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Window-Based Expectation Propagation for
Adaptive Signal Detection in Flat-Fading Channel:

Yuan Qi and Thomas P. Minka

Abstract—In this paper, we propose a new Bayesian receiver analytically tractable distributions. For many systems, this
for signal detection in flat-fading channels. First, the detection approach provides the best cost/accuracy trade-off. For ex-
problem is formulated as an inference problem in a graphical ample, the canonical distribution method of [8] has been

model that models a hybrid dynamic system with both continuous . . . .
and discrete variables. Then, based on the expectation propa- successfully applied to channels with low-dimensional state,

gation (EP) framework, we develop a smoothing algorithm to €.9. & single unknown phase parameter [9]. This method is
address the inference problem and visualize this algorithm using an extension of the sum-product algorithm for factor graphs,
factor graphs. As a generalization of loopy belief propagation, otherwise known as belief propagation in graphical models.
EP efficiently approximates Bayesian estimation by iteratively pqr the signal detection problem, belief propagation is not
propagating information between different nodes in the graphical feasible t v directly. si it Id . fi

model and projecting the posterior distributions into the expo- ea:_;| e_ 0 apply direc y since | _Wo_u _reqUIre represen _|ng
nential family. We use window-based EP smoothing for online arbitrarily complex continuous distributions. The extension

estimation as in the signal detection problem. Window-based involves approximating each message in an ad-hoc manner,
EP smoothing achieves accuracy similar to that obtained by so that the distributions remain canonical.

batch EP smoothing, as shown in our simulations, while reducing In thi til It fi imati
delay time. Compared to sequential Monte Carlo filters and n this paper, we utfizeé an afternative approximation

smoothers, the new method has lower computational complexity Scheme, called expectation propagation (EP), which should
since it makes analytically deterministic approximation instead give better results than the canonical distribution method. This

of Monte Carlo approximations. Our simulations demonstrate s for two reasons. First, we minimize divergence between
that the new receiver achieves accurate detection without the aid variable distributions, rather than divergence between mes-

of any training symbols or decision feedbacks. Furthermore, the Thi k b th iable distributions
new receiver achieves accuracy comparable to that achieved bysages. IS makes sense because the variable aistributions

sequential Monte Carlo methods, but with less than one-tenth are what we really care about in the problem. Second, EP
computational cost. minimizes a global error function [10], ensuring a proper

Index Terms— Signal detection, Expectation propagation, Se- fixed point for the message-passing. We apply this scheme
guential estimation, Fading channels, Monte Carlo methods, toa flat—fading channel with 8-dimensional hidden state. Note
Nonlinear or non-Gaussian systems, Bayesian inference. that when the channel has higher-dimensional state, the more
severely we need to approximate the uncertainty, which makes
it especially important to choose the approximation well.

IGNAL detection in flat Rayleigh fading channels can be Our starting poiqt i? to formulate the signal d'etection
iewed as a statistical inference problem for the inforQroblem as a Bayesian inference problem on a graphical model

. . . L tpat models a hybrid dynamic system with both continuous

mation bits while marginalizing over the unknown channe : ) .

state. Many approaches, including per-survivor processing [ d discrete variables. Then we develop a window-based
) ' eXpectation propagation (EP) algorithm for hybrid dynamic

pilot symbol usage, [2], and iterative estimation [3], have bee . . S .
proposed to address this inference problem. Computationaﬁys'[ems and apply it to signal detection in flat-fading channels.

the main challenge is representing and utilizing our uncertainty "€ end result is a detection algorithm that passes messages
about the channel state, which is often continuous, higw_hose parameters are governed by a divergence minimization
dimensional, and time-varying. At one extreme, we could ugdle. This rule ensures that each message discards the minima
the received signal to estimate the channel state and ass@mount of useful information, where "useful” is defined by
this estimate to be correct, thus discarding all uncertainty [4]1€ rest of the network. Compared to sequential Monte Carlo
[5]. At the other extreme, we could use a set of Monte Carfters and smoothers, EP has much lower computational com-
samples to represent the distribution over channel statesPtgXity since it makes deterministic analytic approximations,
arbitrary accuracy, but at much higher cost [6], [7]. instead of Monte Carlo approximations. To make expectation
Between these extremes, we have approximate meth&jgragation suitable for online estimation as in the signal

which represent uncertainty about the channel state wii§tection problem, we propose window-based EP smoothing
which is a trade-off between assumed-density filtering and
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for hybrid dynamic systems with nonlinear and non-Gaussian e @ - @
likelihoods. Section IV presents the EP algorithm for hy-

brid dynamic systems and visualize this algorithm by factor @ @ N @
graphs [13]. Section V describes window-based EP smoothing

for online estimation, followed by Section VI that compares

the computational efficiency of window-based smoothing with a e @

sequential Monte Carlo methods. Our simulations in Sec-

tion VIl demonstrate that the new window-based EP receiver . o )

