
HAMPI: A String Solver for Testing, Analysis and
Vulnerability Detection

Vijay Ganesh1, Adam Kieżun2

Shay Artzi3, Philip J. Guo4, Pieter Hooimeijer5, Michael Ernst6

1Massachusetts Institute of Technology, 2Harvard Medical School
1 vganesh@csail.mit.edu, 2 akiezun@gmail.com

3IBM Research, 4Stanford University, 5University of Virginia, 6University of Washington
3artzi@us.ibm.com, 4pg@cs.stanford.edu, 5pieter@cs.virginia.edu, 6mernst@cs.washington.edu

Abstract. Many automatic testing, analysis, and verification techniques for pro-
grams can effectively be reduced to a constraint-generation phase followed by a
constraint-solving phase. This separation of concerns often leads to more effec-
tive and maintainable software reliability tools. The increasing efficiency of off-
the-shelf constraint solvers makes this approach even more compelling. However,
there are few effective and sufficiently expressive off-the-shelf solvers for string
constraints generated by analysis of string-manipulating programs, and hence re-
searchers end up implementing their own ad-hoc solvers. Thus, there is a clear
need for an effective and expressive string-constraint solver that can be easily
integrated into a variety of applications.
To fulfill this need, we designed and implemented H, an efficient and easy-
to-use string solver. Users of the H string solver specify constraints us-
ing membership predicate over regular expressions, context-free grammars, and
equality/dis-equality between string terms. These terms are constructed out of
string constants, bounded string variables, and typical string operations such as
concatenation and substring extraction. H takes such a constraint as input and
decides whether it is satisfiable or not. If an input constraint is satisfiable, H
generates a satsfying assignment for the string variables that occur in it.
We demonstrate H’s expressiveness and efficiency by applying it to program
analysis and automated testing: We used H in static and dynamic analyses
for finding SQL injection vulnerabilities in Web applications with hundreds of
thousands of lines of code. We also used H in the context of automated bug
finding in C programs using dynamic systematic testing (also known as concolic
testing). H’s source code, documentation, and experimental data are available
at http://people.csail.mit.edu/akiezun/hampi.

1 Introduction

Many automatic testing [4, 9], analysis [12], and verification [14] techniques for pro-
grams can be effectively reduced to a constraint-generation phase followed by a con-
straint solving phase. This separation of concerns often leads to more effective and
maintainable tools. Such an approach to analyzing programs is becoming more effec-
tive as off-the-shelf constraint solvers for Boolean SAT [20] and other theories [5, 8]
continue to become more efficient. Most of these solvers are aimed at propositional
logic, linear arithmetic, theories of functions, arrays or bit-vectors [5].

1

Many programs (e.g., Web applications) take string values as input, manipulate
them, and then use them in sensitive operations such as database queries. Analyses of
such string-manipulating programs in techniques for automatic testing [2, 6, 9], verify-
ing correctness of program output [21], and finding security faults [25] produce string
constraints, which are then solved by custom string solvers written by the authors of
these analyses. Writing a custom solver for every application is time-consuming and
error-prone, and the lack of separation of concerns may lead to systems that are diffi-
cult to maintain. Thus, there is a clear need for an effective and sufficiently expressive
off-the-shelf string-constraint solver that can be easily integrated into a variety of appli-
cations.

To fulfill this need, we designed and implemented H 1, a solver for constraints
over bounded string variables. H constraints express membership in bounded reg-
ular and context-free languages, substring relation, and equalities/dis-equalities over
string terms.

String terms in the H language are constructed out of string constants, bounded
string variables, concatenation, and sub-string extraction operations. Regular expres-
sions and context-free grammar terms are constructed out of standard regular expres-
sion operations and grammar productions, respectively. Atomic formulas in the H
language are equality over string terms, the membership predicate for regular expres-
sions and context-free grammars, and the substring predicate that takes two string terms
and asserts that one is a substring of the other. Given a set of constraints, H outputs
a string that satisfies all the constraints, or reports that the constraints are unsatisfiable.

H is designed to be used as a component in testing, analysis, and verification
applications. H can also be used to solve the intersection, containment, and equiv-
alence problems for bounded regular and context-free languages.

A key feature of H is bounding of regular and context-free languages. Bound-
ing makes H different from custom string-constraint solvers commonly used in
testing and analysis tools [6]. As we demonstrate in our experiments, for many prac-
tical applications, bounding the input languages is not a handicap. In fact, it allows
for a more expressive input language that enables operations on context-free languages
that would be undecidable without bounding. Furthermore, bounding makes the satis-
fiability problem solved by H more tractable. This difference is analogous to that
between model-checking and bounded model-checking [1].

As one example application, H’s input language can encode constraints on SQL
queries to find possible injection attacks, such as:

Find a string v of at most 12 characters, such that the SQL query “SELECT msg
FROM messages WHERE topicid=v” is a syntactically valid SQL statement,
and that the query contains the substring “OR 1=1”.

Note that “OR 1=1” is a common tautology that can lead to SQL injection attacks.
H either finds a string value that satisfies these constraints or answers that no satis-
fying value exists. For the above example, the string “1 OR 1=1” is a valid solution.

HAMPI Overview: H takes four steps to solve input string constraints.
1 This paper is an extended version of the HAMPI paper accepted at the International Sympo-

sium on Software Testing and Analysis (ISSTA) 2009 conference. A journal version is under
submission.

2

1. Normalize the input constraints to a core form, which consists of expressions of
the form v ∈ R or v < R, where v is a bounded string variable, and R is a regular
expression.

2. Translate core form string constraints into a quantifier-free logic of bit-vectors. A
bit-vector is a bounded, ordered list of bits. The fragment of bit-vector logic that
H uses allows standard Boolean operations, bit comparisons, and extracting
sub-vectors.

3. Invoke the STP bit-vector solver [8] on the bit-vector constraints.
4. If STP reports that the constraints are unsatisfiable, then H reports the same.

