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Abstract

In modern Scheme, a macro captures the lexical environ-
ment where it is defined. This creates an opportunity for
extending Scheme so that macros are first-class values. The
key to achieving this goal, while preserving the ability to
compile programs into reasonable code, is the addition of a
type system. Many interesting things can be done with first-
class macros, including the construction of a useful module
system in which modules are also first-class.

Clams got legs!
—B.C.

1 Introduction

A revolution in macro technology has taken place over the
last 15 years in the Scheme community. Classical Lisp
macros operate as pure source-to-source transformations on
S-expressions [Pit80, Ste90], just as C’s macros operate on
tokens, or other macro systems operate on characters. Such
macros have no understanding of the structure of the lan-
guage they are generating, and in particular, they are blind
to the scoping of variables. As a result, classical Lisp macros
sometimes have bugs caused by inadvertent variable cap-
tures.

Modern Scheme macros [KFFD86, BR88, CR91, Cli91,
DHB92, KCR98] have the ability to avoid capture problems
by generating output that specifies the environment in which
each variable is to be resolved. The programmer can easily
write macros that behave properly with respect to the rules
of lexical scoping. The details of this “namespace manage-
ment” technology vary from implementation to implemen-
tation, but always the idea is that a macro should somehow
capture the environment where it is defined.

This environment capture bears a resemblance to the
way environments are captured in “closures” in order to im-
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plement first-class procedures. This is not surprising since
in both cases the goal is to respect lexical scoping. It sug-
gests that perhaps some closure-like mechanism might give
us first-class macros, in the same way that ordinary closures
give us first-class procedures.

This paper describes some extensions to Scheme which I
have implemented that make macros into first-class values.
In this system, macros can be passed to procedures as ar-
guments, returned as values, and stored in data structures.
And this is done without sacrificing the ability to compile
into reasonable code.

The key idea is that a macro, considered as a first-class
value, has a kind of type. Programs without type errors are
programs that can be reasonably compiled.

Although this paper is not primarily about module sys-
tems, the extensions presented here can be thought of as
low-level primitives for constructing module systems. One
of the sample applications presented below is a fully func-
tional module system that supports first-class modules and
separate compilation.

Section 2 develops a small example that will serve as
motivation for what follows. Section 3 describes the exten-
sions to the Scheme language that support first-class macros.
Section 4 explains the simple type system used. Section 5
presents two examples of what can be done in this system:
a record structure package, and a module system. Section 6
describes the prototype compiler. Section 7 presents an in-
teresting unexpected natural feature of the system that is
of unknown utility. Section 8 presents some loose ends and
conclusions.

2 Motivation

In the code that follows, I will write macros using the
“explicit renaming” technology for namespace management
[Cli91]. I will also only do the renamings that are strictly
necessary for expository purposes—I will not clutter macro
definitions with renamings that guard against possible shad-
owings of standard keywords and procedures such as lambda
and car. In practice, you would do a lot more renaming, or
you would use something like Scheme’s syntax-rules that
does renaming for you automatically.

Consider the following implementation of the standard
Scheme force and delay (“promises”) facility:



(define delay
(macro
(lambda (form rename)
‘(,(rename ’make-promise)
(lambda () ,@(cdr form))))))

(define make-promise
(lambda (thunk)
thunk))

(define force
(lambda (promise)
(promise)))

This implementation fails to meet the language specification
[KCR98] because it does not cache the result of forcing a
promise, but the programmer may know that the caching
is wasted effort. She may prefer this implementation for
certain applications.

Imagine that we enclose this implementation in a mod-
ule using some module system such as Waddell and Dybvig’s
[WD99], and that the module exports force and delay, but
keeps make-promise private. Recall that modern scheme
macro namespace management technology will insure that
the reference to make-promise inserted when a delay expres-
sion is expanded will resolve to the make-promise defined in
this module—that is what the call to rename accomplishes.