. . . . . .Fig. 1. Graphical model for adaptive signal detection. The shaded nodes
achieves accurate detection without the aid of any tralnl_r{gqt}tzly__m which represent the received signal, in the graph are the
symbols or decision feedbacks. Furthermore, the new receiuserved variables. The signal detection problem amounts to an inference
achieves accuracy comparable to that achieved by sequertigfflem on this graphical model, which couples continuous latent variables
M Carl hod ith h th . | ic,, t=1,...,T, i.e., the channel coefficients, with discrete latent variables

onte Car o_met ods, wit one-tept t e_computatlona cost,1,”, "} ie., the transmitted symbol.
The following notational conventions will be used through-
out the paper. Italics lower-case Greek letterg ¢lenote
scalars, bold lower-case letteks) denote vectors, bold upper- ) .
case lettersA) denote matrices, and italics upper-case letters | '€ Signal detection problem can then be formulated as an
(N) denote known constants. The superscript Stadenotes inference problem in this graphical model. We address this

the Hermitian transposent) of a vector ). problem using a Bayes_ian e_lpp_roa_ch. Specifically, for filtering,
we update the posterior distribution(s;, x;|y1..) based on

the observations from the beginning to the current timee.,

.+ = [y1,...,y:]. For smoothing, we compute the posterior
st,X¢|y1.7) based on the whole observation sequence, i.e.,
vi.r = [v1,- .-, yr), whereT is the length of the observation

Yi = S10u + Wy, t=0,1,... (1) Ssequence. Since smoothing uses more information from the

_ _ _observations than filtering, smoothing generally achieves more
Whel’eyt, S, Ot and wy are the received S|gna|, the transm|taccurate estimation than f||ter|ng

ted symbol, the fading channel coefficient, and the complex

Gaussian noisg/..(0, 0?) at timet respectively. The symbols di
are complex and take values from a finite alphabet of siz e

?\2 The fadpin coefficientsy; can be modeled bp a comple Sti1, Xe|si, i), the exact posterior distribution is propor-
) ng ) ¢ y P'€ional to their product:

autoregressive moving-average (ARMA) process as follows:

Il. SIGNAL DETECTION PROBLEM

A wireless communication system with a fading chann%l}
can be modeled as [6]

Given the prior distributionp(s;,x;), the observation
stributions p(y:|s¢, x;), and the transition distributions

13 p
=Y O — Y b ) P(yelse, xe) = Ne(yelseh™xe, 0%) ()
i=0 i=1 P(St41, Xe1]8¢, X)) = p(Xeq1[Xe)p(S441) (8)
where©® = {6,} and® = {¢;} are the ARMA coefficients, = Ne(x¢41|Fxe, 88" )p(se41)  (9)

anduvy is the white complex Gaussian noise with unit variance.
In this paper, the ARMA coefficient® and ® are assumed

to be known.
We assume that there is a prior distributipfs,) on each  p(si.7,X1.7[y1.7) < p(s1)p(x1)p(y1]s1,%1)-
symbol. This prior distributionp(s;) can come from the T
decoding module in joint iterative decoding and demodulation. : Hp(st, X¢|St—1,Xe—1)p(Ye| e, Xt)
Defining h as t=2
h =[00,0,...,0,] 3) x p(s1)p(x1)p(y1|s1,x1)-
and introducing latent variable; such thata; = h*x;, we L 10
can rewrite the communication system as a state-space model: ' t_rlzp(xt|xt‘1>p(st)p(yt|8t’Xt) (10)
xt = Fxy_1 + g0y (4)
v = sih*x; + wy (5) whereh, F, andg are defined in equations (3) and (6), and
the priorp(x;) is a Gaussian distribution. Equation (8) holds
where becauses,’s are independent of each other at different times
-1 —¢2 ... —¢, 0 1 in the dynamic model. As a switching-linear Kalman filtering
1 o ... 0 0 0 model, the number of Gaussian components in the exact
F— 0 1 ... 0 0 g = |, ® posterior distribution increases exponentially as the length
. . ) . . : of the observation sequence increases[14]. Apparently, the
(') 0 ' 1 0 0 explosion of the number of the Gaussians makes the exact

inference intractable and necessitates the use of approximate
and the dimension of is d = p+1. We can represent the stateinference techniques. In the following section, we briefly
space model defined by equations (4) and (5) as a graphi@liew approximate inference techniques on hybrid dynamic
model (Figure 1). graphical models with nonlinear/non-Gaussian likelihoods.
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[1l. A PPROXIMATE INFERENCE ONHYBRID DYNAMIC systems generalizes traditional Kalman smoothing. On the one
MODELS WITH NONLINEAR/NON-GAUSSIAN hand, both EP smoothing and Kalman smoothing have forward
LIKELIHOODS and backward passes to obtain the posterior distributions of the