Otherwise, STP will generate a satisfying assignment in its bit-vector language, so
H decodes this to output an ASCII string solution.

Experimental Results Summary: We ran four experiments to evaluate H. Our
results show that H is efficient and that its input language can express string con-
straints that arise from real-world program analysis and automated testing tools.

1. SQL Injection Vulnerability Detection (static analysis): We used H in a static
analysis tool [23] for identifying SQL injection vulnerabilities. We applied the anal-
ysis tool to 6 PHP Web applications (total lines of code: 339,750). H solved all
constraints generated by the analysis, and solved 99.7% of those constraints in less
than 1 second per constraint. All solutions found by H for these constraints
were less than 5 characters long. These experiments bolster our claim that bound-
ing the string constraints is not a handicap.

2. SQL Injection Attack Generation (dynamic analysis): We used H in Ardilla, a
dynamic analysis tool for creating SQL injection attacks [17]. We applied Ardilla
to 5 PHP Web applications (total lines of code: 14,941). H successfully re-
placed a custom-made attack generator and constructed all 23 attacks on those ap-
plications that Ardilla originally constructed.

3. Input Generation for Systematic Testing: We used H in Klee [3], a systematic-
testing tool for C programs. We applied Klee to 3 programs with structured input
formats (total executable lines of code: 4,100). We used H to generate con-
straints that specify legal inputs to these programs. H’s constraints eliminated
all illegal inputs, improved the line-coverage by up to 2× overall (and up to 5× in
parsing code), and discovered 3 new error-revealing inputs.

1.1 PAPER ORGANIZATION

We first introduce H’s capabilities with an example (§2), then present H’s input
format and solving algorithm (§3), and present experimental evaluation (§4). We briefly
touch upon related work in (§5).

2 Example: SQL Injection

SQL injections are a prevalent class of Web-application vulnerabilities. This section
illustrates how an automated tool [17, 25] could use H to detect SQL injection
vulnerabilities and to produce attack inputs.

3

1 $my_topicid = $_GET[’topicid’];
2

3 $sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
4 $result = mysql_query($sqlstmt);
5

6 //display messages
7 while($row = mysql_fetch_assoc($result)){
8 echo "Message " . $row[’msg’];
9 }

Fig. 1. Fragment of a PHP program that displays messages stored in a MySQL database. This
program is vulnerable to an SQL injection attack. Section 2 discusses the vulnerability.

1 //string variable representing ’$my topicid’ from Figure 1
2 var v:6..12; // size is between 6 and 12 characters
3

4 //simple SQL context-free grammar
5 cfg SqlSmall := "SELECT " (Letter)+ " FROM " (Letter)+ " WHERE " Cond;
6 cfg Cond := Val "=" Val | Cond " OR " Cond";
7 cfg Val := (Letter)+ | "’" (LetterOrDigit)* "’" | (Digit)+;
8 cfg LetterOrDigit := Letter | Digit;
9 cfg Letter := [’a’-’z’] ;

10 cfg Digit := [’0’-’9’] ;
11

12 //the SQL query $sqlstmt from line 3 of Figure 1
13 val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");
14

15 //constraint conjuncts
16 assert q in SqlSmall;
17 assert q contains "OR ’1’=’1’";

Fig. 2. H input that, when solved, produces an SQL injection attack vector for the vulnera-
bility from Figure 1.

Figure 1 shows a fragment of a PHP program that implements a simple Web ap-
plication: a message board that allows users to read and post messages stored in a
MySQL database. Users of the message board fill in an HTML form (not shown here)
that communicates the inputs to the server via a specially formatted URL, e.g., http:
//www.mysite.com/?topicid=1. Input parameters passed inside the URL are available
in the $ GET associative array. In the above example URL, the input has one key-value
pair: topicid=1. The program fragment in Figure 1 retrieves and displays messages
for the given topic.

This program is vulnerable to an SQL injection attack. An attacker can read all
messages in the database (including ones intended to be private) by crafting a malicious
URL like:

http://www.mysite.com/?topicid=1’ OR ’1’=’1

Upon being invoked with that URL, the program reads the string

1’ OR ’1’=’1

as the value of the $my topicid variable, constructs an SQL query by concatenating it
to a constant string, and submits the following query to the database in line 4:

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

The WHERE condition is always true because it contains the tautology ’1’=’1’. Thus,
the query retrieves all messages, possibly leaking private information.

4

A programmer or an automated tool might ask, “Can an attacker exploit the topicid
parameter and introduce a OR ’1’=’1’ tautology into a syntactically-correct SQL query
at line 4 in the code of Figure 1?” The H solver answers such questions and creates
strings that can be used as exploits.

The H constraints in Figure 2 formalize the question in our example. Automated
vulnerability-scanning tools [17, 25] can create H constraints via either static or
dynamic program analysis (we demonstrate both static and dynamic techniques in our
evaluation in Sections 4.1 and 4.2, respectively). Specifically, a tool could create the
H input shown in Figure 2 by analyzing the code of Figure 1.

We now discuss various features of the H input language that Figure 2 illus-
trates. (Section 3.1 describes the input language in more detail.)

– Keyword var (line 2) introduces a string variable v. The variable has a size in the
range of 6 to 12 characters. The goal of the H solver is to find a string that,
when assigned to the string variable, satisfies all the constraints. In this example,
H will search for solutions of sizes between 6 and 12.

– Keyword cfg (lines 5–10) introduces a context-free grammar, for a fragment of the
SQL grammar of SELECT statements.

– Keyword val (line 13) introduces a temporary variable q, declared as a concatena-
tion of constant strings and the string variable v. This variable represents an SQL
query corresponding to the PHP $sqlstmt variable from line 3 in Figure 1.

