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Abstract

Hand-drawn diagrams present a complex recognition
problem. Elements of the diagram are often individually
ambiguous, and require context to be interpreted.

We present a recognition method based on Bayesian con-
ditional random fields (BCRFs) that jointly analyzes all
drawing elements in order to incorporate contextual cues.
The classification of each object affects the classification
of its neighbors. BCRFs allow flexible and correlated fea-
tures, and take both spatial and temporal information into
account. BCRFs estimate the posterior distribution of pa-
rameters during training, and average predictions over the
posterior for testing. As a result of model averaging, BCRFs
avoid the overfitting problems associated with maximum
likelihood training. We also incorporate Automatic Rele-
vance Determination (ARD), a Bayesian feature selection
technique, into BCRFs. The result is significantly lower er-
ror rates compared to ML- and MAP-trained CRFs.

1. Introduction

Many computer vision tasks can be effectively formal-
ized as joint classification of multiple pixels or elements.
Joint classification enables modeling of dependence be-
tween elements, allowing structure and context to be taken
into account. For example, image segmentation requires
joint labeling of multiple pixels such that related pixels
have the same label but pixels across edge or color bound-
aries have different labels. Object recognition is similarly
facilitated by contextual information, such as knowledge
about the scene, which consists of multiple interacting ele-
ments. In this paper, we tackle another instance of the same
problem, namely the recognition of hand-drawn diagram
structure (Figure 2). Specifically, we try to identify which
stroke fragments are parts of containers versus connec-
tors. This task is challenging because individual pen-strokes
look alike and only acquire meaning relative to neighboring

strokes. Rather than classify strokes entirely based on local
features, we desire to find a globally-consistent labeling of
the diagram—an approach which turns out to considerably
improve performance.

Joint modeling of structured data can be performed by
generative graphical models, such as Bayesian networks or
Markov random fields. For example, Tu et al. (2003) pro-
pose a generative model for globally parsing images into
faces, text, shadows, etc. This sort of approach could be
used for diagrams, but in our experience generative mod-
els take substantial effort to design and implement for each
individual problem, and the result can easily require a pro-
hibitive amount of computation.

Conditional random fields (CRF) are a conditional ap-
proach for classifying structured data, proposed by Lafferty
et al. (2001). CRFs model only the label distribution condi-
tioned on the observations. Unlike generative models, they
do not need to explain the observations or features. This
also allows CRFs to use flexible features such as complex
functions of multiple observations. The same CRF archi-
tecture can be used on many different problems, simply by
changing the features. The modeling power of CRFs has
shown great benefit in several applications, including re-
gion classification (Kumar & Hebert, 2004), diagram la-
beling (Szummer & Qi, 2004), and CRFs have also been
extended to perform simultaneous segmentation and recog-
nition (Cowans & Szummer, 2005).

To summarize, CRFs provide a compelling model for
structured data. Consequently, we need effective training,
inference, and feature selection algorithms. The standard
maximum likelihood (ML) criterion is prone to overfitting
the data, especially when CRFs are trained with large num-
bers of features. Previous approaches to reduce overfit-
ting include maximum a posteriori (MAP) and large mar-
gins (Taskar et al., 2004). Both of these approaches involve
free parameters which are hard to tune.

Instead we use the method of Bayesian conditional ran-
dom fields (BCRFs), proposed by (Qi et al., 2005). BCRFs
can be viewed as a generalization of Bayes Point Ma-



chines (BPMs) (Herbrich et al., 1999; Minka, 2001a), dis-
criminative Bayesian classifiers for single elements. The
advantages of BCRFs over conventionally-trained CRFs in-
clude:

1. Model averaging, which exploits the uncertainty of the
estimated parameters. Given a test diagram, the pre-
dictions of all possible CRFs are averaged according
to their posterior probability. Traditional approaches
provide only a point estimate of model parameters, ig-
noring uncertainty and risking overfitting.

2. Automatic hyperparameter tuning. We illustrate this
by performing feature selection via Automatic Rele-
vance Determination (ARD). This method prunes fea-
tures by maximizing the model evidence (MacKay,
1992), and has been used successfully in neural net-
works (MacKay, 1992) and logistic classifiers (Tip-
ping, 2000).

In the following sections, we first review CRFs and ex-
pectation propagation, then present Bayesian conditional
random fields, incorporate automatic relevance determina-
tion, and finally give experimental results.

