
Generics-related Refactorings in Eclipse

Adam Kie.zun
MIT

Cambridge, MA, USA

akiezun@mit.edu

Robert Fuhrer, Frank Tip
IBM Research

Yorktown Heights, NY, USA

{rfuhrer,ftip}@us.ibm.com

Markus Keller
IBM Research

Zürich, Switzerland
markus keller@ch.ibm.com

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.2 [Software Engineering]: Design Tools
and Techniques—modules and interfaces; D.3.3 [Programming
Languages]: Language Constructs and Features—data types
and structures

General Terms
languages, theory, experimentation

Keywords
refactoring, generics, generic types, Java, type constraints,
type inference, parameterization, instantiation, Eclipse

ABSTRACT
We present refactorings that automate the process of migrat-
ing pre-generics Java programs to use generics. The task is
divided in two parts: introduction of formal type parameters
(parameterization) and inference of actual type parameters
(instantiation). We developed efficient techniques and tools
to assist developers in both parts. We will present them
during the demonstration.

We present two generics-related refactorings for Java, one
of which has been recently added to Eclipse 3.1 [2] and pre-
sented at OOPSLA’04 [1] and ECOOP’05 [3]. These refac-
torings facilitate migration of pre-generic libraries and appli-
cations to take advantage of the improved reuse and clarity
provided by parametric polymorphism in OO programs.

The task of migrating pre-generic code to use generics can
be understood as two related, yet distinct technical prob-
lems [1]:

• Parameterization — adding type parameters to exist-
ing classes so as to enhance reuse without the loss of
type information.

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

• Instantiation — once classes have been parameterized,
this analysis determines how occurrences of generic
classes can be instantiated in client code.

We have addressed both problems by developing efficient
algorithms embodied in practical tools. This demonstration
presents refactorings that automate both tasks.

The automation of the refactorings requires advanced static
analyses. Our approach uses the technique of polymorphic
type inference based on type constraints [4, 3]. The tech-
nique is very scalable — it allows migration of large code-
bases to use generics in a matter of seconds or minutes.

Our demonstration includes the following refactorings:

Infer Type Arguments: addresses the instantiation prob-
lem. It helps in migrating Java application code to
generics by determining what concrete types are used
for each actual type parameter in the original program,
modifying declarations and allocation sites where nec-
essary, and removing casts that have been rendered
redundant. This refactoring is based on the research
prototype described in [3] and is included in the stan-
dard distribution of Eclipse 3.1.

Introduce Type Parameter: addresses the parameteriza-
tion problem. It facilitates conveniently converting
non-generic Java classes to generics, in a manner that
is safe for existing clients. It adds a formal type pa-
rameter to a class to be used in place of the presently-
declared type of a declaration, thus making the class
generic. All other necessary changes are performed,
which may include adding new type parameters to re-
lated classes. The refactoring also infers wildcards,
which increases the flexibility of the parameterization.

1. REFERENCES
[1] A. Donovan, A. Kieżun, M. Tschantz, and M. Ernst.

Converting Java programs to use generic libraries. In
Proc. of OOPSLA, pages 15–34, Vancouver, BC,
Canada, 2004.

[2] Eclipse. http://www.eclipse.org.

[3] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller.
Efficiently refactoring Java applications to use generic
libraries. In Proc. of ECOOP, Glasgow, Scotland,
July 25–29, 2005.

[4] J. Palsberg and M. Schwartzbach. Object-Oriented Type
Systems. John Wiley & Sons, 1993.