Further imagine that the following alternate implemen-
tation of promises was placed in a second module:

(define delay
(macro
(lambda (form rename)
‘(,(rename ’make-promise)
(lambda () ,@(cdr form))))))

(define make-promise
(lambda (thunk)
(cons #F thunk)))

(define force
(lambda (promise)
(if (car promise)

(cdr promise)
(let ((val ((cdr promise))))
(if (car promise)

(cdr promise)
(begin (set-car! promise #T)

(set-cdr! promise val)
val))))))

This implementation fully implements the language specifi-
cation, at the expense of some additional overhead.1

Although this definition of delay is identical to the defi-
nition of delay in the first module, they differ in that the the
reference to make-promise inserted by this version of delay
will resolve to the make-promise defined in this module.

The programmer may prefer either of these promise im-
plementations for a given application. Using the module
system, she has the option of opening and using the appro-
priate one.

But that is not the end of this software engineering story.
The programmer uses promises a lot in her programs, and
she often finds the following procedure for making lazy lists
useful:

1The second (car promise) test is required by the standard.

(define lazy-map
(lambda (f l)
(if (null? l)

’()
(cons (f (car l))

(delay
(lazy-map f (cdr l)))))))

The version of delay being used here depends on which ver-
sion of the promise module was opened in the environment
where this definition appears. When the programmer wants
to use lazy-map with the other implementation of promises
she must repeat the definition of lazy-map in an environment
were she opens up the other promise module.

The programmer would rather not duplicate the code for
lazy-map like this. Instead, she would like to put one copy
of it in a module of useful promise utilities, and use it with
both promise implementations. If delay were a procedure,
instead of being a macro, she could accomplish this by giving
lazy-map an additional parameter:

(define lazy-map
(lambda (delay f l)
(if (null? l)

’()
(cons (f (car l))

(delay
(lazy-map delay f (cdr l)))))))

Then when she called lazy-map, she would pass it the ver-
sion of delay from the implementation of promises that she
wanted to use. But unfortunately macros are not first-class
values, they cannot be passed as arguments to procedures,
and so this solution will not work in Scheme.

The rest of this paper describes an extension to Scheme
that will let the above solution work almost exactly as writ-
ten above. Macros will become first-class values that can be
passed as arguments, returned as values, and stored in data
structures. And we will be able to do this without sacrificing
the ability to compile Scheme into efficient code.

The reason we might worry about compilation, is that a
näıve interpretation of what it means to pass a macro (or
other keyword) as an argument naturally concludes that:

(lazy-map quote list ’(1 2))

should evaluate to:

((1) lazy-map delay f (cdr l))

That is, the delay-expression in the body of lazy-map
should become a quote-expression if the keyword quote is
passed as the value of the delay parameter. In effect, the
body of lazy-map would become:

(if (null? l)
’()
(cons (f (car l))

(quote
(lazy-map delay f (cdr l)))))

It is obviously quite difficult to generate reasonable com-
piled code for lazy-map if the compiler must anticipate that
delay (or any of the other parameters!) might be a macro
with an arbitrary definition.

But our imagined programmer does not need such exces-
sive generality. All she wants is to be able to switch between
definitions of delay. And the two different versions of delay
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will, in fact, expand into nearly identical code—the only dif-
ference being the environment where the (renamed) variable
make-promise will be found. This should not be hard to
compile. The programmer is not really interested in passing
in arbitrary macros as the first argument to lazy-map, she
only wants to be able to pass in macros that are (in some
sense we need to make precise) of the correct type.

Given an appropriate notion of the type of a macro, our
programmer will be able to write:

(define lazy-map
(lambda (delay f l)
(declare (delay <delay>))
(if (null? l)

’()
(cons (f (car l))

(delay
(lazy-map delay f (cdr l)))))))

Where (declare (delay <delay>)) is a type declaration
that indicates that the variable delay is to have the type
<delay>.2 In the next section we will see how to go about
constructing a suitable <delay> type that describes exactly
what the compiler needs to know in order to compile this
code.

3 The Extensions

The scenario described in the previous section assumed the
presence of a module system. We are actually going to solve
the more general problem of first-class macros defined in
an arbitrary environment. In section 5.2, I will show how
to construct a module system on top of this more general
foundation.