– Keyword assert defines a constraint. The top-level H constraint is a conjunc-
tion of assert statements. Line 16 specifies that the query string qmust be a mem-
ber of the context-free language SqlSmall (syntactically-correct SQL). Line 17
specifies that the variable vmust contain a specific substring (e.g., the OR ’1’=’1’
tautology that can lead to an SQL injection attack).

H can solve the constraints specified in Figure 2 and find a value for v such as

1’ OR ’1’=’1

which is a value for $ GET[’topicid’] that can lead to an SQL injection attack.

3 The Hampi String Constraint Solver

H finds a string that satisfies constraints specified in the input, or decides that no
satisfying string exists. H works in four steps, as illustrated in Figure 3:

1. Normalize the input constraints to a core form (§3.2).
2. Encode core form constraints in bit-vector logic (§3.3).
3. Invoke the STP solver [8] on the bit-vector constraints (§3.3).
4. Decode the results obtained from STP (§3.3).

Users can invoke H with a text-based command-line front-end (using the input
grammar in Figure 4) or with a Java API to directly construct the H constraints.

5

STP Solver

Encoder

Normalizer

Decoder

Solution
Bit−vector

Core String Constraints

Bit−vector Constraints

String Solution

HAMPI

No Solution Exists

String Constraints

Fig. 3. Schematic view of the H string constraint solver. Input enters at the top, and output
exits at the bottom. Section 3 describes the H solver.

3.1 H Input Language for String Constraints

We now discuss the salient features of H’s input language (Figure 4) and illustrate
them on examples. The language is expressive enough to encode string constraints gen-
erated by typical program analysis, testing, and security applications. H’s language
supports declaration of bounded string variables and constants, concatenation and ex-
traction operation over string terms, equality over string terms, regular-language oper-
ations, membership predicate, and declaration of context-free and regular languages,
temporaries and constraints.

Declaration of String Variable (var keyword) A H input must declare a single
string variable and specify its size range as lower and upper bounds on the number
of characters. If the input constraints are satisfiable, then H finds a value for the
variable that satisfies all constraints. For example, the following line declares a string
variable named v with a size between 5 and 20 characters:

var v:5..20;

Extraction Operation H supports extraction of substrings from string terms (as
shown in Figure 4). An example of extraction operation is as follows:

var longv:20;
val v1 := longv[0:9];

where 0 is the offset (or starting character of the extraction operation), and 9 is the
length of the resultant string, in terms of the number of characters of longv.

6

Input F Var Stmt∗ H input (with a single string variable)

Var F var Id : Int..Int string variable (length lower..upper bound)

Stmt F Cfg | Reg | Val | Assert statement

Cfg F cfg Id := CfgProdRHS context-free language
CfgProdRHSF CFG declaration in EBNF Extended Backus-Naur Form (EBNF)

Reg F reg Id := RegElem regular-language
RegElem F StrConst string constant

| Id variable reference
| fixsize(Id , Int) CFG fixed-sizing
| or(RegElem ∗) union
| concat(RegElem ∗) concatenation
| star(RegElem) Kleene star

Val F val Id :=ValElem temporary variable
ValElem F Id

| StrConst
| concat(ValElem ∗) concatenation
| ValElem[offset : length] extraction(ValElem, offset, length)

Assert F assert Id [not]? in Reg regular-language membership
| assert Id [not]? in Cfg context-free language membership
| assert Id [not]? contains StrConst substring
| assert Id [not]? = Id word equation (equality/dis-equality)

Id F String identifier
StrConst F “String literal constant”
Int F Non-negative integer

Fig. 4. Summary of H’s input language. Terminals are bold-faced, nonterminals are itali-
cized. A H input (Input) is a variable declaration, followed by a list of these statements:
context-free-grammar declarations, regular-language declarations, temporary variables, and as-
sertions.

Declaration of Multiple Variables The user can simulate having multiple variables by
declaring a single long string variable and using the extract operation: Disjoint extrac-
tions of the single long variable can act as multiple variables. For example, to declare
two string variables of length 10 named v1 and v2, use:
var longv:20;
val v1 := longv[0:9];
val v2 := longv[10:9];

The val keyword declares a temporary (derived) variable and will be described later in
this section.

Declarations of Context-free Languages (cfg keyword) H input can declare
context-free languages using grammars in the standard notation: Extended Backus-
Naur Form (EBNF). Terminals are enclosed in double quotes (e.g., "SELECT"), and
productions are separated by the vertical bar symbol (|). Grammars may contain spe-
cial symbols for repetition (+ and *) and character ranges (e.g., [a-z]). For example,

7

lines 5–10 in Figure 2 show the declaration of a context-free grammar for a subset of
SQL.

H’s format for context-free grammars is as expressive as that of widely-used
tools such as Yacc/Lex; in fact, we have written a simple syntax-driven script that trans-
forms a Yacc specification to H format (available on the H website). H can
only solve constraints over bounded context-free grammars. However, the user does not
have to manually specify bounds, since H automatically derives a bound by ana-
lyzing the bound on the input string variable and the longest possible string that can be
constructed out of concatenation and extraction operations.

Declarations of Regular Languages (reg keyword) H input can declare regular
languages using the following regular expressions: (i) a singleton set with a string con-
stant, (ii) a concatenation/union of regular languages, (iii) a repetition (Kleene star) of
a regular language, (iv) bounding of a context-free language, which H does auto-
matically. Every regular language can be expressed using the first three of those opera-
tions [22].

For example, (b*ab*ab*)* is a regular expression that describes the language of
strings over the alphabet {a,b}, with an even number of a symbols. In H syntax
this is:

reg Bstar := star("b"); // ’helper’ expression
reg EvenA := star(concat(Bstar, "a", Bstar, "a", Bstar));

The Hwebsite contains a script to convert Perl Compatible Regular Expressions
(PCRE) into H syntax. Also note that context-free grammars in H are implicitly
bounded, and hence are regular expressions.