2. Conditional Random Fields

A conditional random field (CRF) models label variables
according to an undirected graphical model conditioned on
observed data (Lafferty et al., 2001). Letx be an “input”
vector describing the observed data instance, andt be an
“output” random vector over labels of the data components.
We assume that all labels for the components belong to a
finite label alphabetT = {T1, . . . , TM}. For example, the
inputx could be image features based on small patches, and
t be labels denoting ’person, ’car’ or ’other’ patches. For-
mally, we have the following definition of CRFs (Lafferty
et al., 2001):

Definition 2.1 Let G = (V, E) be a graph such thatt is
indexed by the vertices ofG. Then(x, t) is a conditional
random field (CRF) if, when conditioned onx, the random
variablesti obey the Markov property with respect to the
graph: p(ti|x, tV−i) = p(ti|x, tNi) whereV− i is the set
of all nodes inG except the nodei,Ni is the set of neighbors
of the nodei in G, andtΩ represents the random variables
of the vertices in the setΩ.

Unlike traditional generative random fields, CRFs only
model the conditional distributionp(t|x) and do not explic-
itly model the marginalp(x). Note that the label vectors
ti are globally conditioned on the whole observationx in
CRFs. Thus, we do not assume that the observed datax are
conditionally independent as in a generative random field.

A CRF defines the conditional distribution of the labels
t given the observationsx to be proportional to a product of
potential functions on cliques of the graphG. For simplic-
ity, we consider only pairwise clique potentials such that

p(t|x,w) =
1

Z(w)

∏
{i,j}∈E

gi,j(ti, tj ,x;w) (1)

where

Z(w) =
∑
t

∏
{i,j}∈E

gi,j(ti, tj ,x;w) (2)

is a normalizing factor known as the partition function,
gi,j(ti, tj ,x;w) are pairwise potentials, andw are the
model parameters. Note that the partition function is a
complex function of the model parameterw. This makes
Bayesian training much harder for CRFs than for Bayesian
linear classifiers, since the normalizer of a Bayesian linear
classifier is a constant.

In standard conditional random fields, the pairwise po-
tentials are defined as

gi,j(ti, tj ,x;w) = exp(wT
ti,tj

φi,j(ti, tj ,x)) (3)

whereφi,j(ti, tj ,x) are features extracted for the edge be-
tween verticesi andj of the conditional random field, and
wti,tj

are weights corresponding to labels{ti, tj} in w,
wherew = [wT

1,1,w
T
1,2, . . . ,w

T
M,M ]T. There are no re-

strictions on the relation between features.
Though we could use the above log-linear potential func-

tions, for convenience we replace the exponential by the
probit functionΨ(·) (the cumulative distribution function of
a Gaussian). In addition, to incorporate robustness against
labeling errors, we add a small probabilityε of a label be-
ing incorrect, which will serve to bound the potential value
away from zero. The final potentials are

gi,j(ti, tj ,x;w) = ε + (1− 2ε)Ψ(wT
ti,tj

φi,j(ti, tj ,x)).
(4)

Given the data likelihood (1) and a Gaussian prior

p0(w) ∼ N (w|0,diag(α−1)), (5)

the posterior distribution of the parameters is

p(w|t,x) ∝ p0(w)
1

Z(w)

∏
k∈E

gk(ti, tj ,x;w)

wherek = {i, j} indexes edges in a CRF. Since this pos-
terior distribution cannot be analytically computed, it is ap-
proximated by EP and power EP approaches, which are de-
scribed in the following sections. Moreover, as shown in
Section 5, we can use the Bayesian machinery to estimate
the hyperparameterα in the prior (5).



3. Expectation Propagation

Expectation propagation exploits the fact that the pos-
terior is a product of simple terms. If we approximate
each of these terms well, we can get a good approxima-
tion of the posterior. We fit an approximation of the form
p(w|t,x) ≈ q(w) where

q(w) = p0(w)
1

Z̃(w)

∏
k∈E

g̃k(w) (6)

The terms̃gk(w) and1/Z̃(w) will have the form of a Gaus-
sian, so that the approximate posteriorq(w) will be Gaus-
sian. The parameters of the approximation are the Gaussian
parameters for the individual terms̃gk(w) and 1/Z̃(w),
from which the mean and variance ofq(w) can be derived
by standard formulas. The parameters for the numerator
terms are updated in the same way as for Bayesian linear
classifiers (Minka, 2001b). Specifically, for̃gk, the algo-
rithm first removes its contribution toq(w), giving a Gaus-
sian q\g̃k(w). Then it finds a new choice of̃gk which
minimizes KL-divergence to the truegk, holding q\g̃k

fixed. This process can be written succinctly as follows.