3.1 Templates

A template-expression describes everything a compiler
would need to know about the environment where a macro
(or a set of macros) is defined. For example:

(define promise-template
(template
(delay (macro

(lambda (form rename)
‘(,(rename ’make-promise)
(lambda () ,@(cdr form))))))

(make-promise (value <plain>))
(force (value <plain>))))

defines promise-template to be a template that describes
an environment where a macro named delay and two other
values named make-promise and force are defined. The
definition of the macro is given, as well as the types of the
other two values. (The type <plain> contains all of the
ordinary, dynamically typed, Scheme values.)

This template does not describe a complete environment,
it describes just the scope that will immediately surround
the definitions of those three names. In operational terms,
it describes the top-most frame in an environment chain—it

2declare is not a new special form, but is rather an extension to
the syntax of lambda-expressions. This is a bit ugly, but all the alter-
natives seem worse to me. I find the obvious alternative of placing
the types in the list of bound variables to be very cluttered and hard
to read.

tells the compiler exactly what it needs to know in order to
design a runtime representation for that frame.

When a macro defined in a template expands, any iden-
tifiers it renames (using the rename procedure it will be
passed) will resolve in an environment constructed from
the environment where the template-expression was writ-
ten, extended with the names listed in the template itself.
The runtime value of such a macro will just be an environ-
ment frame of the form described by the template.

A template is not itself an environment. An
instantiate-expression (described below), must be used in
order to actually make an instance of the template.3 A
template is a bit like the “interfaces” found in some mod-
ule systems [Mac84, CR90, Ree93], but without any name
hiding mechanisms.

Having defined a template, now we can define the type
that describes the different delay macros we might get from
various different instantiations of the template:

(define <delay>
(type-of promise-template delay))

A type-of-expression obtains the type of any of the values
described in a template.

This two-step process to actually arrive at the type def-
inition is necessary because a template might define several
different macros at the same time, and we might need to
obtain types for all of them. Alternatively, we could refrain
from naming the type, and just directly write

(declare
(delay (type-of promise-template delay)))

in our procedure definitions—but this gets tedious.
The definitions of promise-template and <delay> are

sufficient to allow the code at the end of the previous sec-
tion to compile. Knowing that delay is of type <delay>,
the compiler will be able to use the macro definition given
in the template to expand the delay-expression into a call to
some make-promise procedure. At runtime, when lazy-map
is called, the value passed as its first argument will be an
environment frame, and the appropriate make-promise pro-
cedure will be found at a known location within that frame.

3.2 Instantiation

In order to make an instance of a template, we use
instantiate. For example:

(instantiate promise-template
(set! make-promise

(lambda (thunk)
thunk))

(set! force
(lambda (promise)
(promise)))

...)

instantiate is a binding form (like let) that extends the
environment where the instantiate-expression was writ-
ten by binding the variables named in the template (delay,
make-promise and force in this case), and then executes
its body. The value of the last expression in the body is
returned. At runtime the actual environment frame created

3For the moment, do not worry about whether a template is itself
a first-class value—we will return to that issue.
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by instantiate will use the representation specified by the
given template.

Variables that were specified using value in the template
(make-promise and force in this case) are bound, and given
their specified types, but are left unassigned. The notion
of a bound-but-unassigned variable is not found in standard
Scheme, so there is no precedent for how to specify an initial
value for such a variable. I have chosen to simply use set!,
which is perfectly clear semantically, but which does give the
code an unfortunate imperative flavor. A purely functional
language would probably adopt some other solution.

After the code in the body of an instantiate-expression
has finished the job of initializing the template instance, it
will ordinarily want to return some useful value. In the
case of promise-template, we want it to return the force
procedure, and the delay macro. (The ability to return the
latter value being the point of this entire exercise!) We could
get both these values out by using Scheme’s multiple values
feature. A solution that will prove more useful to us in the
long run, is to go back and add a second macro definition
to the promise template as follows:

(define promise-template
(template
...
(self (macro

(lambda (form rename)
(rename (cadr form)))))))

This defines self as a macro such that (self foo) expands
into foo, where foo is to be resolved in the environment
where self was defined. So (self force) will be the force
procedure, and (self delay) will be the delay macro. So
now we can return both those values by just returning the
value of self:

(define uncached-promises
(instantiate promise-template
(set! make-promise ...)
(set! force ...)
self)

Now (uncached-promises delay) expands into the delay
macro that was created when the instantiate-expression
was entered. When that delay macro is used, it will generate
code that includes a reference to the variable make-promise
from that same environment. So finally, our promise-loving
programmer can write:

(lazy-map (uncached-promises delay)
expensive-operation
huge-list)

This trick of defining a macro like self is a useful tech-
nique that we will employ several times in the following sec-
tions.