For linear Gaussian or discrete dynamic models, we ha(idden states. On the other hand, EP smoothing keeps refining
efficient and elegant inference algorithms such as forwardle @PProximate state posterior distributions by iterating for-
backward algorithm, Kalman-filtering and smoothing. HOWWard apd backward passes until convergence, yvh|le Kalman
ever, we encounter in practice many hybrid dynamic modei§'0thing, as a special case of belief propagation [13], uses

with continuous and discrete state variables. For these kind<gfy one forward pass and one backward pass to obtain the

dynamic models, more complicated approaches are neede§igct state posterior distributions. The iteration of forward

do the inference. Most of these approaches can be categori2Bfl Packward passes in EP smoothing enables the refinemen
into two classes: Monte Carlo and deterministic approximQI observation approximations, which in turn leads to better
tion. approximation of the posterior distributions.

Monte Carlo methods can generally achieve more accuratd” the derivation, we do not assume the form of Kalman
inference results than deterministic approximation method4i€ing as given, but rather derive it as a consequence

once having drawn a sufficiently large amount of samplel certain modeling assumptions. We approach the problem

Markov Chain Monte Carlo methods, including Gibbs sanftS @ general problem in function approximation, where we

pling and Metropolis-Hastings, have been applied to dynanﬁ‘@”t to approximate the distribution defined by the model

models to achieve accurate results [15], [16]. Also, resampl¥¢fn @ simpler analytical form that minimizes information

sequential Monte Carlo, i.e., particle filtering and smoothin@SS: Specifically, we choose to approximate the posterior
has used to explore the Markovian property of dynamic mod ?tnbutlon p(sur,xirlyrr) by @ factorized distribution
S

to do efficient inference [17], [18]. The sequential Monte Carl®\51:7> Xi:7):

method [6], [7] has been used to wireless signal detection T T

and achieved excellent estimation accuracy. However, since q(si.1,X1.7) = Hq(st,xt) = Hq(st)q(xt) (11)
the inference accuracy heavily depends on the number of t=1 t=1

samples, Monte Carlo methods are generally much slowgy . o g(se,x)) = ql(s:)q(x;) can be interpreted as the

than deterministic inference methods and make themse"éﬁﬁ)roximation of the state posteriafts;, x;|y1.7), also known
less practical. as the state belief in the machine learning community. The

Deterministic approximation methods are generally mogg, posteriom(s1.7-, x1.7|y1.) and its approximation are

efficient, but less accurate than Monte Carlo methods. F&’nrawn as factor graphs in Figure 2.

example, exten_dgd_ Kalman fllter!ng and smoo_thlng_ [19], a Expectation propagation now provides a rule for optimizing
popular deterministic apprOX|mat|pn method, linearizes tI]ZetO fit p. It exploits the fact thap is a product of simple
process and measurement equations by a Taylor expangigh,s |t we approximate each of these terms to match
about the current state estimate. After linearization, the clafa tactorized form ofg, then their product will also have
sical Kalman filter and smoother are applied. However, ﬂfﬁe form of ¢. Let go(s,,x;) approximate the observation

wireless signal detection model contains both continuous aﬂgtribution p(ye|se,x:) and gua(x:_1,%;) approximate the
discrete variables, so extended Kalman filtering is not directly, \cition distributi7orp(x,|xf_1). Ther,wq is by definition

applicable. Instead, we need another way of making the dis-
tributions Gaussian, so that the Kalman filter can be applied. ¢(s1.7,x1.7) = p(x1)p(81)¢0 (51, X1)-
For specific problems, ad-hoc Gaussian approximations can T
be devised, such as the one in [5]. But we prefer an approach . HqM(Xt_l,Xt)p(st)qo(st,xt) (12)
that works well for hybrid dynamic models in general. t=2