While not converged: Loop overk:

q\g̃k(w) = q(w)/g̃k(w) (7)

g̃new
k (w) = argmin

ǵk(w)

KL(gk(w)q\g̃k(w) ‖ ǵk(w)q\g̃k(w))
(8)

= moments
[
gk(w)q\g̃k(w)

] /
q\g̃k(w) (9)

Heremoments is a “moment matching” operator: it finds
the Gaussian having the same moments as its argument,
thus minimizing KL-divergence. Algorithmically, eq. (7)
divides the Gaussians to get a new Gaussian, and calls it
q\g̃k(w). Similarly, eq. (9) constructs a Gaussian whose
moments matchgk(w)q\g̃k(w) and divides it byq\g̃k(w),
to get a new Gaussian approximation termg̃k(w)new. This
update provides a newq(w) according to (6). The moment
calculations involve integrals of products of Gaussians with
probits and are computed as in Minka (2001b).

As for the denominator, if we were to apply this
method directly toZ̃(w), we would have to compute

moments
[

1
Z(w)q

\Z̃(w)
]
, which is difficult. Our solution is

to not minimize KL-divergence, but instead to use a dif-
ferent divergence measure which makesZ̃(w) similar to
Z(w). This shortcut has been formalized as the “Power
EP” method, and its implications are discussed by Minka
(2004). Using this alternative divergence measure, we only

have to compute moments
[
Z(w)q\Z̃(w)

]
, which is a prob-

lem of the same form as the numerator terms, but involving

an average overt. This problem is solved by a nested invo-
cation of EP. By interleaving the updates in this nested EP
with those of the outer EP, we obtain an elegant algorithm
in which numerator and denominator terms are updated in
parallel, with similar formulas. This algorithm is derived
in (Qi et al., 2005) and the next section describes a concise
form for it.

4. Power EP for Conditional Random Fields

Recall that the posterior distribution for the parameters
is

p(w|t,x) ∝ p0(w)
∏

k∈E gk(ti, tj ,x;w)∑
t

∏
k∈E gk(ti, tj ,x;w)

. (10)

We fit an approximation of the form

q(w) = p0(w)
∏

k∈E g̃k(w)∑
t

∏
k∈E f̃k(w)f̃k(ti)f̃k(tj)

. (11)

Here f̃k(ti) is a discrete distribution on the labelti. The
parameters of the approximation are the Gaussian parame-
ters ofg̃k(w) andf̃k(w), as well as the discrete parameters
of f̃k(ti). The terms involving onlyti sum away in the de-
nominator ofq(w), but we use them to define a separate
quantity

q(ti) =
∏
k∈E

f̃k(ti). (12)

Initialize f̃k(ti) = 1 (uniform) andg̃k(w) = f̃k(w) =
1 (infinite variance). Bygk(w) denote the exact term
gk(ti, tj ,x;w) with the observed valuesti and tj in the
training set. Then the algorithm proceeds as follows:

While not converged: Loop overk:

q\g̃k(w) = q(w)/g̃k(w) (13)

g̃new
k (w) = moments

[
gk(w)q\g̃k(w)

] /
q\g̃k(w) (14)

q\f̃k(w) = q(w)/f̃k(w) (15)

q\f̃k(ti) = q(ti)/f̃k(ti) (16)

fk(w) =
∑
ti,tj

gk(ti, tj ,x;w)q\f̃k(ti)q\f̃k(tj) (17)

f̃new
k (w) = moments

[
fk(w)q\f̃k(w)

] /
q\f̃k(w) (18)

f̃new
k (ti) =

∑
tj

∫
w

gk(ti, tj ,x;w)q\f̃k(w)q\f̃k(tj) dw
(19)

Note that (13) and (15) use the same value ofq(w); the nu-
merator and denominator terms are updated in parallel. Af-
ter all three updates are complete we obtain a newq(w) and



q(t). The equations (17,18) look imposing but all they mean
is that you compute the moments ofgk(ti, tj ,x;w)q\f̃k(w)
for each combination ofti andtj , then average according to

the discrete probabilitiesq\f̃k(ti)q\f̃k(tj). Belief propaga-
tion is a special case of EP where the approximations are
discrete distributions, so unsurprisingly the update (19) is
equivalent to loopy belief propagation on the labelsti, with
the twist that the edge potentials are averaged over the pa-
rametersw. Due to our choice of edge potentials, this av-
erage is available analytically. The final result of training is
the Gaussianq(w).

