determine the set of affected compilation units. It stores
information about declarations of and references to
program elements (e.g. types, methods, fields, etc.). The

database is updated in a separate thread whenever there are
changes (new, remove, save) to Java compilation units. The
database is always up to date independent of whether a
program is compiled or not. The stored information can be
inaccurate since a compilation unit is not always syntacti-
cally correct. A search engine implemented on top of the
program database provides search queries like: which
program element references the methodfoo() or, where is
type A declared. The search engine annotates each search
result with accuracy information (potential match, precise
match). The program database stores reference information
at the granularity of compilation units. Therefore an addi-
tional step is required to narrow the reference information
to a precise location inside the compilation unit. To do so
the search engine parses the Java compilation units in
question. The parsing step also adds additional information
like the position of the reference or the access kind (read,
write, etc.) of a field reference. This two step approach
(coarse grained program data base combined with on the
fly parsing) enables precise searching with a minimal
footprint and fast incremental updating of the database. The
search engine together with its underlying program
database is also used by the IDE’s general search
infrastructure.

Structural Analysis: in addition to information about
declarations and references a more detailed analysis of the
program structure itself is required to verify the refac-
toring’s preconditions and to collect additional information
for the code transformation. Refactorings use two different
components to perform structural analysis: the Java Model
and abstract syntax trees. The Java Model provides API for
navigating the Java element tree. The Java element tree
represents projects, packages, compilation units and binary
classes. For compilation units and binary classes the Java
Model provides access to the different declarations like
imported declarations, declared types, declared methods
and fields of a type, etc. The Java Model is typically used
to implement preconditions like “does type exist,” or “does
method exist in class.” Refactorings below the method
level (e.g.Extract Method) require an abstract syntax tree
analysis. A parsing framework, shared with the IDE’s Java
compiler, is used to provide access to abstract syntax trees.
This allows sharing information required by the
incremental compiler during the abstract syntax tree



construction. This tight architectural integration avoids the
duplication of structural information between the base IDE
and the refactoring support. This ensures both performance
and scalability.

Create Code Changes with Support for Undo: once the
program structure is analyzed the code needs to be
transformed. To do so, a refactoring creates change objects
to manipulate the code. Change objects provide full
undo/redo support (implemented using the command
pattern [3]). Two change kinds are distinguished: textual
changes and non-textual changes. Non-textual changes
manipulate the file system (e.g. rename or delete a file).
Textual changes transform compilation units. Examples for
textual changes are: add a method, or update a type
reference. In contrast to other refactoring tools [5; 6] we
don’t use abstract syntax tree rewriting to change a
compilation unit’s content. The reasons are: direct text
manipulation can also be used for files other than Java
compilation units (for example Java Server Pages, which
can have embedded Java code) and it is easier to keep
existing code formatting since only parts of a file are
changed. For example, keeping gratuitous parenthesis is
difficult, since they are normally not present in an abstract
syntax tree. In addition, database search results contain
precise positions making the generation of corresponding
text changes straightforward.

UI : the user interface for performing a refactoring uses a
multi-page wizard. All refactoring wizards have the same
structure: the first page gathers the arguments to perform a
refactoring. For example the new name of a class that is to
be renamed. Once this information is available, the user
presses ‘Finish’ to perform the refactoring or ‘Next’ to see
a preview of the changes to be carried out by the refactor-
ing. In both cases precondition checking is activated. If it
reports any problems they are presented to the user. The
refactoring wizard as well as the pages for error reporting
and previewing the changes are available as reusable
building blocks.

Experience: sharing the abstract syntax tree with the Java

compiler has the mentioned benefits but there are also
some challenges. A compiler’s abstract syntax tree is tuned
for code generation. Therefore information that is not
required for code generation is not present. For example,
no information is maintained about the position of semico-
lons or parenthesis for a method call. But those positions
are needed for refactorings likeExtract Methodto deter-
mine if the selection covers a valid set of statements.

Using the infrastructure provided by the Eclipse Java
Tooling enables the developer to focus on the key issues
when implementing a refactoring: precondition checking
and code manipulation. While transforming the code is
straightforward with the provided framework, implement-
ing precondition checking is a significant effort (for
example, 80% of the rename type refactoring code is for
precondition checking). To address this problem work on
reusable precondition checking has started. For example,
“does a type conflict (hide or obscure) with some other
Java element,” or “does this method override or overload
an existing method.”

The Eclipse platform and its Java Tooling are available as
open source and we hope that the infrastructure provided
will encourage other developers to contribute to the set of
supported refactorings.

References

[1] The Eclipse Project. On-line at
http://www.eclipse.org/.

[2] M. Fowler. Refactoring: Improving the Design of
Existing Programs. Addison Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides.Design
Patterns: Elements of Reusable Object Oriented
Software. Addison Wesley, 1995.

[4] JRefactory. On-line at
http://jrefactory.sourceforge.net/.

[5] The Smalltalk Refactoring Browser. On-line at
http://st-www.cs.uiuc.edu/users/brant/Refactory/.

[6] Transmogrify.On-line at
http://transmogrify.sourceforge.net/.

Search Engine,
Database

Refactoring

detect set of
affected CUs

structural
analysis

create
code changes

Java Model
Abstract

Syntax Tree

1 2 3

Code
manipulation

Figure 1:The core architecture.