Therefore, based on the expecte}tion propagation fran_;ﬁ)— make (12) agree with (11), we need to defipés;, x;) in
work [10], we develop a new smoothing technique for hybnglz) so that it is factorized:
dynamic systems. This new technique can be viewed as a gen-
eralization of Kalman smoothing and can achieve estimation Qo (8t,Xt) = Go(St)qo(xt) (13)
accuracy comparable to that achieved by Monte Carlo methods ] )
at a much lower computational cost, as shown in the foIIowirgm”a”y’ we need to defing.(x;,x;41) in terms of two
sections. In related work, [20] have described a generic Ecoupled approximation terms(x;) andg. (x41), i-e.,
algorithm for dynamic Bayesian networks and applied it to a
model with hon-Gaussian state equations and linear-Gaussian
observations. They also showed how to modify EP to impro&etq, (x1) = p(x1) andgq(x7) = 1. Then inserting (13) and
convergence. Here we consider a different class of dynanfiet) into (12) yields the following approximate joint posterior:
models and emphasize efficient implementation for this class.

I« (Xta Xt+1) = qd(Xt)QD (Xt+1) (14)

T
q(s1r,x1:7) o [ [ @ (x0)p(50) 00 (5¢) 00 (%) qa(x:)  (15)
IV. EXPECTATION PROPAGATION FORSIGNAL DETECTION t=1
In this section, we develop the EP smoothing algorithi@learly, the approximate state posterigs;,x;) is
for the hybrid dynamic system defined by (4) and (5). As
mentioned in the previous section, EP smoothing for dynamic q(st,X¢) o< G (xe)P(5t)q0 (5¢) 4o (Xt)qa(x¢)  (16)
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p(s1) p(s2) p(s3)
rnl) p(2l) r(ysl)
p(x1) p(x2]x1) P(x3]x2)
X1 [} @ [} X3
(a) Exact posterior p(si,s2,53,X1,X2,X3) (b) Approximate posterior [, g(s;)q(x;)

Fig. 2. Factor graph representations of exact and approximate posterior distributions. The posteriors of the variables (circles) are proportional to the pr
of factors (rectangles). Herg,; = qo(s¢), andqo| = qo(x¢).

p(s2) p(s2) p(s2)
@) 2o 20

q-1
pnl) ]
q-|
%4@7% %4@7% ‘]DA@*%
@) p(s2)g-a(x2) (b) p(r2152,%X2)P(52)gsa(x2) (¢) q(s2)q(x2)

Fig. 3. lllustration of the three steps when EP processes the observation distribution. The partial balieisfar.(x2) = g (x2)gq(x2). The partial
belief for s2 is p(s2). The factorsget = qo(st) andgqe| = qo(x¢) areobservation messagém y; to (s¢, x¢).

We visualize this approximation in Figure 2b, where thmessage from the variable; to the factorp(y:|s:, x¢) in

probability of each variable (circle) is the product of théhe sum-product algorithm.) After removing the observation

approximation terms (boxes) connected to the variable. = messages(s;), the partial belief fors; is p(s;), sinceq(s;) =
Each approximation term is chosen to be log-linear, e.g.g.(s:)p(s;). After putting back the exact term(y;|s;,x;) in

T the picture (Figure 3b), minimize the following KL divergence
9o (xt) o exp(Bep(x1)) @7 over the approximate posterigfs;)q(x;) (Figure 3c):
where we call the vecto8 the natural parameter af, (x;).
Note that ¢.(x;) is not necessarily a probability density KL (p(ye|se, x6)p(st)@oa(xt) || a(5¢)q(x¢)), (19)

function. Since the approximate state posteyiat, x;) equals ) _
the product of the approximation terms, it is clearly log-linedtnd obtain the new messages:
too, i.e., it is in the exponential family. More specifically, 4o (5)™ o q(s0)/p(51)  qo(30)™ x q(x¢)/ga(x:)  (20)
as shown in the next sectiom(s;, x;) is a product of a S .
Gaussian distribution and a discrete distribution, which is in The KL minimization step is the same as assumed
the exponential family. density filtering [11], [12]. Computationally, the KL
We can interpret these approximation terms as messagi@gimization amounts to matching moments between
that propagate in the dynamic systequ(s;)qo(x¢) is an  p(ytlse, X¢)p(st)gs«(x:) and g(s¢)q(x;). Notice that we are
observation messagdem y; to (s, X;), ¢»(x¢41) is aforward minimizing divergence between variable distributions, rather
messagdrom x; to x; 1, andg4(x;) is abackward message than divergence between messages. This makes sense becau:
from x,4, to x,. Accordingly, the approximate state beliethe variable distributions are what we really care about in the
(16) is a product of incoming messages. Therefore the key@pblem. . .
this approximation is the computation of these messages. ~ The forward and backward messages are determined in a
The iterative computation of,(s;)q.(x;) as defined by similar way, illustrated in Figure 4. First, compute the partial
EP is illustrated in Figure 3. First, compute thartial belief belief g, (x;—1)go4(x;), defined as: 21)

