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Window-Based Expectation Propagation for
Adaptive Signal Detection in Flat-Fading Channels

Yuan Qi and Thomas P. Minka

Abstract— In this paper, we propose a new Bayesian receiver
for signal detection in flat-fading channels. First, the detection
problem is formulated as an inference problem in a graphical
model that models a hybrid dynamic system with both continuous
and discrete variables. Then, based on the expectation propa-
gation (EP) framework, we develop a smoothing algorithm to
address the inference problem and visualize this algorithm using
factor graphs. As a generalization of loopy belief propagation,
EP efficiently approximates Bayesian estimation by iteratively
propagating information between different nodes in the graphical
model and projecting the posterior distributions into the expo-
nential family. We use window-based EP smoothing for online
estimation as in the signal detection problem. Window-based
EP smoothing achieves accuracy similar to that obtained by
batch EP smoothing, as shown in our simulations, while reducing
delay time. Compared to sequential Monte Carlo filters and
smoothers, the new method has lower computational complexity
since it makes analytically deterministic approximation instead
of Monte Carlo approximations. Our simulations demonstrate
that the new receiver achieves accurate detection without the aid
of any training symbols or decision feedbacks. Furthermore, the
new receiver achieves accuracy comparable to that achieved by
sequential Monte Carlo methods, but with less than one-tenth
computational cost.

Index Terms— Signal detection, Expectation propagation, Se-
quential estimation, Fading channels, Monte Carlo methods,
Nonlinear or non-Gaussian systems, Bayesian inference.

I. I NTRODUCTION

SIGNAL detection in flat Rayleigh fading channels can be
viewed as a statistical inference problem for the infor-

mation bits while marginalizing over the unknown channel
state. Many approaches, including per-survivor processing [1],
pilot symbol usage, [2], and iterative estimation [3], have been
proposed to address this inference problem. Computationally,
the main challenge is representing and utilizing our uncertainty
about the channel state, which is often continuous, high-
dimensional, and time-varying. At one extreme, we could use
the received signal to estimate the channel state and assume
this estimate to be correct, thus discarding all uncertainty [4],
[5]. At the other extreme, we could use a set of Monte Carlo
samples to represent the distribution over channel states to
arbitrary accuracy, but at much higher cost [6], [7].

Between these extremes, we have approximate methods
which represent uncertainty about the channel state with
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analytically tractable distributions. For many systems, this
approach provides the best cost/accuracy trade-off. For ex-
ample, the canonical distribution method of [8] has been
successfully applied to channels with low-dimensional state,
e.g. a single unknown phase parameter [9]. This method is
an extension of the sum-product algorithm for factor graphs,
otherwise known as belief propagation in graphical models.
For the signal detection problem, belief propagation is not
feasible to apply directly, since it would require representing
arbitrarily complex continuous distributions. The extension
involves approximating each message in an ad-hoc manner,
so that the distributions remain canonical.

In this paper, we utilize an alternative approximation
scheme, called expectation propagation (EP), which should
give better results than the canonical distribution method. This
is for two reasons. First, we minimize divergence between
variable distributions, rather than divergence between mes-
sages. This makes sense because the variable distributions
are what we really care about in the problem. Second, EP
minimizes a global error function [10], ensuring a proper
fixed point for the message-passing. We apply this scheme
to a flat-fading channel with 8-dimensional hidden state. Note
that when the channel has higher-dimensional state, the more
severely we need to approximate the uncertainty, which makes
it especially important to choose the approximation well.

Our starting point is to formulate the signal detection
problem as a Bayesian inference problem on a graphical model
that models a hybrid dynamic system with both continuous
and discrete variables. Then we develop a window-based
expectation propagation (EP) algorithm for hybrid dynamic
systems and apply it to signal detection in flat-fading channels.

The end result is a detection algorithm that passes messages
whose parameters are governed by a divergence minimization
rule. This rule ensures that each message discards the minimal
amount of useful information, where ”useful” is defined by
the rest of the network. Compared to sequential Monte Carlo
filters and smoothers, EP has much lower computational com-
plexity since it makes deterministic analytic approximations,
instead of Monte Carlo approximations. To make expectation
propagation suitable for online estimation as in the signal
detection problem, we propose window-based EP smoothing
which is a trade-off between assumed-density filtering and
traditional batch EP smoothing. As shown in our simulations
for signal detection, window-based EP smoothing achieves
accuracy similar to that obtained by batch EP smoothing.