The way self works suggests an interesting way to think
about first-class macros: First-class macros can be viewed
as a limited form of first-class environments. True first-
class environments would allow programmers to manipulate
environments as first-class values, and to access arbitrary
variables bound inside them. In contrast, first-class macros
allow programmers to (in effect) manipulate environments
as first-class values, but with a controlled form of access
to the enclosed variables: access is only available via code
generated by expanding the macro. A macro like self is
willing to grant access to any variable in its environment at
all, but other environments can be protected by less permis-
sive guardians.

4 About The Types

Having introduced static types for macros into an otherwise
dynamically typed language, I need to answer a few ques-
tions about the nature of this type system. Where do new
types come from and how does the compiler reason about
them?

In fact, this is an extremely simple type system (it is
very similar to the way types work in traditional C):

• New base types are generated by macro definitions ap-
pearing in template expressions.

• The types of all procedure arguments must be explic-
itly declared by the programmer. (Arguments not men-
tioned in a declare clause are always of type <plain>.)

• A procedure has a type determined by the type of its
return value and the types of its arguments.4

• Type equality is determined by a simple recursive com-
parison. Base types are only equal to themselves. Pro-
cedure types are equal if their return values are equal
and corresponding arguments are equal.

The compiler performs only type checking. No type infer-
ence is needed. There are no polymorphic types. The only
purpose of the type system is to ensure that: when an en-
vironment frame serving as the representation of a macro
is accessed by code generated by the expansion of a macro,
the macro being represented at runtime is the same as the
macro that was expanded at compile time.

There is no fundamental reason why this macro type sys-
tem needs to be static. The same safety could be achieved
using dynamic typing. Type declarations would still be
needed for macro valued procedure arguments. The runtime
representation for a macro value would be an environment
frame, plus a tag that identifies the macro. The compiler
would emit code to check the tags at runtime to make sure
that a value used as an operator always had the type that
the programmer promised the compiler it would have.

There would be many advantages to using dynamic typ-
ing. The main advantage would be that the built-in Scheme
primitives could manipulate macro values directly. For ex-
ample, under static typing the arguments and return value
of the built-in cons procedure are all of type <plain>, so a
program that tries to use cons to build a list of values of
type <delay> will fail to type check, making it impossible
to build a list that contains a value of type <delay>. But
if we use dynamic typing, we can pass any value at all to
cons, because runtime type checks will ultimately prevent
any macro values from being misused.5

Despite the advantages of dynamic typing (and despite
the fact that I am normally an advocate of dynamically
typed languages) my prototype implementation uses static
types for macro values because:

• Simple static typing is easier to implement than dy-
namic typing. The compiler checks the programmer’s
type declarations at compile time and that is the end
of it. There is no need to design a tagging scheme or
figure out where to insert type checks in compiled code.

4The type of lazy-map can be written:

(procedure <plain> <delay> <plain> <plain>).

5A polymorphic type system would also partly address this short-
coming.
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• If I had built a dynamically typed prototype, some
readers might not have realized that this idea would
be applicable in languages that were not dynamically
typed. This way it should be clear that this idea is
perfectly applicable in a statically typed language.

• Traditionally, macro expansion leaves no residue be-
hind in generated code. Thus the runtime type checks
required for dynamic typing of macro values would vi-
olate some people’s expectations of what it means for
something to be a “macro.”

5 Applications

This section presents two illustrative examples of using first-
class macros in practice. The first example, perhaps the
more surprising of the two, demonstrates how first-class
macros can be used to define a complete record structure
package. The second example shows how templates and
their instances can be used to implement interfaces and
modules.