P(5t)g><(x:) defined by: (Figure  3a) Goo(Xoo1) = @ (Ke-1)@o (Xeo1)  doa(xe) = Go(x2)ga(x1)

Goa(xe) = q(%4) /g0 (X¢) = ¢ (x¢)qa(xt) (18)

(Note thatg(x;) = gsoq(x:). For simplicity, we suppress this
subscript. Also, the partial belief,(x,) is analogous to a KL (@o(Xt—1)p(x¢t[Xi-1)doa(xe) || g(xe-1)a(x4))  (22)

Then minimize the KL divergence
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a@ @m BrO o n@mn@m

(@) goe (X1)g- a(X2) (b) go- (x1)P(x2|X1)g: o(X2) () g(x1)g(x2)

p(x2]x1)

Fig. 4. lllustration of the three steps when EP processes the transition distribution. The factmmd g are forward and backward message3he partial
beliefs gro (x1) = g (x1)go (x1) aNd goa(x2) = go(x2)ga(x2).

over q(x;-1)g(x¢), giving the new forward messageas the new belief ofs;,x;). To solve this problem, we project

(%)™ = q(x¢)/qoa(x:) and the backward messagej(s:,x;) into q(x¢)q(s:):

Ga(xt-1)"" = q(x¢-1) /w0 (x¢t—1). Since the transition prob-

ability distributions are Gaussians, the answer to the above q(x¢) = Ne(xe[ms,, Vix,) (26)
KL minimization is the exact marginals of the pairwise joint. q(s¢) = Discretey(st) (27)

Instead of computing the forward and backward messag?es inimizing the KL di 19
simultaneously as above, it is equally valid to run separaé( minimizing the L divergence (19). .,
For this minimization, we match the moments find g

forward filtering and backward smoothing passes. Specifical(lfl, h that
at time ¢ in a forward pass, we compute only the forwar uch tha

messages (x;11) andg(x;11), while at timet in a backward _ ()N (ye]seh* my, g, vy, (50)) 28
pass, we compute only the backward message and the r%zé\‘?\f) N z (28)
q(xy). _ Daea PN (elmy, (s0), vy, (1)) M, (50) -
The following sections describe in detail how to incorporatén"t - 2 (29)
the observation, forward, and backward messages. V. =V Cm,mt -
Xt xt |yt Xt X - (30)
A. Compute and Incorporate Observation Messages : ZAP(St)N(yﬂmyt (51), vy, (5¢)) M, |5, (51) M, |y, (52)
st€

First, consider how to update the state bedief;)q(x;) us-
ing the observation data and, correspondingly, how to generigere
the observation messagg(st, xt).

My, |y, (St) = My,pq + k(s — sth*my, 31
The messages, (x:), ¢»(x:), andgq(x;) are chosen to be e (St) > (se)(ye — st ba) (1)

Gaussian, whilgs, (s;) is discrete. From (18), the partial belief Vicelye = Vo **k(st)st}ilv"tw (32)
goa(x¢) is therefore Gaussian: k(s¢) = Vx,ahsivy, (s¢) (33)
Goa(x¢) = No(X¢ My, Vig,oa) Note thatVy,,, is not a function ofs; sinces;s; = 1.

Then from (20), it follows that
where N, (-|my,s«, Vx,5«) iS the probability density function

of a complex Gaussian with mean of,,,, and variance of o (xt) o< N (x| M0, Vix,0) (34)
Vina
xb . where
Given p(s;)gq(x:) and p(y:|s¢, x¢), we compute an inter-
mediate approximate posterigfs;, x;): my,0 = Vio (Vi imy, — Vil my,0) (35)
-1 —1 \—1
N - p(yt|5taxt)p(5t)(b><1(xt) tho = (th - thl><]) (36)
Q(Sta Xt) - (23)
Jor i, PWel 51, x0)p(51)goa(1) Since the observation message is not necessarily a valid

probability distribution,A,, can be near singular, such that

inverting Ax,, loses numerical accuracy. To avoid numerical

o= 30 [ alulse sl problerns, e ransformi,, andVs 10 the natural param-
o\&t)-

Define the normalization constant §fs;, x;) asz:

st€A
_ —1 _ —1 —1
=D pls) / Noe|seh™x1, 02N (54 [ M0, Vo)A Hoxio = VoMo = Vi My, = Vo e (37)
si€A Axto = V;tlo = V;tl - V;f,1><1 (38)
= > ()N (yelmy, (s1), vy, (51)) (24)
s:€A B. Incorporating Forward and Backward Messages
where (25) Becauses; and s;+1 are not directly connected, forward
My, (51) = sh* g, e, 0y, (51) = 50" Viwhs? + 2 and backward messages are only sentfor