In the rest of this paper, we first formulate the signal de-
tection problem as a Bayesian inference problem on dynamic
graphical models. Then we briefly review inference techniques
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for hybrid dynamic systems with nonlinear and non-Gaussian
likelihoods. Section IV presents the EP algorithm for hy-
brid dynamic systems and visualize this algorithm by factor
graphs [13]. Section V describes window-based EP smoothing
for online estimation, followed by Section VI that compares
the computational efficiency of window-based smoothing with
sequential Monte Carlo methods. Our simulations in Sec-
tion VII demonstrate that the new window-based EP receiver
achieves accurate detection without the aid of any training
symbols or decision feedbacks. Furthermore, the new receiver
achieves accuracy comparable to that achieved by sequential
Monte Carlo methods, with one-tenth the computational cost.

The following notational conventions will be used through-
out the paper. Italics lower-case Greek letters (a) denote
scalars, bold lower-case letters (a) denote vectors, bold upper-
case letters (A) denote matrices, and italics upper-case letters
(N ) denote known constants. The superscript star,?, denotes
the Hermitian transpose (h?) of a vector (h).

II. SIGNAL DETECTION PROBLEM

A wireless communication system with a fading channel
can be modeled as [6]

yt = stαt + wt, t = 0, 1, . . . (1)

whereyt, st, αt andwt are the received signal, the transmit-
ted symbol, the fading channel coefficient, and the complex
Gaussian noiseNc(0, σ2) at timet respectively. The symbols
st are complex and take values from a finite alphabet of size
M . The fading coefficientsαt can be modeled by a complex
autoregressive moving-average (ARMA) process as follows:

αt =
ρ∑

i=0

θivt−i −
ρ∑

i=1

φiαt−i (2)

whereΘ = {θt} and Φ = {φt} are the ARMA coefficients,
andvt is the white complex Gaussian noise with unit variance.
In this paper, the ARMA coefficientsΘ and Φ are assumed
to be known.

We assume that there is a prior distributionp(st) on each
symbol. This prior distributionp(st) can come from the
decoding module in joint iterative decoding and demodulation.
Defining h as

h ≡ [θ0, θ1, . . . , θρ]? (3)

and introducing latent variablext such thatαt = h?xt, we
can rewrite the communication system as a state-space model:

xt = Fxt−1 + gtvt (4)

yt = sth?xt + wt (5)

where

F =




−φ1 −φ2 . . . −φρ 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. ..

...
...

0 0 . . . 1 0




, g =




1
0
...
0


 , (6)

and the dimension ofx is d = ρ+1. We can represent the state-
space model defined by equations (4) and (5) as a graphical
model (Figure 1).

1
2 T

y y y

Fig. 1. Graphical model for adaptive signal detection. The shaded nodes
{yt}t=1,...,T , which represent the received signal, in the graph are the
observed variables. The signal detection problem amounts to an inference
problem on this graphical model, which couples continuous latent variables
{xt}t=1,...,T , i.e., the channel coefficients, with discrete latent variables
{st}t=1,...,T , i.e., the transmitted symbol.

The signal detection problem can then be formulated as an
inference problem in this graphical model. We address this
problem using a Bayesian approach. Specifically, for filtering,
we update the posterior distributionp(st,xt|y1:t) based on
the observations from the beginning to the current timet, i.e.,
y1:t = [y1, . . . , yt]. For smoothing, we compute the posterior
p(st,xt|y1:T ) based on the whole observation sequence, i.e.,
y1:T = [y1, . . . , yT ], whereT is the length of the observation
sequence. Since smoothing uses more information from the
observations than filtering, smoothing generally achieves more
accurate estimation than filtering.

Given the prior distributionp(s1,x1), the observation
distributions p(yt|st,xt), and the transition distributions
p(st+1,xt+1|st,xt), the exact posterior distribution is propor-
tional to their product:

p(yt|st,xt) = Nc(yt|sth?xt, σ
2) (7)

p(st+1,xt+1|st,xt) = p(xt+1|xt)p(st+1) (8)

= Nc(xt+1|Fxt,gg?)p(st+1) (9)

p(s1:T ,x1:T |y1:T ) ∝ p(s1)p(x1)p(y1|s1,x1)·

·
T∏

t=2

p(st,xt|st−1,xt−1)p(yt|st,xt)

∝ p(s1)p(x1)p(y1|s1,x1)·

·
T∏

t=2

p(xt|xt−1)p(st)p(yt|st,xt) (10)

whereh, F, andg are defined in equations (3) and (6), and
the priorp(x1) is a Gaussian distribution. Equation (8) holds
becausest’s are independent of each other at different times
in the dynamic model. As a switching-linear Kalman filtering
model, the number of Gaussian components in the exact
posterior distribution increases exponentially as the length
of the observation sequence increases[14]. Apparently, the
explosion of the number of the Gaussians makes the exact
inference intractable and necessitates the use of approximate
inference techniques. In the following section, we briefly
review approximate inference techniques on hybrid dynamic
graphical models with nonlinear/non-Gaussian likelihoods.
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III. A PPROXIMATE INFERENCE ONHYBRID DYNAMIC