Temporary Declarations (val keyword) Temporary variables are shortcuts for ex-
pressing constraints on expressions that are concatenations of the string variable and
constants or extractions. For example, line 13 in Figure 2 declares a temporary variable
named q by concatenating two constant strings to the variable v:

val q := concat("SELECT msg FROM messages WHERE topicid=’", v, "’");

Constraints (assert keyword) H constraints specify membership of variables in
regular and context-free languages, substrings, and word equations. H solves for
the conjunction of all constraints listed in the input.

– Membership Predicate (in): Assert that a variable is in a context-free or regular
language. For example, line 16 in Figure 2 declares that the string value of the
temporary variable q is in the context-free language SqlSmall:

assert q in SqlSmall;

– Substring Relation (contains): Assert that a variable contains the given string
constant. For example, line 17 in Figure 2 declares that the string value of the
temporary variable q contains an SQL tautology:

assert q contains "OR ’1’=’1’";

8

S F Constraint
| S ∧ Constraint conjunction

Constraint F StrExp ∈ RegExp membership
| StrExp < RegExp non-membership

Constraint F StrExp = StrExp equality
| StrExp , StrExp dis-equality

StrExp F Var input variable
| StrConst string constant
| StrExp StrExp concatenation
| StrExp[offset : length] extraction

RegExp F StrConst constant
| RegExp + RegExp union
| RegExp RegExp concatenation
| RegExp? star

Fig. 5. The grammar of core form string constraints. Var, StrConst, and Int are defined in Figure 4.

– String Equalities (=): Asserts that two string terms are equal (also known as word
equations). In H, both sides of the equality must ultimately originate from the
same single string variable. For example, the extract operator can assert that two
portions of a string must be equal:
var v:20;
val v1 := v[0:9];
val v2 := v[10:9];
assert v1 = 2v;

All of these constraints may be negated by preceding them with a not keyword.

3.2 Core Form of String Constraints

After parsing and checking the input, H normalizes the string constraints to a core
form. The core form (grammar shown in Figure 5) is an internal intermediate repre-
sentation that is easier than raw H input to encode in bit-vector logic. A core
form string constraint specifies membership (or its negation) in a regular language:
StrExp ∈ RegExp or StrExp < RegExp, where StrExp is an expression composed of con-
catenations of string constants, extractions, and occurrences of the (sole) string variable,
and RegExp is a regular expression.

H normalizes its input into core form in 3 steps:

1. Expand all temporary variables, i.e., replace each reference to a temporary variable
with the variable’s definition (H forbids recursive definitions of temporaries).

2. Calculate maximum size and bound all context-free grammar expressions into reg-
ular expressions (see below for the algorithm).

3. Expand all regular-language declarations, i.e., replace each reference to a regular-
language variable with the variable’s definition.

Bounding of Context-free Grammars: H uses the following algorithm to create
regular expressions that specify the set of strings of a fixed length that are derivable
from a context-free grammar:

9

1. Expand all special symbols in the grammar (e.g., repetition, option, character range).
2. Remove ε productions [22].
3. Construct the regular expression that encodes all bounded strings of the grammar

as follows: First, pre-compute the length of the shortest and longest (if exists) string
that can be generated from each nonterminal (i.e., lower and upper bounds). Sec-
ond, given a size n and a nonterminal N, examine all productions for N. For each
production N F S 1 . . . S k, where each S i may be a terminal or a nonterminal, enu-
merate all possible partitions of n characters to k grammar symbols (H takes
the pre-computed lower and upper bounds to make the enumeration more efficient).
Then, create the sub-expressions recursively and combine the subexpressions with
a concatenation operator. Memoization of intermediate results makes this (worst-
case exponential in k) process scalable.

Here is an example of grammar fixed-sizing: Consider the following grammar of
well-balanced parentheses and the problem of finding the regular language that consists
of all strings of length 6 that can be generated from the nonterminal E.
cfg E := "()" | E E | "(" E ")" ;

The grammar does not contain special symbols or ε productions, so first two steps of
the algorithm do nothing. Then, H determines that the shortest string E can generate
is of length 2. There are three productions for the nonterminal E, so the final regular ex-
pression is a union of three parts. The first production, E := "()", generates no strings
of size 6 (and only one string of size 2). The second production, E := E E, generates
strings of size 6 in two ways: either the first occurrence of E generates 2 characters
and the second occurrence generates 4 characters, or the first occurrence generates 4
characters and the second occurrence generates 2 characters. From the pre-processing
step, H knows that the only other possible partition of 6 characters is 3–3, which
H tries and fails (because E cannot generate 3-character strings). The third produc-
tion, E := "(" E ")", generates strings of size 6 in only one way: the nonterminal E
must generate 4 characters. In each case, H creates the sub-expressions recursively.
The resulting regular expression for this example is (plus signs denote union and square
brackets group sub-expressions):

()[()() + (())] + [()() + (())]() + ([()() + (())])

3.3 Bit-vector Encoding and Solving

H encodes the core form string constraints as formulas in the logic of fixed-size
bit-vectors. A bit-vector is a fixed-size, ordered list of bits. The fragment of bit-vector
logic that H uses contains standard Boolean operations, extracting sub-vectors, and
comparing bit-vectors (We refer the reader to [8] for a detailed description of the bit-
vector logic used by H) H asks the STP bit-vector solver [8] for a satisfying
assignment to the resulting bit-vector formula. If STP finds an assignment, H de-
codes it, and produces a string solution for the input constraints. If STP cannot find a
solution, H terminates and declares the input constraints unsatisfiable.

Every core form string constraint is encoded separately, as a conjunct in a bit-vector
logic formula. H encodes the core form string constraint StrExp ∈ RegExp recur-
sively, by case analysis of the regular expression RegExp, as follows:

10

– H encodes constants by enforcing constant values in the relevant elements of
the bit-vector variable (H encodes characters using 8-bit ASCII codes).