5.1 Structures

We have got types introduced by macro definitions and pro-
cedure types constructed from them. Will we also need to
add tuple types in order to be able to store first-class macros
in data structures? As we noted at the end of section 4, one
way to avoid problems like this is to switch to dynamic typ-
ing and then just use the existing Scheme list and vector
types. But if a switch to dynamic typing is not an option
(as would be the case if we were adding first-class macros to
C), will it be necessary to add more machinery for defining
record types that can hold first-class macro values? Fortu-
nately not—we already have all the tools we need to define
record types ourselves.

Our goal is to be able to write structure definitions such
as:

(define-structure <kons> kons
(car <delay>)
(cdr <kons>))

Which declares a structure of type <kons>. A <kons> can
be constructed by calling the kons procedure. It contains a
car slot of type <delay> and a cdr slot of type <kons>. A
chain of <kons>’s could be used to build a list of values of
type <delay>, should that prove necessary. . .

Here is how we begin:

(define define-structure
(macro
(lambda (form rename)
(let ((type (list-ref form 1))

(make (list-ref form 2))
(ids (map car

(list-tail form 3)))
(types (map cadr

(list-tail form 3)))
(template (rename ’template))
(self (rename ’self)))

‘(begin
(define ,type
(type-of ,template ,self))

,(def-struct-template template self
type ids
types)

,(def-constructor template self
type ids types
make rename))))))

This tears the define-structure-expression apart into its
components; creates two new identifiers to be used internally
to name a template (template) and to be a self macro de-
fined within that template (self); and generates a definition
for the given type variable. Two sub-procedures are called
to generate the template definition (def-struct-template)
and the constructor definition (def-constructor).

(define (def-struct-template template self
type ids
types)

‘(define ,template
(template
(,self (macro (struct-self ’,type

’,ids)))
,@(map (lambda (i t)

‘(,i (value ,t)))
ids
types))))

All def-struct-template does is use the given slot names
and types to generate a template definition, with an addi-
tional self macro constructed by struct-self:

(define (struct-self name ids)
(lambda (form rename)
(if (memq (cadr form) ids)

(rename (cadr form))
(error "Unknown slot" name form))))

A call to struct-self creates a macro transformer that
functions like the self macro we defined in section 3.2, ex-
cept it does some error checking to make sure it is only used
to access the slots of the structure.

Finally, def-constructor builds a definition for the con-
structor procedure:

(define (def-constructor template self
type ids types
make rename)

(let ((bvl (map rename ids)))
‘(define ,make

(lambda ,bvl
(declare (returns ,type)

,@(map (lambda (v t)
‘(,v ,t))

bvl
types))

(instantiate ,template
,@(map (lambda (i v)

‘(set! ,i ,v))
ids
bvl)

,self)))))
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It generates a list of variables for the arguments, a declara-
tion for the type of the procedure, an instantiate form to
make an instance of the template, a sequence of initializa-
tions to the variables in the template instance, and finally
returns the self macro.

That is all there is to it. Now we can create a new <kons>:

(define x (kons a b))

examine its car:

(x car)

and even change its car:

(set! (x car) new)

The code generated when accessing and modifying a
<kons> is about as good as you could ask for. We will take
a look at it in section 6.

There is no runtime type checking when using these
structures—the typing is all statically checked at compile
time. So there might be applications where a Scheme pro-
grammer would use this define-structure facility to avoid
the overhead of dynamic type checking. But the interest-
ing thing about this example is not the obvious fact that a
statically typed record facility can be more efficient than a
dynamically typed one. The interesting thing is that first-
class macros are sufficiently powerful to construct a complete
record structure package.

5.2 Modules

As I remarked before, templates strongly resemble the inter-
faces found in other module systems [Mac84, CR90, Ree93],
but without any name hiding mechanism. In this section
we will use templates and their instances to represent the
interfaces and modules in a fully functional module system.
Since this module system is constructed on top of first-class
macros, our modules will be first-class as well. This module
system also easily supports separate compilation.