MODELS WITH NONLINEAR/NON-GAUSSIAN

L IKELIHOODS

For linear Gaussian or discrete dynamic models, we have
efficient and elegant inference algorithms such as forward-
backward algorithm, Kalman-filtering and smoothing. How-
ever, we encounter in practice many hybrid dynamic models
with continuous and discrete state variables. For these kinds of
dynamic models, more complicated approaches are needed to
do the inference. Most of these approaches can be categorized
into two classes: Monte Carlo and deterministic approxima-
tion.

Monte Carlo methods can generally achieve more accurate
inference results than deterministic approximation methods,
once having drawn a sufficiently large amount of samples.
Markov Chain Monte Carlo methods, including Gibbs sam-
pling and Metropolis-Hastings, have been applied to dynamic
models to achieve accurate results [15], [16]. Also, resampled
sequential Monte Carlo, i.e., particle filtering and smoothing
has used to explore the Markovian property of dynamic models
to do efficient inference [17], [18]. The sequential Monte Carlo
method [6], [7] has been used to wireless signal detection
and achieved excellent estimation accuracy. However, since
the inference accuracy heavily depends on the number of
samples, Monte Carlo methods are generally much slower
than deterministic inference methods and make themselves
less practical.

Deterministic approximation methods are generally more
efficient, but less accurate than Monte Carlo methods. For
example, extended Kalman filtering and smoothing [19], a
popular deterministic approximation method, linearizes the
process and measurement equations by a Taylor expansion
about the current state estimate. After linearization, the clas-
sical Kalman filter and smoother are applied. However, the
wireless signal detection model contains both continuous and
discrete variables, so extended Kalman filtering is not directly
applicable. Instead, we need another way of making the dis-
tributions Gaussian, so that the Kalman filter can be applied.
For specific problems, ad-hoc Gaussian approximations can
be devised, such as the one in [5]. But we prefer an approach
that works well for hybrid dynamic models in general.

Therefore, based on the expectation propagation frame-
work [10], we develop a new smoothing technique for hybrid
dynamic systems. This new technique can be viewed as a gen-
eralization of Kalman smoothing and can achieve estimation
accuracy comparable to that achieved by Monte Carlo methods
at a much lower computational cost, as shown in the following
sections. In related work, [20] have described a generic EP
algorithm for dynamic Bayesian networks and applied it to a
model with non-Gaussian state equations and linear-Gaussian
observations. They also showed how to modify EP to improve
convergence. Here we consider a different class of dynamic
models and emphasize efficient implementation for this class.

IV. EXPECTATION PROPAGATION FORSIGNAL DETECTION

In this section, we develop the EP smoothing algorithm
for the hybrid dynamic system defined by (4) and (5). As
mentioned in the previous section, EP smoothing for dynamic

systems generalizes traditional Kalman smoothing. On the one
hand, both EP smoothing and Kalman smoothing have forward
and backward passes to obtain the posterior distributions of the
hidden states. On the other hand, EP smoothing keeps refining
the approximate state posterior distributions by iterating for-
ward and backward passes until convergence, while Kalman
smoothing, as a special case of belief propagation [13], uses
only one forward pass and one backward pass to obtain the
exact state posterior distributions. The iteration of forward
and backward passes in EP smoothing enables the refinement
of observation approximations, which in turn leads to better
approximation of the posterior distributions.

In the derivation, we do not assume the form of Kalman
filtering as given, but rather derive it as a consequence
of certain modeling assumptions. We approach the problem
as a general problem in function approximation, where we
want to approximate the distribution defined by the model
with a simpler analytical form that minimizes information
loss. Specifically, we choose to approximate the posterior
distribution p(s1:T ,x1:T |y1:T ) by a factorized distribution
q(s1:T ,x1:T ):

q(s1:T ,x1:T ) =
T∏

t=1

q(st,xt) =
T∏

t=1

q(st)q(xt) (11)

where q(st,xt) = q(st)q(xt) can be interpreted as the
approximation of the state posteriorp(st,xt|y1:T ), also known
as the state belief in the machine learning community. The
exact posteriorp(s1:T ,x1:T |y1:T ) and its approximation are
drawn as factor graphs in Figure 2.