1) Compute the forward messageg.(x;) given
Since(s¢, x;¢) Is not in the exponential family and, there- Gvo(x¢—1) = Ne(x¢—1|mx, 50, Vx,_,50), the partial
fore, it is difficult to keep updating the state belief in the belief of x,_; before incorporating the backward
dynamic model analytically and efficiently if we ke@fs;, x;) message. Since the transition density is Gaussian, it is
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easy to computey. (x;) = N.(x¢|mx,s, Vx,») @S in ADF
Kalman filtering:
(39)

mx,» = met,lbo thl> = Fth,lboF* + gg*

Batch-EP

wheremy,, andVy,, are the parameters of the Gaus-
sian priorp(x;).

2) Incorporate the backward messagg(x;) given the Window-
partial beliefgs,(x;). Without explicitly computing the based EP

. . L
backward message,(x:), we can directly incorporate
gq«(x¢) into ¢(x¢) as in Kalman smoothing: 1 t t+3 T
J, = V,(»(,F*V;tl+1l> (40) Fig. 5. lllustration of ADF, batch EP, and window-based EP. ADF
sequentially processes the observation sequence to the current; tiragh
My, = My,po + Jt(th+1 - me»@) (41) EP smoothing uses the entire observation sequence from the beginning at
th — thbo + Jt(VleJf _ FV;»Q) (42) time 1 to the end at tim&’; window-based EP uses the previous approximate

posterior at timg as a prior distribution for filtering and performs smoothing
Note that the forward and backward messages calculated S'ding window with length..

as the above minimize the KL divergence (22). This
suggests that the Kalman filtering and smoothing steps

V. WINDOW-BASED EP SMOOTHING
are the natural outcome of EP updates.

For the signal detection problem, we need online processing
of the data. This need cannot currently be satisfied by batch
EP smoothing, which uses the entire observation sequence anc

Given the knowledge of how to incorporate different mesherefore is computationally expensive.
sages, we are ready to construct the whole expectation propTo address this problem, we propose window-based EP
agation algorithm by establishing the iteration mechanism. smoothing as an alternative to batch EP smoothing. Window-

1) Loopt=1:T: based EP smoothing finds a trade-off between assumed-density

a) Compute the forward messagg (x;) via (39) filtering and batch.EP smoothing. Instead of §mothing over
and set the backward message to a constant, i.'i@.? entire observation sequence, we use a sliding window with

C. Algorithm Summary

Ga(xs) o 1. length L to approximate the posterigr(s;, x;|y1..+5) based
b) Update g(s;,x;) to match the moments of O the observations.;is = [y1,...,4y:+s], whered controls

Q(se,xt) = plys|se, x)p(s1)gs(x¢) via (28) to the delay for online estimation. Specifically, we first run ADF

(30). from time ¢ to ¢ + ¢, perform EP smoothing from + § to

c) Computegs (x;) o q(x¢)/goa(x;) via (37) to (38). t+6—L+ 1,. and then run ADF filtering from +'6 —L +'1 .
2) Loop until convergence or the maximal number o t 4+ §. We iterate the filtering and smoothing in the sliding
iterationsn has been achieved: window until a fixed humber of iterations or the convergence

ki he first i , has achieved. Essentially, window-based EP smoothing is a
a) lfOOpt =1,...,T (Skip on the first |ter§t|on) rescheduling of EP update orders for the online-estimation
i) Compute the forward message(x;) via (39). purpose. The difference between ADF, batch EP, and window-

i) Compute the partial belief,.(x;) given the pased EP is illustrated in Figure 5.
forward and observation messages.:

Goo (%¢) = o (X2 )0 (x¢) VI. COMPUTATIONAL COMPLEXITY

In this section, we compare the efficiency of window-based
EP smoothing with sequential Monte Carlo methods (table I).
Vo = (V;L + Axm)—l (43) For window-based EP smoothing, the total computation time