– H encodes the union operator (+) as a disjunction in the bit-vector logic.
– H encodes the concatenation operator by enumerating all possible distributions

of the characters to the sub-expressions, encoding the sub-expressions recursively,
and combining the sub-formulas in a conjunction.

– H encodes the ? similarly to concatenation — a star is a concatenation with
variable number of occurrences. To encode the star, H finds the upper bound
on the number of occurrences (the number of characters in the string is always a
sound upper bound).

After STP finds a solution to the bit-vector formula (if one exists), H decodes
the solution by reading 8-bit sub-vectors as consecutive ASCII characters.

3.4 Example of H Constraint Solving

We now illustrate the entire constraint solving process end-to-end on a simple example.
Given the following input:

var v:2..2; // fixed-size string of length 2

cfg E := "()" | E E | "(" E ")";

reg Efixed := fixsize(E, 6);

val q := concat("((" , v , "))");

assert q in Efixed; // turns into constraint c1
assert q contains "())"; // turns into constraint c2

H tries to find a satisfying assignment for variable v by following the four-step
algorithm2 in Figure 3:

Step 1. Normalize constraints to core form, using the algorithm in Section 3.2:

c1 [assert q in Efixed]: ((v)) ∈ ()[()() + (())] +

[()() + (())]() +

([()() + (())])
c2 [assert q contains "())"]: ((v)) ∈ [(+)]? ()) [(+)]?

Step 2. Encode the core-form constraints in bit-vector logic. We show how H en-
codes constraint c1; the process for c2 is similar. H creates a bit-vector variable bv
of length 6*8=48 bits, to represent the left-hand side of c1 (since Efixed is 6 bytes).
Characters are encoded using ASCII codes: ’(’ is 40 in ASCII, and ’)’ is 41. H
encodes the left-hand-side expression of c1, ((v)), as formula L1, by specifying the
constant values:

L1 : (bv[0] = 40) ∧ (bv[1] = 40) ∧ (bv[4] = 41) ∧ (bv[5] = 41)

2 The alphabet of the regular expression or context-free grammar in a H input is implicitly
restricted to the terminals specified

11

Bytes bv[2] and bv[3] are reserved for v, a 2-byte variable. The top-level regular
expression in the right-hand side of c1 is a 3-way union, so the result of the encod-
ing is a 3-way disjunction. For the first disjunct ()[()() + (())], H creates the
following formula D1a:

bv[0] = 40 ∧ bv[1] = 41∧

((bv[2] = 40 ∧ bv[3] = 41 ∧ bv[4] = 40 ∧ bv[5] = 41)∨
(bv[2] = 40 ∧ bv[3] = 40 ∧ bv[4] = 41 ∧ bv[5] = 41))

Formulas D1b and D1c for the remaining conjuncts are similar. The bit-vector for-
mula that encodes c1 is

C1 = L1 ∧ (D1a ∨ D1b ∨ D1c)
Similarly, a formula C2 (not shown here) encodes c2. The formula that H sends

to the STP solver is

(C1 ∧C2)

Step 3. STP finds a solution that satisfies the formula:

bv[0] = 40, bv[1] = 40, bv[2] = 41, bv[3] = 40, bv[4] = 41, bv[5] = 41

In decoded ASCII, the solution is “(()())” (quote marks not part of solution
string).

Step 4. H reads the assignment for variable v off of the STP solution, by decoding
the elements of bv that correspond to v, i.e., elements 2 and 3. H reports the solution
for v as “)(”. String “()” is another legal solution for v, but STP only finds one solution.

4 Evaluation

We experimentally tested H’s applicability to practical problems involving string
constraints and compared H’s performance and scalability to another string-constraint
solver. We ran the following four experiments:

1. We used H in a static-analysis tool [23] that identifies possible SQL injection
vulnerabilities (Section 4.1).

2. We used H in Ardilla [17], a dynamic-analysis tool that creates SQL injection
attacks (Section 4.2).

3. We used H in Klee, a systematic testing tool for C programs (Section 4.3).

Unless otherwise noted, we ran all experiments on a 2.2GHz Pentium 4 PC with
1 GB of RAM running Debian Linux, executing H on Sun Java Client VM 1.6.0-
b105 with 700MB of heap space. We ran H with all optimizations on, but flushed

12

the whole internal state after solving each input to ensure fairness in timing measure-
ments, i.e., preventing artificially low runtimes when solving a series of structurally-
similar inputs. The results of our experiments demonstrate that H is expressive in
encoding real constraint problems that arise in security analysis and automated testing,
that it can be integrated into existing testing tools, and that it can efficiently solve large
constraints obtained from real programs. H’s source code and documentation, ex-
perimental data, and additional results are available at http://people.csail.mit.
edu/akiezun/hampi.

4.1 Identifying SQL Injection Vulnerabilities Using Static Analysis

We evaluated H’s applicability to finding SQL injection vulnerabilities in the con-
text of a static analysis. We used the tool from Wassermann and Su [23] that, given
source code of a PHP Web application, identifies potential SQL injection vulnerabili-
ties. The tool computes a context-free grammar G that conservatively approximates all
string values that can flow into each program variable. Then, for each variable that rep-
resents a database query, the tool checks whether L(G) ∩ L(R) is empty, where L(R) is
a regular language that describes undesirable strings or attack vectors (strings that can
exploit a security vulnerability). If the intersection is empty, then Wassermann and Su’s
tool reports the program to be safe. Otherwise, the program may be vulnerable to SQL
injection attacks.

An example L(R) that Wassermann and Su use — the language of strings that con-
tain an odd number of unescaped single quotes — is given by the regular expression
(we used this R in our experiments):

R = (([ˆ’]|\’)*[ˆ\])?’

((([ˆ’]|\’)*[ˆ\])?’