Expectation propagation now provides a rule for optimizing
q to fit p. It exploits the fact thatp is a product of simple
terms. If we approximate each of these terms to match
the factorized form ofq, then their product will also have
the form of q. Let q◦(st,xt) approximate the observation
distribution p(yt|st,xt) and q./(xt−1,xt) approximate the
transition distributionp(xt|xt−1). Thenq is by definition

q(s1:T ,x1:T ) = p(x1)p(s1)q◦(s1,x1)·

·
T∏

t=2

q./(xt−1,xt)p(st)q◦(st,xt) (12)

To make (12) agree with (11), we need to defineq◦(st,xt) in
(12) so that it is factorized:

q◦(st,xt) = q◦(st)q◦(xt) (13)

Similarly, we need to defineq./(xt,xt+1) in terms of two
decoupled approximation termsq/(xt) andq.(xt+1), i.e.,

q./(xt,xt+1) = q/(xt)q.(xt+1) (14)

Setq.(x1) ≡ p(x1) andq/(xT ) ≡ 1. Then inserting (13) and
(14) into (12) yields the following approximate joint posterior:

q(s1:T ,x1:T ) ∝
T∏

t=1

q.(xt)p(st)q◦(st)q◦(xt)q/(xt) (15)

Clearly, the approximate state posteriorq(st,xt) is

q(st,xt) ∝ q.(xt)p(st)q◦(st)q◦(xt)q/(xt) (16)
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x1 x2 x3

s1 s2 s3

p(s1) p(s2) p(s3)

p(y1 |· ) p(y2 |· ) p(y3 |· )

p(x1 ) p(x2 |x1 ) p(x3 |x2)
x1 x2 x3

s1 s2 s3

p(s1) p(s2) p(s3)

q◦↓

q◦↑

q◦↓

q◦↑

q◦↓

q◦↑

q q q q q

(a) Exact posterior p(s1 , s 2 , s 3 , x1 , x2 , x3 (b) Approximate posterior i q(s i )q(x i ))

Fig. 2. Factor graph representations of exact and approximate posterior distributions. The posteriors of the variables (circles) are proportional to the product
of factors (rectangles). Hereq◦↑ ≡ q◦(st), andq◦↓ ≡ q◦(xt).

x2

s2

q q

p(s2)

x 2

s2

p(y2 |· )

q q

p(s2)

x2

s2

q◦↓

q◦↑

p(s2)

q q

(a ) p(s2)q (x2 ) (b) p(y2 |s2 , x2)p(s2 )q (x 2 ) (c) q(s2)q(x2 )

Fig. 3. Illustration of the three steps when EP processes the observation distribution. The partial belief forx2 is q./(x2) = q.(x2)q/(x2). The partial
belief for s2 is p(s2). The factorsq◦↑ ≡ q◦(st) andq◦↓ ≡ q◦(xt) areobservation messagesfrom yt to (st,xt).

We visualize this approximation in Figure 2b, where the
probability of each variable (circle) is the product of the
approximation terms (boxes) connected to the variable.

Each approximation term is chosen to be log-linear, e.g.,

q◦(xt) ∝ exp(βTϕ(xt)) (17)

where we call the vectorβ the natural parameter ofq◦(xt).
Note that q◦(xt) is not necessarily a probability density
function. Since the approximate state posteriorq(st,xt) equals
the product of the approximation terms, it is clearly log-linear
too, i.e., it is in the exponential family. More specifically,
as shown in the next section,q(st,xt) is a product of a
Gaussian distribution and a discrete distribution, which is in
the exponential family.

We can interpret these approximation terms as messages
that propagate in the dynamic system:q◦(st)q◦(xt) is an
observation messagefrom yt to (st,xt), q.(xt+1) is a forward
messagefrom xt to xt+1, andq/(xt) is a backward message
from xt+1 to xt. Accordingly, the approximate state belief
(16) is a product of incoming messages. Therefore the key of
this approximation is the computation of these messages.