Continuing with our promises example, here is how we
would like to define the promises interface:

(define-interface promise-interface
<promise-module>
(force delay)
((<delay> delay))

(delay (macro (lambda (form rename)
‘(,(rename ’make-promise)
(lambda ()
,@(cdr form))))))

(make-promise (value <plain>))
(force (value <plain>)))

This defines promise-interface to be the interface to mod-
ules implementing promises. <promise-module> is defined
to be the type of such modules. The list (force delay)
specifies which names in a promise module are to be ex-
ported. Next is a list of types to be defined—in this case
<delay> is to be defined as the type of delay in a promise
module. There then follows a list of variable specifications
exactly as they would appear in a plain template-expression.

After seeing this definition, the compiler will be able to
compile any program that uses a promise module. For ex-
ample, the definition of lazy-map.

To instantiate a promise module, we will use a module-
expression:

(define uncached-promises
(module promise-interface
(set! make-promise

(lambda (thunk)
thunk))

(set! force
(lambda (promise)
(promise)))))

Here promise-interface is the interface we are instantiat-
ing, the body initializes the module, and the value returned
is the module itself (a value of type <promise-module>).

Finally, to import the exported definitions of a module
into the current environment, we open it as follows:

(open uncached-promises)

So we have three things to define: define-interface,
module and open. define-interface looks a lot like
define-structure did:

(define define-interface
(macro
(lambda (form rename)
(let ((name (list-ref form 1))

(type (list-ref form 2))
(exported (list-ref form 3))
(typedefs (list-ref form 4))
(specs (list-tail form 5))
(template (rename ’template))
(self (rename ’self)))

‘(begin
(define ,type
(type-of ,template ,self))

,@(map
(lambda (typedef)
‘(define ,(car typedef)

(type-of ,template
,(cadr typedef))))

typedefs)
(define ,name
(macro (interface-self ’,template

’,self)))
(define ,template
(template
(,self (macro (module-self

’,exported)))
,@specs)))))))

It tears the define-interface-expression apart, generates
new template and self identifiers, and creates a pile of def-
initions. All but the last two definitions define type names
requested by the user. The second-to-last definition defines
the interface name to be a macro with a transformer built by
interface-self—this macro represents the interface. The
last definition defines the template, adding a definition for
a self macro (by now a familiar cliché) whose transformer
will be constructed by module-self—instances of this macro
will represent modules.

The only thing you can do with the instance itself is to
use module to instantiate it, so here is its definition:

(define module
(macro
(lambda (form rename)
‘(,(cadr form) ,@(cddr form)))))
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All this does is pass the buck to the interface macro, which
was created by interface-self:

(define (interface-self template self)
(lambda (form rename)
‘(instantiate ,template

,@(cdr form)
,self)))

This just plugs the body of the module-expression into an
instantiate-expression and returns the self macro.

The only thing you can do with a module is to use open
to open it, so here is its definition:

(define open
(macro
(lambda (form rename)
‘(,(cadr form)))))

This just passes the buck to the module macro, which was
created by module-self:

(define (module-self exported)
(lambda (form rename)
‘(begin ,@(map (lambda (id)

‘(define-alias ,id
,(rename id)))

exported))))

This creates a bunch of aliases in the current environment
for the variables exported from the module. (define-alias
is borrowed from Waddell and Dybvig [WD99] who use it
for a similar purpose in their module system.)

Note that if you are not using first-class macros or first-
class modules, you do not need to use types anywhere in
your program in order to use this module system.

6 Implementation

The prototype implementation works by compiling Scheme
plus first-class macros into standard Scheme. At first this
sounds like an easy task: just expand all the macros and
you are done. But additional code must be generated to ma-
nipulate the extra environment frames needed to represent
instantiated templates (and hence first-class macros them-
selves), so the process is more than just a simple macro
expansion.

These extra frames are represented using Scheme vectors,
while all the standard environment frames are left implicit
in the generated Scheme code. This compilation technique
has the advantage that the reader can easily find the code
that was generated to support the first-class macros.