(([ˆ’]|\’)*[ˆ\])?’([ˆ’]|\’)*

Using H in such an analysis offers two important advantages. First, it elimi-
nates a time-consuming and error-prone reimplementation of a critical component: the
string-constraint solver. To compute the language intersection, Wassermann and Su im-
plemented a custom solver based on the algorithm by Minamide [19]. Second, H
creates concrete example strings from the language intersection, which is important for
generating attack vectors; Wassermann and Su’s custom solver only checks for empti-
ness of the intersection, and does not create example strings.

Using a fixed-size string-constraint solver, such as H, has its limitations. An
advantage of using an unbounded-length string-constraint solver is that if the solver
determines that the input constraints have no solution, then there is indeed no solution.
In the case of H, however, we can only conclude that there is no solution of the
given size.

Experiment: We performed the experiment on 6 PHP applications. Of these, 5 were
applications used by Wassermann and Su to evaluate their tool [23]. We added 1 large
application (claroline, a builder for online education courses, with 169 kLOC) from
another paper by the same authors [24]. Each of the applications has known SQL injec-
tion vulnerabilities. The total size of the applications was 339,750 lines of code.

13

Wassermann and Su’s tool found 1,367 opportunities to compute language intersec-
tion, each time with a different grammar G (built from the static analysis) but with the
same regular expression R describing undesirable strings. For each input (i.e., pair of
G and R), we used both H and Wassermann and Su’s custom solver to compute
whether the intersection L(G) ∩ L(R) was empty.

When the intersection is not empty, Wassermann and Su’s tool cannot produce an
example string for those inputs, but H can. To do so, we varied the size N of the
string variable between 1 and 15, and for each N, we measured the total H solving
time, and whether the result was UNSAT or a satisfying assignment.

Results: We found empirically that when a solution exists, it can be very short. In 306
of the 1,367 inputs, the intersection was not empty (both solvers produced identical re-
sults). Out of the 306 inputs with non-empty intersections, we measured the percentage
for which H found a solution (for increasing values of N): 2% for N = 1, 70% for
N = 2, 88% for N = 3, and 100% for N = 4. That is, in this large dataset, all non-empty
intersections contain strings with no longer than 4 characters. Due to false positives
inherent in Wassermann and Su’s static analysis, the strings generated from the inter-
section do not necessarily constitute real attack vectors. However, this is a limitation of
the static analysis, not of H.

We measured how H’s solving time depends on the size of the grammar. We
measured the size of the grammar as the sum of lengths of all productions (we counted
ε-productions as of length 1). Among the 1,367 grammars in the dataset, the mean size
was 5490.5, standard deviation 4313.3, minimum 44, maximum 37955. We ran H
for N = 4, i.e., the length at which all satisfying assignments were found. H solves
most of these queries quickly (99.7% in less than 1 second, and only 1 query took 10
seconds).

4.2 Creating SQL Injection Attacks Using Dynamic Analysis

We evaluated H’s ability to automatically find SQL injection attack strings using
constraints produced by running a dynamic-analysis tool on PHP Web applications.
For this experiment, we used Ardilla [17], a tool that constructs SQL injection and
Cross-site Scripting (XSS) attacks by combining automated input generation, dynamic
tainting, and generation and evaluation of candidate attack strings.

One component of Ardilla, the attack generator, creates candidate attack strings
from a pre-defined list of attack patterns. Though its pattern list is extensible, Ardilla’s
attack generator is neither targeted nor exhaustive: The generator does not attempt to
create valid SQL statements but rather simply assigns pre-defined values from the attack
patterns list one-by-one to variables identified as vulnerable by the dynamic tainting
component; it does so until an attack is found or until there are no more patterns to try.

For this experiment, we replaced the attack generator with the H string solver.
This reduces the problem of finding SQL injection attacks to one of string constraint
generation followed by string constraint solving. This replacement makes attack cre-
ation targeted and exhaustive — H constraints encode the SQL grammar and, if
there is an attack of a given length, H is sure to find it.

To use H with Ardilla, we also replaced Ardilla’s dynamic tainting component
with a concolic execution [10] component. This required code changes were quite ex-

14

tensive but fairly standard. Concolic execution creates and maintains symbolic expres-
sions for each concrete runtime value derived from the input. For example, if a value is
derived as a concatenation of user-provided parameter p and a constant string "abc",
then its symbolic expression is concat(p, "abc"). This component is required to
generate the constraints for input to H.

The H input includes a partial SQL grammar (similar to that in Figure 2). We
wrote a grammar that covers a subset of SQL queries commonly observed in Web appli-
cations, which includes SELECT, INSERT, UPDATE, and DELETE, all with WHERE clauses.
The grammar has size is 74, according to the metric of Section 4.1. Each terminal is rep-
resented by a single unique character.

We ran our modified Ardilla on 5 PHP applications (the same set as the original
Ardilla study [17], totaling 14,941 lines of PHP code). The original study identified 23
SQL injection vulnerabilities in these applications. Ardilla generated 216 H inputs,
each of which is a string constraint built from the execution of a particular path through
an application. For each constraint, we used H to find an attack string of size N ≤ 6
— a solution corresponds to the value of a vulnerable PHP input parameter. Follow-
ing previous work [7, 13], the generated constraint defined an attack as a syntactically
valid (according to the grammar) SQL statement with a tautology in the WHERE clause,
e.g., OR 1=1. We used 4 tautology patterns, distilled from several security lists3. We
separately measured solving time for each tautology and each choice of N. A security-
testing tool like Ardilla might search for the shortest attack string for any of the specified
tautologies.

4.3 Systematic Testing of C Programs

We combined H with a state-of-the-art systematic testing tool, Klee [3], to improve
Klee’s ability to create valid test cases for programs that accept highly structured string
inputs. Automatic test-case generation tools that use combined concrete and symbolic
execution, also known as concolic execution [4, 11, 15] have trouble creating test cases
that achieve high coverage for programs that expect structured inputs, such as those
that require input strings from a context-free grammar [9, 18]. The parser components
of programs that accept structured inputs (especially those auto-generated by tools such
as Yacc) often contain complex control-flow with many error paths; the vast majority of
paths that automatic testers explore terminate in parse errors, thus creating inputs that
do not lead the program past the initial parsing stage.