A straightforward implementation of the updates costs
O(d3) time, whered is the dimension of the parameter vec-
tor w, since they involve inverting the covariance matrix of
w. However, as shown in Qi et al. (2005), we can compute
them with low-rank matrix updates inO(d2) time.

5. Automatic Relevance Determination

We also include ARD in the BCRF training. By pruning
away irrelevant features, we gain robustness to noise and
faster testing times.

Recall that the prior has a vector of hyperparame-
ters α, representing the amount we wish to shrink each
weight. ARD tunes these hyperparameters by maximizing
the model evidence, which is the posterior probability of
the model marginalized over model parameters (MacKay,
1992). As shown by MacKay (1992), if we approximate the
posterior distribution of the model parameters by a Gaus-
sian with meanmw and varianceVw, thenα can be up-
dated by an EM equation:

αnew
j =

1
(Vw)jj + (mw)2j

. (20)

In the case of EP,mw andVw are the moments ofq(w),
which itself depends onα. Thus we have an EM algorithm
where the E-step is EP and the M-step is (20). When a
feature is irrelevant, the correspondingαj goes to infinity
which forceswj = 0, effectively pruning the feature from
the model.

6. Inference by Approximate Model Averaging

Unlike traditional classification problems, where we
have a scalar output for each input, a BCRF jointly labels
all the hidden vertices in an undirected graph. The trained
BCRF infers the labels by model averaging, which makes
full use of the training data by employing not only the es-
timated mean of the parameters, but also the estimated un-
certainty (variance).

Given a new test graphx?, a BCRF trained on(x, t)
approximates the predictive distribution as follows:

p(t?|x?, t,x) =
∫

p(t?|x?,w)p(w|t,x) dw (21)

≈
∫

p(t?|x?,w)q(w) dw (22)

=
∫

q(w)
Z(w)

∏
{i,j}∈E

gi,j(t?i , t
?
j ,x

?;w) dw
(23)

whereq(w) is the fitted approximation to the true posterior
p(w|t,x). Even though we have approximated this poste-
rior as a Gaussian, the integral (23) is still complicated if
there are many edges in the graph.

Thus we will approximate the integral using EP. Since
we are interested in the marginal distribution oft?i , we use
a fully-factorized approximation of the form

q(t?) =
∫

q(w)
Z̃(w)

∏
{i,j}∈E

f̃k(w)f̃k(ti)f̃k(tj) dw, (24)

with an analogous approximation of̃Z(w). This leads to
the same updates (16, 19) for̃fk(ti). Interestingly, we do
not need to computẽfk(w) because it is always cancelled
by the corresponding term ofZ(w). Thus the average over
w in (19) is always with respect toq(w) alone. In summary,
testing with a BCRF reduces to loopy belief propagation
over the labels, with each edge potential averaged over the
fixed parameter distributionq(w).

7. Application to Ink Classification

Here we apply BCRFs to ink classification, specifically
to discrimination between containers and connectors in
drawings of organization charts. BCRFs enable joint clas-
sification of all ink on a page. The classification of one ink
fragment can influence the classification of others, so that
context is exploited.

We break the task into three steps:

1. Subdivision of pen strokes into fragments,

2. Construction of a conditional random field on the frag-
ments,

3. BCRF training and inference on the network.

The input is electronic ink recorded as sampled locations
of the pen, and collected intostrokesdefined as pen-down to
pen-up events. In the first step, the strokes are divided into
simpler components calledfragments. Fragments should be
small enough to belong to a single container or connector.
In contrast, strokes occasionally span more than one part,
for example when a user draws a container and a connector



Figure 1. The conditional random field superimposed on part of the
chart from Figure 2. There is one node (circled) per fragment, and
edges indicate pairwise potentials between neighboring fragments.

without lifting the pen. One could choose the fragments
to be individual sampled dots of ink, however, this would
be computationally expensive. We choose fragments to be
groups of ink dots within a stroke that form straight line
segments (within some tolerance) (Figure 2).