' _ f incorporating the forward and observation messages via

xiD>o — Vx o Vv L >'d 44 0 P . 9 . B . g

TMhacep oo (Vi M + fixa)  (44) (39) to (44) isO(d?) (d is the dimension ok,), same as the

This can be easily accomplished as follows:

b) Loopt=T-1,...,1 cost of one-step Kalman filtering; incorporating the backward
i) Computeq(x;) by incorporating the backward message via (40) to (42) takéy(d”) as Kalman smoothing;
message via (40) to (42) whenc T. and flna”y updatin@(st,xt) andqo(st, Xt) in step 2(b)|| costs
i) Updateq(s;,x;) andg,(s;,x,) as follows: O(Md?), M times as the cost of Kalman filtering, where
A) Compute the partial belief«(x;). From M is the size of alphabet for symbols. Furthermore, since in
(18), it follows that general the estimation accuracy is not increasing after a few

propagation iterations, the needed number of EP iterations
My ,pq = Vi,oa(Vi, My, — f1y,.), (45) is small. In our experiments, we set= 5.
Ve = (V! = Axpo) ™ (46) In contrast, if we usen samples in a stochastic mixture
of Kalman filters, also known as Rao-blackwellised particle
B) Updateq(s:,x;) to match the moments of smoothers, it take$)(mMd?) for a one-step update, and
P(yelse, x¢)p(st)goa(x¢) Via (28) t0 (30).  O(mMEd?) for L step smoothing, which isuM % times the
C) Computeg,(x;) via (37) to (38). cost of one-step Kalman filtering and smoothing [6]. Another
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TABLE |
CoST OFEPVERSUS SEQUENTIALMONTE CARLO.
EP | O(nMLd*T)
6] | O(mM=d2T) D102 N TRk N
[18] | O(mkMLd2T) u
n | number of EP iterations >
M | size of symbol alphabet E" }
L | length of the smoothing window ‘é , N*'\
d | dimension ofx, ﬂ 10 - differential detection e IE
m | number of forward samples fis) -+ concurrent (ADF): 5 =0
k | number of backward samples -6~ EP smoothing: § =2
T | length of observation sequence -8B - EP smoothing: & =4 ’
_4|| =% EP batch smoothing N
10 'H <0~ genie—aided detection o
version of efficient particle smoothers [18], which is applied 10 15 20 25 30 35 40
to audio processing, tak&3(mkM Ld*) wherem andk are E,/N_ (dB)

the numbers of forward and backward samples. To achieve
accurate estimation, sequential Monte Carlo methods generally 6. BER demodulation performance of the EP receiver with different

need a large number of samples, i.e., langand k. smoothing parameters, the genie-aided detector, and the differential detector
in a fading channel with complex Gaussian noises.

VIl. EXPERIMENTAL RESULTS ONSIGNAL DETECTION

In this section, we apply the proposed window-based EP
smoothing algorithm to the signal detection problem. The flaé—. bet ; " b i dus:
fading channels are defined in (4) and(5), and the proposelgere.nce eszeen WO consectitive observalipns andy::
algorithm decodes the symbois as st = SIONR{G: ye-1}).

We run these detectors on 10,000 received signals
for different signal-to-noise ratios (SNRs), defined as
whereq(s;) is obtained after the convergence of the expect&d log;(Var{a;}/Var{w;}). For each SNR, we randomly
tion propagation algorithm. synthesize a new symbol sequence and a new observation

We demonstrate the high performance of the windovgequence according to (4) and (5). We repeat this procedure
based EP receiver in a flat-fading channel with diffekO times. The averaged bit-error rate (BER) performance of
ent signal noise ratios. We model the fading coefficientifferent detectors versus SNR is plotted in Figure 6.

{a;} by the following ARMA(3,3) model, as in [6]:
® = [-2.37409 1.92936 — 0.53208], © = 0.01 x
[0.89409 2.68227 2.68227 0.89409], v, ~ N.(0,1).
With these parameters, we have {af} = 1. BPSK modu-

§; = argmax q(s;) (47)

Clearly, the window-based EP receiver outperforms the con-
current detector and the differential detector. The concurrent
detector is based on ADF, which has been shown to achieve

. . . .~ more accurate estimation than extended Kalman filtering in
lation is employed {; € {1, —1}). Also, differential encoding 9

d decodi loved 1 ve the ph bi %ée/neral [11]. For SNRs from 10 dB to 40 dB, the new
an e_co Ing are employed 1o resolve Ihe phase am Igur ceiver does not have the error floor, while the differential
The priorp(s;) = 1/2 for all ¢.