I will demonstrate the compiler by walking through some
examples based on the record structure code from sec-
tion 5.1, and in particular, assuming the following structure
definition:

(define-structure <kons> kons
(car <delay>)
(cdr <kons>))

This define-structure expression will expand into
the following three definitions, where template_1, self_2,
car_3 and cdr_4 are the identifiers generated by the rename
procedure when the macro wanted fresh identifiers:

(define <kons>
(type-of template_1 self_2))

(define template_1
(template
(self_2 (macro (struct-self

’<kons>
’(car cdr))))

(car (value <delay>))
(cdr (value <kons>))))

(define kons
(lambda (car_3 cdr_4)
(declare (returns <kons>)

(car_3 <delay>)
(cdr_4 <kons>))

(instantiate template_1
(set! car car_3)
(set! cdr cdr_4)
self_2)))

When the compiler processes the template expression for
template_1, it must design an environment frame in which
variables self_2, car and cdr are defined.

self_2 will be defined as a macro—all the compiler
knows about that macro is that any identifiers it renames
will be looked up first in this frame, and if they are not found
there, in the environment where the template expression oc-
curred. You might expect that in order to implement this
name lookup, such a frame would need to contain a pointer
to the environment frame for the surrounding environment.
But in fact this is not necessary.

The reason for this is subtle: roughly, a top-level
template expression, such as this one, is not itself a first-
class value.6 Therefore the macro types it creates are only
available within the scope where this template is defined. So
it is impossible to use those macros outside of that scope.
And thus the variables in the environment surrounding the
template expression can always be located somewhere up
the chain of ordinary environment frames.

You might also expect that the compiler would need to
allocate a slot to contain the value of self_2. But the run-
time representation of the self_2 macro will be the frame
itself, so no such slot is needed.

Thus the compiler designs a frame containing two slots
for instances of template_1—the first slot will contain the
value of the variable car and the second will contain the
value of the variable cdr.

We now consider the compilation of the definition of the
constructor function kons. The only interesting issue is the
compilation of the instantiate expression. The compiler
allocates a frame of the appropriate size, and then arranges
that inside the body of the instantiate expression, car and
cdr will refer to the first and second slots of that frame, and
that self_2 will refer to the frame itself. The generated
code is:

(define kons
(lambda (car_3 cdr_4)
(let ((instance_5 (make-vector 2)))
(vector-set! instance_5 0 car_3)
(vector-set! instance_5 1 cdr_4)
instance_5)))

6But see the next section.
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Finally, consider the compilation of the definition:

(define kar
(lambda (x)
(declare (x <kons>)

(returns <delay>))
(x car)))

The interesting issue here is the compilation of (x car) in
the presence of a declaration that x has type <kons>. The
type declaration allows the compiler to locate the expander
procedure (generated by struct-self). The compiler calls
this expander, passing it the expression (x car) and a spe-
cially constructed rename procedure that knows that car
and cdr should refer to the first and second slots of the
frame that is the value of x, and that self_2 should refer to
x itself. The result is:

(define kar
(lambda (x)
(vector-ref x 0)))

Following the same pattern, the code generated for
lazy-map, as defined in sections 2 and 3, is:

(define lazy-map
(lambda (delay-env f l)
(if (null? l)

’()
(cons (f (car l))

((vector-ref delay-env 0)
(lambda ()
(lazy-map delay-env

f
(cdr l))))))))

Here the compiler has designed a frame for promise-
template where the procedure make-promise is located in
the first slot.

The algorithm for compiling an expression is to first de-
termine the type of its first sub-expression (the operator,
its car). That type determines everything about how to
compile the entire expression. In the case where the type
is <plain> (the type of ordinary Scheme values), the ex-
pression is compiled as a procedure call, where the rest of
the sub-expressions are argument expressions. In the case
where the type is a macro type, the expression is compiled
as follows:

(let ((env_17 compute-operator))
result-of-expansion)

Where compute-operator is the code generated when the op-
erator expression was compiled, env_17 is a freshly gener-
ated identifier, and result-of-expansion, is the result of ex-
panding the macro using a specially constructed rename pro-
cedure that knows where the various variables that might be
inserted by the macro are located inside env_17.