In the second step, we construct a conditional random
field on the fragments. Each ink fragment is represented by
a node in the network (Figure 1). The node has an associ-
ated label variableti, which takes on the values−1 (con-
tainer) or1 (connector). The potential functionsg quantify
how compatible labels are with the underlying ink and with
other labels. Weights in the potential functions character-
ize the exact dependence of labels with the ink, and these
weights are trained from data.

We extract features both from single fragments and from
pairs of fragments. Specifically, our approach is to compute
many redundant low-level ink features, and represent them
as potentials. BCRF-ARDs then learns which features or
combinations of features that are discriminative for the task.
The details about feature extraction from the organization
charts can be found in (Szummer & Qi, 2004).

8. Experiments and Discussion

We asked 17 subjects to draw given organization charts
on a TabletPC device capturing online handwriting. The
given charts consisted of rectangular containers and con-
nectors made from line segments, but the subjects’ drawings
were quick and rough. We focused on graphical elements,
and any text was removed.

The pen strokes were subdivided yielding a database of
1000 fragments, which we split into training sets drawn by
half of the subjects, and test sets drawn by the other half.

We built a conditional random field, with pairwise poten-
tial between all pairs of fragments that were within 5mm of
each other, resulting in 3000 pairwise potentials.

We compared BCRF-ARD with CRFs trained by max-
imum likelihood (ML) and maximum a posteriori (MAP)
methods on the ink recognition task. We included CRFs
with probit potential functions (4) and with exponential po-
tential functions (3).

The results are shown in Table 1. BCRF-ARD outper-
forms the other approaches. For BCRF and MAP training,
prior parameters for the potentials wereα = 5I (when not
using ARD), with the labeling noise rateε = 0. HereI
represents the identity matrix. In other words, we used the
independent Gaussian prior distribution overw. For BCRF-
ARD training, we optimized over the prior parametersα,
which reduced the number of active features from 148 to
38. We could have used the model evidence to optimizeε
as well, but for simplicity we set it to zero.

The time for BCRF training is only slightly longer than
ML training, as discussed by (Qi et al., 2005). The time for
testing is essentially the same, since both run belief propa-
gation, just on different edge potentials.

Table 1. Test error rates on organization charts. The results are
averaged over 10 random train-test splits. The stars indicate errors
with 98% significance of being worse than BCRF error. The di-
amond indicates85% significance that BCRFs outperform MAP-
trained CRFs with exponential potentials. Moreover, ARD further
improves BCRF test accuracy.

Algorithm Test error rates
ML-Probit-CRF 10.7± 1.21 ?

MAP-Probit-CRF 6.00± 0.64 ?
ML-Exp-CRF 10.1± 1.21 ?

MAP-Exp-CRF 5.20± 0.79 �
BCRF 4.39± 0.62

BCRF-ARD 3.98± 0.48

Finally, Figure 2 illustrates the power of BCRFs using
contextual information for joint classification. To the left
we see the results of a Bayes Point Machine, an excellent
Bayesian classifier that however does not exploit the con-
textual information as BCRFs. There are two ambiguous
rectangles created from fragments 18-21-22-29 and 14-16-
17. The independent classification approach misclassifies
fragments 19, 29, 16 and 1. In the middle, we see the joint-
classification results of a MAP-trained CRF. To the right,
we see that a BCRF with pairwise potentials resolves the
ambiguity and correctly classifies all fragments.

9. Summary

In this paper, we have incorporated ARD, a Bayesian
feature selection technique, into BCRFs and applied BCRF-



1

2

3

4
5

6

7

8
9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

1

2

3

4
5

6

7

8
9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

1

2

3

4
5

6

7

8
9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

2728

29

30

31

32

33

34

35

36

37

38

39

(a) Individual classification by BPM (b) joint classification by MAP-trained CRF (c) joint classification by BCRF

Figure 2. Classification of a chart, with results of a BPM that does not exploit contextual informations (left), a MAP-trained CRF (middle)
and a BCRF (right) that both propagate information using pairwise potentials. Containers are shown in bold and connectors as thin lines.
The BCRF achieves a more accurate classification than the other two approaches.

ARD to the joint analysis of hand-drawn diagrams, achiev-
ing accurate test performance. BCRF-ARD can also be ap-
plied in many other computer vision problems, such as im-
age segmentation, denoising, and scene recognition.
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