. detector does. Compared with the results obtained by [6], the

We test the window-based EP receiver with different "berformance of the window-based EP receiver is comparable
dow lengthsL = 1,2, 4, with 0,1,3 overlap points, respec-

. : . ) to that of a sequential Monte Carlo receiver. However, the
tively. In other words, the estimation time deldy equals d

. EP receiver is much more efficient. [6] use 50 samples in
0,1,and 3, respectively. Note that the current detector wiffy ;. sequential Monte Carlo receiver. With window length
0 = 0 performs ADF as a degenerate case of EP smoothlrbq. 3, the window-based EP receiver i8.33 times faster
Moreover, we run the batch EP receiver with smoothing ov?go ! 23/(5.2.3) — 13.33) than the éequential Monte
the entire data sequence. C{Zarlo receiver. Furthermore, the cost of the new receiver

For comparison, we test a genie-aided lower bound an . . : .
. . o . cr linearly with the window length, while th f
differential detector. For the genie-aided detection, an adi—% eases linearly with the dow length, e the cost o

tional observation is brovided. which is another transmitt e sequential Monte Carlo receiver explodes exponentially.
onal observation 1S provided, ch IS anofher trans or example, when the window length increases to 5, the new
signal where the symbol is always 1, i.€, = o + ws.

The receiver employs a Kalman filter to estimate the posterigr. .. becomes 32 times fas{60-2°/(5-2-5) = 32) than
R ) Ble sequential Monte Carlo receiver.
meand; of the fading process, based on the new observation
sequence{y;}. The symbols are then demodulated accord- With a delayd = 2, the performance of the window-based
ing to §; = sigN(R{&;y:}) where x means conjugate. By EP receiver is almost as good as that of the batch EP receiver,
obtaining the extra information from the genie, this detectevhich performs smoothing over each entire data sequence,
is expected to achieve accurate detection results. Also, thkile the window-based EP receiver is more efficient and
genie-aided detection is also lower bounded by the knowasults in much shorter estimation delay than the batch EP
channel bound. For the differential detection, no attempt lisceiver. Moreover, the performance of the window-based EP

made for channel estimation. It simply detects the phaseceiver with a delay = 3 is close to the genie-aided detector.



VIll. DIscuUssION

This paper has presented a window-based EP smoothi
algorithm for online estimation and applied it to adaptive
signal detection in fading channels. We first propose the EP
smoothing algorithm for hybrid dynamic systems, and therf!
present window-based EP smoothing to achieve a trade-off
between assumed density filtering and batch EP smoothing j#
terms of accuracy and efficiency. For the signal detection prob-
lem, the window-based EP receiver significantly outperforme%
both the classical differential detector and the concurrent
adaptive Bayesian receiver, which is based on ADF, under
different signal-to-noise ratios. Moreover, the window-baseg]
EP receiver performs comparably to the batch EP receiver,
which uses the entire data sequence for smoothing and thefg]-
fore leads to more estimation delay and larger computational
cost. The performance of the window-based EP receiver is also
close to the genie-aided detection, a performance upper bour; .
This performance similarity demonstrates the high quality o
the window-based EP receiver. Compared to the sequential
Monte Carlo receiver, the window-based EP receiver obtairé!
the comparable estimation accuracy with less than one-tenth
computational complexity. In short, for the signal detectiono)
problem, window-based EP improves the estimation accurac
over ADF, enhances the efficiency over batch EP WithoU‘L¥
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sacrificing accuracy, and achieves comparable accuracy as the autom. Contral vol. 45, pp. 580-585, 2000.

sequential Monte Carlo methods with much lower cost.  [12]

The window-based EP receiver can be used for many online
estimation problems in wireless digital communications, sulh!
as signal detection with unknown phase. The window-basgd,
EP receiver for wireless signal detection is just one example.
Joint decoding and channel estimation would be a natural ,ﬁg{ﬂ
tension of this work. For dynamic systems with nonlinear a
non-Gaussian likelihoods different from the signal detection
problem, the only thing we need to modify in the algorithnh!6]
is the moment matching step, defined by equations (28) to
(30). Based on a different likelihood, we will have a different
moment matching step. When exact moments are difficult o'l
compute, we can use approximate techniques, for exam l%]
unscented Kalman filtering [21], to approximate the moment
matching step.

In this paper, we chose a fully-factorized approximation é°]
that a belief propagation-like algorithm would result. However,
EP can generate algorithms different from belief propagationo)

that propagate Markov-chain structures [22].
[21]
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