7 First-Class Templates

Templates were introduced in order to make macros into
first-class values. Until now, we have not considered the pos-
sibility that templates themselves might be first-class values.
As it happens, we can obtain first-class templates with very
little additional work. The same trick that worked to make

macros first-class, will also work to make templates first-
class: we simply allow templates to appear inside template
expressions!7

Unfortunately, it seems to be very hard to generate a
plausible example of why one would need templates to be
first-class. A likely scenario might be where a module in-
terface exports a template that users of the module are ex-
pected to instantiate. Something like:

(define-interface promise-interface
<promise-module>
(force delay kons-tmplt)
((<delay> delay)
(<kons-tmplt> kons-tmplt)
(<kons> kons-tmplt self))

(kons-tmplt (template
(car (value <delay>))
(cdr (value <kons>))
(self (macro ...))))

(delay (macro ...))
(make-promise (value <plain>))
(force (value <plain>)))

All of the examples I have been able to construct that
have this structure have some at-least-as-good solution that
does not involve first-class templates. Often simply export-
ing a procedure that instantiates a non-first-class template
works just as well. I would be interested in hearing from
anybody who thinks they can construct a really compelling
case for first-class templates.

8 Conclusions

An interpreted system with first-class macros was presented
by Jonathan Rees as the first step in explaining the devel-
opment of a module system for Scheme [Ree89]. His final
system, in which code can actually be compiled, no longer
supported first-class macros. The system presented here re-
sults from my search for a way to save first-class macros
from Jonathan’s trash can.

This system also owes a debt to the module system pro-
posed by Oscar Waddell and Kent Dybvig [WD99]. At the
conclusion of the presentation of their system at POPL’99,
an audience member asked why no additional runtime en-
vironment structures were needed in order to support their
system. Thinking about when you would need additional
environment structures in a system such as theirs helped
lead me to the system here.

Compilers have always generated different code depend-
ing on the types of variables in expressions. In a C program,
an expression like “x + 1” compiles into different machine
instructions depending on whether x is an integer, float-
ing point, or pointer variable. First-class macros deliver
this ability to do type-driven code-generation directly into
the programmer’s hands. With first-class macros, (x car)
compiles into a structure reference if x is of the type <kons>
defined in section 5.1, but if x has a different type it may
compile quite differently—the programmer is in complete
control.

I am sure that I have only scratched the surface of the the
interesting things that can be done with first-class macros.
Consider the simple “syntactic protocol” employed by the

7Only one small change in the compiler is required in order to make
this work: environment frames built for inner templates will require
a pointer to the environment frame for the containing template.
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open macro define in section 5.2. It can be used to open a
module, as intended, but it can also be used to open some-
thing else—open is “generic.” With a simple syntactic mes-
sage passing protocol (a dispatch on a symbol used as the
first operand), a first-class macro can support different syn-
tactic “operations.” The result is a sort of syntactic analog
of object-oriented programming. All this territory remains
to be explored.

There is no type-inference here. Types must be com-
pletely declared in every lambda-expression. It would be
interesting to try to add some form of type-inference. The
difficulty I foresee is that type-inference depends on knowing
data flow, and data flow depends on having parsed the pro-
gram, and first-class macros make parsing depend on types,
closing the loop.

Some limited form of type-inference may be possible. If
an argument to a procedure is never used in operator posi-
tion, its macro type does not need to be precisely known at
compile time. So some polymorphism is still possible. For
example

(lambda (x) x)

can still be compiled and given the type α → α, while

(lambda (f) (f))

can not be compiled without knowing exactly what the type
of f will be.

Although it is hard to see how to make macro types cul-
turally compatible with the ML type system, it is quite easy
to see how combine them with the C (or other traditional)
type system. In place of <plain>, our single non-macro type,
substitute int, char, struct point *, etc.

There are many features of this system that are less
than satisfactory. The declare syntax added to lambda-
expressions is ugly. The body of a template really should
look like a sequence of ordinary definitions. (So that macros
that expand into a sequence of definitions could be used
there.) Using set! to initialize the values in a instantiate-
expression seems out-of-place in a mostly functional lan-
guage like Scheme. But none of these problems seem to
be more than ordinary issues of programming language
design—none are fatal flaws.

Despite all the mechanisms and syntax introduced here,
the key observation is actually very simple: With the sup-
port of a type system, macros can become first-class values,
and the result is a useful and powerful new programming
tool.
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