Testing tools based on concolic execution mark the target program’s input string as
totally unconstrained (i.e., symbolic) and then build up constraints on the input based
on the conditions of branches taken during execution. If there were a way to constrain
the symbolic input string so that it conforms to a target program’s specification (e.g.,
a context-free grammar), then the testing tool would only explore non-error paths in
the program’s parsing stage, thus resulting in generated inputs that reach the program’s
core functionality.

To demonstrate the feasibility of this technique, we used H to create grammar-
based input constraints and then fed those into Klee [3] to generate test cases for C

3 http://www.justinshattuck.com/2007/01/18/mysql-injection-cheat-sheets,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

15

cueconvert (939 ELOC, 28-byte input) symbolic symbolic + grammar combined
% total line coverage: 32.2% 51.4% 56.2%
% parser file line coverage (48 lines): 20.8% 77.1% 79.2%
legal inputs / # generated inputs (%): 0 / 14 (0%) 146 / 146 (100%) 146 / 160 (91%)

logictree (1,492 ELOC, 7-byte input) symbolic symbolic + grammar combined
% total line coverage: 31.2% 63.3% 66.8%
% parser file line coverage (17 lines): 11.8% 64.7% 64.7%
legal inputs / # generated inputs (%): 70 / 110 (64%) 98 / 98 (100%) 188 / 208 (81%)

bc (1,669 ELOC, 6-byte input) symbolic symbolic + grammar combined
% total line coverage: 27.1% 43.0% 47.0%
% parser file line coverage (332 lines): 11.8% 39.5% 43.1%
legal inputs / # generated inputs (%): 2 / 27 (5%) 198 / 198 (100%) 200 / 225 (89%)

Table 1. The result of using H grammars to improve coverage of test cases generated by the
Klee systematic testing tool. ELOC lists Executable Lines of Code, as counted by gcov over all
.c files in program (whole-project line counts are several times larger, but much of that code
does not directly execute). Each trial was run for 1 hour. To create minimal test suites, Klee only
generates a new input when it covers new lines that previous inputs have not yet covered; the
total number of explored paths is usually 2 orders of magnitude greater than the number of gener-
ated inputs. Column symbolic shows results for runs of Klee without a H grammar. Column
symbolic + grammar shows results for runs of Klee with a H grammar. Column combined
shows accumulated results for both kinds of runs. Section 4.3 describes the experiment.

programs. We compared the coverage achieved and numbers of legal (and rejected)
inputs generated by running Klee with and without the H constraints.

Similar experiments have been performed by others [9, 18], and we do not claim
novelty for the experimental design. However, previous studies used custom-made string
solvers, while we applied H as an “off-the-shelf” solver without modifying Klee.
Klee provides an API for target programs to mark inputs as symbolic and to place con-
straints on them. The code snippet below uses klee assert to impose the constraint
that all elements of buf must be numeric before the target program runs:

char buf[10]; // program input
klee_make_symbolic(buf, 10); // make all 10 bytes symbolic

// constrain buf to contain only decimal digits
for (int i = 0; i < 10; i++)
klee_assert((’0’ <= buf[i]) && (buf[i] <= ’9’));

run_target_program(buf); // run target program with buf as input

H simplifies writing input-format constraints. Simple constraints, such as those
above, can be written by hand, but it is infeasible to manually write more complex
constraints for specifying, for example, that buf must belong to a particular context-
free language. We use H to automatically compile such constraints from a grammar
down to C code, which can then be fed into Klee.

We chose 3 open-source programs that specify expected inputs using context-free
grammars in Yacc format (a subset of those used by Majumdar and Xu [18]). cueconvert

16

converts music playlists from .cue format to .toc format. logictree is a solver for
propositional logic formulas. bc is a command-line calculator and simple programming
language. All programs take input from stdin; Klee allows the user to create a fixed-
size symbolic buffer to simulate stdin, so we did not need to modify these programs.
For each target program, we ran the following experiment on a 3.2 GHz Pentium 4 PC
with 1 GB of RAM running Fedora Linux:

1. Automatically convert its Yacc specification into H’s input format (described
in Section 3.1), using a script we wrote. To simplify lexical analysis, we used either
a single letter or numeric digit to represent certain tokens, depending on its Lex
specification (this should not reduce coverage in the parser).

2. Add a fixed-size restriction to limit the input to N bytes. Klee (similarly to, for
example, SAGE [11]) actually requires a fixed-size input, which matches well with
H’s fixed-size input language. We empirically picked N as the largest input
size for which Klee does not run out of memory. We augmented the H input to
allow for strings with arbitrary numbers of trailing spaces, so that we can generate
program inputs up to size N.

3. Run H to compile the input grammar file into STP bit-vector constraints (de-
scribed in Section 3.3).

4. Automatically convert the STP constraints into C code that expresses the equivalent
constraints using C variables and calls to klee assert(), with a script we wrote
(the script performs only simple syntactic transformations since STP operators map
directly to C operators).

5. Run Klee on the target program using an N-byte input buffer, first marking that
buffer as symbolic, then executing the C code that imposes the input constraints,
and finally executing the program itself.

6. After a 1-hour time-limit expires, collect all generated inputs and run them through
the original program (compiled using gcov) to measure coverage and legality of
each input.

7. As a control, run Klee for 1 hour using an N-byte symbolic input buffer (with no
initial constraints), collect test cases, and run them through the original program to
measure coverage and legality of each input.

Table 1 summarizes our experimental setup and results. We made 3 sets of mea-
surements: total line coverage, line coverage in the Yacc parser file that specifies the
grammar rules alongside C code snippets denoting parsing actions, and numbers of in-
puts (test cases) generated, as well as how many of those inputs were legal (i.e., not
rejected by the program as a parse error).