The iterative computation ofq◦(st)q◦(xt) as defined by
EP is illustrated in Figure 3. First, compute thepartial belief
p(st)q./(xt) defined by: (Figure 3a)

q./(xt) = q(xt)/q◦(xt) = q.(xt)q/(xt) (18)

(Note thatq(xt) ≡ q.◦/(xt). For simplicity, we suppress this
subscript. Also, the partial beliefq./(xt) is analogous to a

message from the variablext to the factorp(yt|st,xt) in
the sum-product algorithm.) After removing the observation
messageq◦(st), the partial belief forst is p(st), sinceq(st) =
q◦(st)p(st). After putting back the exact termp(yt|st,xt) in
the picture (Figure 3b), minimize the following KL divergence
over the approximate posteriorq(st)q(xt) (Figure 3c):

KL(p(yt|st,xt)p(st)q./(xt) ‖ q(st)q(xt)), (19)

and obtain the new messages:

q◦(st)new∝ q(st)/p(st) q◦(xt)new∝ q(xt)/q./(xt) (20)

The KL minimization step is the same as assumed
density filtering [11], [12]. Computationally, the KL
minimization amounts to matching moments between
p(yt|st,xt)p(st)q./(xt) and q(st)q(xt). Notice that we are
minimizing divergence between variable distributions, rather
than divergence between messages. This makes sense because
the variable distributions are what we really care about in the
problem.

The forward and backward messages are determined in a
similar way, illustrated in Figure 4. First, compute the partial
belief q.◦(xt−1)q◦/(xt), defined as:

q.◦(xt−1) = q.(xt−1)q◦(xt−1) q◦/(xt) = q◦(xt)q/(xt)
(21)

Then minimize the KL divergence

KL(q.◦(xt−1)p(xt|xt−1)q◦/(xt) ‖ q(xt−1)q(xt)) (22)
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x1 x2

q◦↓ q◦↓

q q x1 x2

q◦↓ q◦↓

q

p(x2 |x1)
q x1 x2

q◦↓ q◦↓

q q q q

(a) q ◦ (x1 )q◦ (x2 ) (b) q ◦ (x1 )p(x2 |x1 )q◦ (x2 ) (c) q(x 1 )q(x2 )

Fig. 4. Illustration of the three steps when EP processes the transition distribution. The factorsq. andq/ are forward andbackward messages. The partial
beliefsq.◦(x1) = q.(x1)q◦(x1) andq◦/(x2) = q◦(x2)q/(x2).

over q(xt−1)q(xt), giving the new forward message
q.(xt)new = q(xt)/q◦/(xt) and the backward message
q/(xt−1)new = q(xt−1)/q.◦(xt−1). Since the transition prob-
ability distributions are Gaussians, the answer to the above
KL minimization is the exact marginals of the pairwise joint.
Instead of computing the forward and backward messages
simultaneously as above, it is equally valid to run separate
forward filtering and backward smoothing passes. Specifically,
at time t in a forward pass, we compute only the forward
messageq.(xt+1) andq(xt+1), while at timet in a backward
pass, we compute only the backward message and the new
q(xt).

The following sections describe in detail how to incorporate
the observation, forward, and backward messages.

A. Compute and Incorporate Observation Messages

First, consider how to update the state beliefq(st)q(xt) us-
ing the observation data and, correspondingly, how to generate
the observation messageq◦(st,xt).

The messagesq◦(xt), q.(xt), andq/(xt) are chosen to be
Gaussian, whileq◦(st) is discrete. From (18), the partial belief
q./(xt) is therefore Gaussian:

q./(xt) = Nc(xt|mxt./,Vxt./)

whereNc(·|mxt./,Vxt./) is the probability density function
of a complex Gaussian with mean ofmxt./ and variance of
Vxt./.

Given p(st)q./(xt) andp(yt|st,xt), we compute an inter-
mediate approximate posteriorq̂(st,xt):

q̂(st,xt) =
p(yt|st,xt)p(st)q./(xt)∫

st,xt
p(yt|st,xt)p(st)q./(xt)

(23)

Define the normalization constant ofq̂(st,xt) asz:

z =
∑

st∈A

∫
p(yt|st,xt)p(st)q./(xt)dxt

=
∑

st∈A
p(st)

∫
Nc(yt|sth?xt, σ

2)Nc(xt|mxt./,Vxt./)dxt

=
∑

st∈A
p(st)N (yt|myt(st), vyt(st)) (24)

where

myt(st) = sth?mxt./, vyt(st) = sth?Vxt./hs?
t + σ2

(25)

Since q̂(st,xt) is not in the exponential family and, there-
fore, it is difficult to keep updating the state belief in the
dynamic model analytically and efficiently if we keepq̂(st,xt)

as the new belief of(st,xt). To solve this problem, we project
q̂(st,xt) into q(xt)q(st):

q(xt) = Nc(xt|mxt
,Vxt

) (26)

q(st) = DiscreteM (st) (27)

by minimizing the KL divergence (19).
For this minimization, we match the moments ofq̂ and q

such that

q(st) =
p(st)N (yt|sth?mxt./, vyt

(st))
z

(28)

mxt =

∑
st∈A p(st)N (yt|myt

(st), vyt
(st))mxt

(st)
z

(29)

Vxt = Vxt|yt
−mxtm

?
xt

+
1
z
·

·
∑

st∈A
p(st)N (yt|myt(st), vyt(st))mxt|st

(st)mxt|yt
(st)?

(30)

where

mxt|yt
(st) = mxt./ + k(st)(yt − sth?mxt./) (31)

Vxt|yt
= Vxt./ − k(st)sth?Vxt./ (32)

k(st) = Vxt./hs?
t vyt(st)−1 (33)

Note thatVxt|yt
is not a function ofst sinces?

t st = 1.
Then from (20), it follows that

q◦(xt) ∝ N (xt|mxt◦,Vxt◦) (34)

where

mxt◦ = Vxt◦(V
−1
xt

mxt −V−1
xt./mxt./) (35)

Vxt◦ = (V−1
xt
−V−1

xt./)
−1 (36)

Since the observation message is not necessarily a valid
probability distribution,Λxt◦ can be near singular, such that
inverting Λxt◦ loses numerical accuracy. To avoid numerical
problems, we transformmxt◦ andVxt◦ to the natural param-
eters ofq◦(xt):

µxt◦ = V−1
xt◦mxt◦ = V−1

xt
mxt −V−1

xt./mxt./ (37)

Λxt◦ = V−1
xt◦ = V−1

xt
−V−1

xt./ (38)

B. Incorporating Forward and Backward Messages

Becausest and st+1 are not directly connected, forward
and backward messages are only sent forxt.

1) Compute the forward messageq.(xt) given
q.◦(xt−1) = Nc(xt−1|mxt−1.◦,Vxt−1.◦), the partial
belief of xt−1 before incorporating the backward
message. Since the transition density is Gaussian, it is
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easy to computeq.(xt) = Nc(xt|mxt.,Vxt.) as in
Kalman filtering:

mxt. = Fmxt−1.◦ Vxt. = FVxt−1.◦F? + gg?
(39)

wheremx1. andVx1. are the parameters of the Gaus-
sian priorp(x1).

2) Incorporate the backward messageq/(xt) given the
partial beliefq.◦(xt). Without explicitly computing the
backward messageq/(xt), we can directly incorporate
q/(xt) into q(xt) as in Kalman smoothing:

Jt = Vxt.◦F
?V−1

xt+1. (40)

mxt = mxt.◦ + Jt(mxt+1 − Fmxt.◦) (41)

Vxt
= Vxt.◦ + Jt(Vxt+1J

?
t − FV?

xt.◦) (42)

Note that the forward and backward messages calculated
as the above minimize the KL divergence (22). This
suggests that the Kalman filtering and smoothing steps
are the natural outcome of EP updates.

C. Algorithm Summary

Given the knowledge of how to incorporate different mes-
sages, we are ready to construct the whole expectation prop-
agation algorithm by establishing the iteration mechanism.

1) Loop t = 1 : T :

a) Compute the forward messageq.(xt) via (39)
and set the backward message to a constant, i.e.,
q/(xt) ∝ 1.

b) Update q(st,xt) to match the moments of
q̂(st,xt) = p(yt|st,xt)p(st)q.(xt) via (28) to
(30).

c) Computeq◦(xt) ∝ q(xt)/q./(xt) via (37) to (38).

2) Loop until convergence or the maximal number of
iterationsn has been achieved:

a) Loop t = 1, . . . , T (Skip on the first iteration)

i) Compute the forward messageq.(xt) via (39).
ii) Compute the partial beliefq.◦(xt) given the

forward and observation messages.:

q.◦(xt) = q.(xt)q◦(xt)

This can be easily accomplished as follows:

Vxt.◦ = (V−1
xt. + Λxt◦)

−1 (43)

mxt.◦ = Vxt.◦
(
V−1

xt.mxt. + µxt◦
)

(44)

b) Loop t = T − 1, . . . , 1
i) Computeq(xt) by incorporating the backward

message via (40) to (42) whent < T .
ii) Updateq(st,xt) andq◦(st,xt) as follows:

A) Compute the partial beliefq./(xt). From
(18), it follows that

mxt./ = Vxt./(V−1
xt

mxt − µxt◦), (45)

Vxt./ = (V−1
xt
−Λxt◦)

−1 (46)

B) Updateq(st,xt) to match the moments of
p(yt|st,xt)p(st)q./(xt) via (28) to (30).

C) Computeq◦(xt) via (37) to (38).