The run times for converting each Yacc grammar into H format, fixed-sizing to
N bytes, running H on the fixed-size grammar, and converting the resulting STP
constraints into C code are negligible; together, they took less than 1 second for each
of the 3 programs. Using H in Klee improved coverage. Constraining the inputs
using a H grammar resulted in up to 2× improvement in total line coverage and up
to 5× improvement in line coverage within the Yacc parser file. Also, as expected, it
eliminated all illegal inputs.

Using both sets of inputs (combined column) improved upon the coverage achieved
using the grammar by up to 9%. Upon manual inspection of the extra lines covered,

17

we found that it was due to the fact that the runs with and without the grammar cov-
ered non-overlapping sets of lines: The inputs generated by runs without the grammar
(symbolic column) covered lines dealing with processing parse errors, whereas the in-
puts generated with the grammar (symbolic + grammar column) never had parse errors
and covered core program logic. Thus, combining test suites is useful for testing both
error and regular execution paths.

With H’s help, Klee uncovered more errors. Using the grammar, Klee gener-
ated 3 distinct inputs for logictree that uncovered (previously unknown) errors where
the program entered an infinite loop. We do not know how many distinct errors these
inputs identify. Without the grammar, Klee was not able to generate those same inputs
within the 1-hour time limit; given the structured nature of those inputs (e.g., one is “@x
$y z”), it is unlikely that Klee would be able to generate them within any reasonable
time bound without a grammar.

We manually inspected lines of code that were not covered by any strategy. We
discovered two main hindrances to achieving higher coverage: First, the input sizes
were still too small to generate longer productions that exercised more code, especially
problematic for the playlist files for cueconvert; this is a limitation of Klee running out
of memory and not of H. Second, while grammars eliminated all parse errors, many
generated inputs still contained semantic errors, such as malformed bc expressions and
function definitions (again, unrelated to H).

5 Related Work

Decision procedures have received widespread attention within the context of pro-
gram analysis, testing, and verification. Decision procedures exist for theories such as
Boolean satisfiability [20] and bit-vectors [8]. In contrast, until recently there has been
relatively little work on practical and expressive solvers that reason about strings or sets
of strings directly. Since this is a tutorial paper we do not discuss related work in de-
tail. Instead we point the reader to our ISSTA 2009 paper [16] for a detailed overview of
previous work on decision procedures for theories of strings and practical string solvers.

References

1. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking. Ad-
vances in Computers, 58:117–148, 2003.

2. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating
programs. In International Conference on Tools and Algorithms for the construction and
Analysis of Systems, York, UK, 2009. Springer Verlag.

3. C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Symposium on Operating Systems Design
and Implementation, San Diego, California, 2008. USENIX Association.

4. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: automatically gen-
erating inputs of death. In Conference on Computer and Communications Security, Alexan-
dria, Viginia, 2006. ACM.

5. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In International Conference
on Tools and Algorithms for the construction and Analysis of Systems, Budapest, Hungary,
2008. Springer.

18

6. M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database applica-
tions. In International Symposium on Software Testing and Analysis, London, UK, 2007.
ACM.

7. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for
detecting SQL injection vulnerabilities. In International Computer Software and Applica-
tions Conference, Beijing, China, 2007. IEEE.

8. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In W. Damm
and H. Hermanns, editors, 19th International Conference on Computer Aided Verification
(CAV 2007), volume 4590 of Lecture Notes in Computer Science, pages 519–531, Berlin,
Germany, 2007. Springer.

9. P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In Program-
ming Language Design and Implementation, Tuscon, Arizona, 2008. ACM.

10. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In
Programming Language Design and Implementation, Chicago, Illinois, 2005. ACM.

11. P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In Network and
Distributed System Security Symposium, San Diego, California, 2008. The Internet Society.

12. S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint solving. In
Programming Language Design and Implementation, Tuscon, Arizona, 2008. ACM.

13. W. Halfond, A. Orso, and P. Manolios. WASP: Protecting Web applications using positive
tainting and syntax-aware evaluation. Transactions on Software Engineering, 34(1):65–81,
2008.

14. D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In International Symposium
on Software Testing and Analysis, Portland, Oregon, 2000. ACM.

15. K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz: A concolic whitebox fuzzer
for Java. In NASA Formal Methods Symposium, Moffett Field, California, 2009. NASA.

16. A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: a solver for string
constraints. In International Symposium on Software Testing and Analysis, pages 105–116,
New York, NY, USA, 2009. ACM.

17. A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic creation of SQL injec-
tion and cross-site scripting attacks. In International Conference on Software Engineering,
Vancouver, Canada, 2009. IEEE.

18. R. Majumdar and R.-G. Xu. Directed test generation using symbolic grammars. In Auto-
mated Software Engineering”, Atlanta, Georgia, 2007. ACM/IEEE.

19. Y. Minamide. Static approximation of dynamically generated Web pages. In International
World Wide Web Conference, Chiba, Japan, 2005. ACM.

20. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an efficient
SAT solver. In Design Automation Conference, Las Vegas, Nevada, 2001. ACM.

21. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution
with string analysis. In Testing: Academic and Industrial Conference Practice and Research
Techniques, Windsor, UK, 2007. IEEE Computer Society.

22. M. Sipser. Introduction to the Theory of Computation. Course Technology, Florence, KY,
2005.

23. G. Wassermann and Z. Su. Sound and precise analysis of Web applications for injection vul-
nerabilities. In Programming Language Design and Implementation, San Diego, California,
2007. ACM.

24. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities. In Interna-
tional Conference on Software Engineering, Leipzig, Germany, 2008. IEEE.

25. G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic test
input generation for Web applications. In International Symposium on Software Testing and
Analysis, Seattle, Washington, 2008. ACM.

19