T1 t t+δ

L

ADF

Batch-EP

Window-

based EP

Fig. 5. Illustration of ADF, batch EP, and window-based EP. ADF
sequentially processes the observation sequence to the current timet; batch
EP smoothing uses the entire observation sequence from the beginning at
time 1 to the end at timeT ; window-based EP uses the previous approximate
posterior at timet as a prior distribution for filtering and performs smoothing
in a sliding window with lengthL.

V. W INDOW-BASED EP SMOOTHING

For the signal detection problem, we need online processing
of the data. This need cannot currently be satisfied by batch
EP smoothing, which uses the entire observation sequence and
therefore is computationally expensive.

To address this problem, we propose window-based EP
smoothing as an alternative to batch EP smoothing. Window-
based EP smoothing finds a trade-off between assumed-density
filtering and batch EP smoothing. Instead of smoothing over
the entire observation sequence, we use a sliding window with
length L to approximate the posteriorp(st,xt|y1:t+δ) based
on the observationsy1:t+δ = [y1, . . . , yt+δ], whereδ controls
the delay for online estimation. Specifically, we first run ADF
from time t to t + δ, perform EP smoothing fromt + δ to
t + δ−L + 1, and then run ADF filtering fromt + δ−L + 1
to t + δ. We iterate the filtering and smoothing in the sliding
window until a fixed number of iterations or the convergence
has achieved. Essentially, window-based EP smoothing is a
rescheduling of EP update orders for the online-estimation
purpose. The difference between ADF, batch EP, and window-
based EP is illustrated in Figure 5.

VI. COMPUTATIONAL COMPLEXITY

In this section, we compare the efficiency of window-based
EP smoothing with sequential Monte Carlo methods (table I).
For window-based EP smoothing, the total computation time
of incorporating the forward and observation messages via
(39) to (44) isO(d2) (d is the dimension ofxt), same as the
cost of one-step Kalman filtering; incorporating the backward
message via (40) to (42) takesO(d2) as Kalman smoothing;
and finally updatingq(st,xt) andq◦(st,xt) in step 2(b)ii costs
O(Md2), M times as the cost of Kalman filtering, where
M is the size of alphabet for symbols. Furthermore, since in
general the estimation accuracy is not increasing after a few
propagation iterations, the needed number of EP iterationsn
is small. In our experiments, we setn = 5.

In contrast, if we usem samples in a stochastic mixture
of Kalman filters, also known as Rao-blackwellised particle
smoothers, it takesO(mMd2) for a one-step update, and
O(mMLd2) for L step smoothing, which ismML times the
cost of one-step Kalman filtering and smoothing [6]. Another
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TABLE I

COST OFEP VERSUS SEQUENTIALMONTE CARLO.

EP O(nMLd2T )

[6] O(mMLd2T )

[18] O(mkMLd2T )

n number of EP iterations

M size of symbol alphabet

L length of the smoothing window

d dimension ofxt

m number of forward samples

k number of backward samples

T length of observation sequence

version of efficient particle smoothers [18], which is applied
to audio processing, takesO(mkMLd2) wherem andk are
the numbers of forward and backward samples. To achieve
accurate estimation, sequential Monte Carlo methods generally
need a large number of samples, i.e., largem andk.

VII. E XPERIMENTAL RESULTS ONSIGNAL DETECTION

In this section, we apply the proposed window-based EP
smoothing algorithm to the signal detection problem. The flat-
fading channels are defined in (4) and(5), and the proposed
algorithm decodes the symbolsst as

ŝt = argmax q(st) (47)

whereq(st) is obtained after the convergence of the expecta-
tion propagation algorithm.

We demonstrate the high performance of the window-
based EP receiver in a flat-fading channel with differ-
ent signal noise ratios. We model the fading coefficients
{αt} by the following ARMA(3,3) model, as in [6]:
Φ = [−2.37409 1.92936 − 0.53208], Θ = 0.01 ×
[0.89409 2.68227 2.68227 0.89409], vt ∼ Nc(0, 1).
With these parameters, we have Var{αt} = 1. BPSK modu-
lation is employed (st ∈ {1,−1}). Also, differential encoding
and decoding are employed to resolve the phase ambiguity.
The priorp(st) = 1/2 for all t.

We test the window-based EP receiver with different win-
dow lengthsL = 1, 2, 4, with 0, 1, 3 overlap points, respec-
tively. In other words, the estimation time delayδ equals
0,1,and 3, respectively. Note that the current detector with
δ = 0 performs ADF as a degenerate case of EP smoothing.
Moreover, we run the batch EP receiver with smoothing over
the entire data sequence.

For comparison, we test a genie-aided lower bound and a
differential detector. For the genie-aided detection, an addi-
tional observation is provided, which is another transmitted
signal where the symbol is always 1, i.e.,ỹt = αt + wt.
The receiver employs a Kalman filter to estimate the posterior
meanα̂t of the fading process, based on the new observation
sequence{ỹt}. The symbols are then demodulated accord-
ing to ŝt = sign(R{α̂?

t yt}) where ? means conjugate. By
obtaining the extra information from the genie, this detector
is expected to achieve accurate detection results. Also, the
genie-aided detection is also lower bounded by the known
channel bound. For the differential detection, no attempt is
made for channel estimation. It simply detects the phase
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Fig. 6. BER demodulation performance of the EP receiver with different
smoothing parameters, the genie-aided detector, and the differential detector
in a fading channel with complex Gaussian noises.

difference between two consecutive observationsyt−1 andyt:
ŝt = sign(R{ŷt

?yt−1}).
We run these detectors on 10,000 received signals

for different signal-to-noise ratios (SNRs), defined as
10 log10(Var{αt}/Var{wt}). For each SNR, we randomly
synthesize a new symbol sequence and a new observation
sequence according to (4) and (5). We repeat this procedure
10 times. The averaged bit-error rate (BER) performance of
different detectors versus SNR is plotted in Figure 6.

Clearly, the window-based EP receiver outperforms the con-
current detector and the differential detector. The concurrent
detector is based on ADF, which has been shown to achieve
more accurate estimation than extended Kalman filtering in
general [11]. For SNRs from 10 dB to 40 dB, the new
receiver does not have the error floor, while the differential
detector does. Compared with the results obtained by [6], the
performance of the window-based EP receiver is comparable
to that of a sequential Monte Carlo receiver. However, the
EP receiver is much more efficient. [6] use 50 samples in
their sequential Monte Carlo receiver. With window length
of 3, the window-based EP receiver is13.33 times faster
(50 · 23/(5 · 2 · 3) = 13.33) than the sequential Monte
Carlo receiver. Furthermore, the cost of the new receiver
increases linearly with the window length, while the cost of
the sequential Monte Carlo receiver explodes exponentially.
For example, when the window length increases to 5, the new
receiver becomes 32 times faster(50 ·25/(5 ·2 ·5) = 32) than
the sequential Monte Carlo receiver.

With a delayδ = 2, the performance of the window-based
EP receiver is almost as good as that of the batch EP receiver,
which performs smoothing over each entire data sequence,
while the window-based EP receiver is more efficient and
results in much shorter estimation delay than the batch EP
receiver. Moreover, the performance of the window-based EP
receiver with a delayδ = 3 is close to the genie-aided detector.
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VIII. D ISCUSSION

This paper has presented a window-based EP smoothing
algorithm for online estimation and applied it to adaptive
signal detection in fading channels. We first propose the EP
smoothing algorithm for hybrid dynamic systems, and then
present window-based EP smoothing to achieve a trade-off
between assumed density filtering and batch EP smoothing in
terms of accuracy and efficiency. For the signal detection prob-
lem, the window-based EP receiver significantly outperformed
both the classical differential detector and the concurrent
adaptive Bayesian receiver, which is based on ADF, under
different signal-to-noise ratios. Moreover, the window-based
EP receiver performs comparably to the batch EP receiver,
which uses the entire data sequence for smoothing and there-
fore leads to more estimation delay and larger computational
cost. The performance of the window-based EP receiver is also
close to the genie-aided detection, a performance upper bound.
This performance similarity demonstrates the high quality of
the window-based EP receiver. Compared to the sequential
Monte Carlo receiver, the window-based EP receiver obtains
the comparable estimation accuracy with less than one-tenth
computational complexity. In short, for the signal detection
problem, window-based EP improves the estimation accuracy
over ADF, enhances the efficiency over batch EP without
sacrificing accuracy, and achieves comparable accuracy as the
sequential Monte Carlo methods with much lower cost.

The window-based EP receiver can be used for many online
estimation problems in wireless digital communications, such
as signal detection with unknown phase. The window-based
EP receiver for wireless signal detection is just one example.
Joint decoding and channel estimation would be a natural ex-
tension of this work. For dynamic systems with nonlinear and
non-Gaussian likelihoods different from the signal detection
problem, the only thing we need to modify in the algorithm
is the moment matching step, defined by equations (28) to
(30). Based on a different likelihood, we will have a different
moment matching step. When exact moments are difficult to
compute, we can use approximate techniques, for example,
unscented Kalman filtering [21], to approximate the moment
matching step.

In this paper, we chose a fully-factorized approximation so
that a belief propagation-like algorithm would result. However,
EP can generate algorithms different from belief propagation,
that propagate Markov-chain structures [22].
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