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1 Introduction

In this report, we present a novel approach for approximate Bayesian inference on large-scale
networks. Speficifically, we consider the following model.
First, we write down the likelihood function of the data as

p(yIb;s) = ][] [ p(viTp.8) (1)
=[TTINGE T DD aigsibi o). (2)
ki jiaji_j|>0

where £k indexes experimental replicates, ¢ indexes the probe positions, j indexes the binding
positions, and N (| Zj aji—j|5jb;, 0;) represents the probability density function of a Gaussian
distribution with mean Zj aj;—j s;b; and variance o;.
We assign prior distributions on the binding event b; and the binding strength s;:
b; 1—b.
pbjlry) = w7 (1 — 7)) " (3)
po(s;) = Gamma(s;|co, dp) (4)
where Gammal(+|cy, dy) stands for the probability density functions of Gamma distributions

with hyperparameters ¢y and dy.
We assign a hyperprior distribution on the binding probability 7; as:

po(7;) = Beta(m;|ao, o) (5)

2 Approximate Expectation Propagation for Bayesian
inference

First, given the data likelihood (2), the prior distributions (3) and (4) on the binding event
b and strength s, and the hyperprior distribution (5) on the binding probability =, the
posterior distribution p(b,s, w|y) is proportional to the joint distribution p(b,s, m,y):

p(b,S,ﬂ"y) X p(b,S,ﬂ',y) = Hgi(b>s) Hpo(ﬂj)fj(bj,ﬂj)po(sj)
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where ¢ indexes probe positions, j indexes binding positions, f;(b;,7;) = p(b;|7;) is the
prior for b;, gi(b,s) = N (yi| 32 ajijis;bj, 0i) is the likelihood for the observation at the i*"
probe position, po(r;) is the hyperprior distribution of 7;, and p(b;|7;) and po(s;) are the
prior distributions of b; and s;, respectively. For simplicity and clarity, here we drop the
superscript k£, which indexes replicates, and only consider the case of one replicate. Since
the posterior distribution p(b,s, w|y) cannot be computed in a closed form, we use EP to
approximate this complicated posterior distribution by a distribution in the exponential
family.

EP exploits the fact that the posterior is a product of simple terms. EP iteratively refines
the approximation of each term to improve the approximation of the posterior. Mathemati-
cally, EP approximates p(b,s, w|y) as ¢(b,s, 7):

q(b,s,w) = Hq bj,s;)q(;) H H Gi(bj, 55) HpO m5)po(s;) f (b )f( U (6)

i jiap; >0

where g;(b,s) = H] - Gi(b;, s;) is the approximation term corresponding to the likeli-

hood term g;(b,s), and f;(b;)f;(m;) is the approximation term corresponding to the prior

term f;(b;, 7;). For simplicity, we denote f;(b;, 7;) and f;(b;) f;(r;) as f(b;, 7;) and £(b;) f(7;),
respectively. We use a mixture of Gamma distributions to model ¢(b;, s), i.e.,

q(bj, s5) = q(b;)q(s]b;)

where ¢(b;) is a binomial distribution and ¢(s;|b;) is a Gamma distribution conditional on
the binding event b;. Note that ¢(bj,s;) is still in the exponential family though it is a
mixture model.

After initializing ¢(b; = 1) = 0.5, q(s;]b;) = po(s;), and ¢(7;) = po(7;), EP iteratively
performs the following two phases, each of which has three steps, to refine the approximate
posterior ¢(b, s, 7), until reaching convergence or the maximal number of iterations:

1. Process each likelihood term as follows:

(a) Deletion: we compute the “leave-one-out” approximate posterior ¢‘‘(b,s), by
dividing the current approximate posterior ¢(b)¢(s|b) by the old approximation

term g;(b,s) = Hj:a“_jpo gi(bja Sj)'
q(b,s)

\i
q"(b,s) X =—————
[1; 3i(b;. 55)

(7)

(b) Projection: given the “leave-one-out” approximate posterior ¢\*(b, s), we compute

(b, s) = argmin K& L(q"(b,s)gi(b,s)[[d(b,s))
q S

This step can be interpreted as projecting a complicated distribution ¢\'(b, s)g;(b, s)
into a simpler distribution ¢(b,s), through the above KI. minimization. This
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minimization can be achieved by matching the moments of §(b,s) to those of
¢"'(b,s)gi(b,s). However, the computation of the moments of ¢\!(b,s)g;(b,s) is
not tractable since the likelihood term g;(b,s) involves many latent variables b,
and s;, leading to a high-dimensional integration over s; and summation over
b;. To address this problem, we approximate the needed integrations based on
Gaussian approximation and quadratures (See Section 2.1).

Given (b, s), we update g'“(b,s) as follows:

)

~new ~ i A~ _
9; (b7S) X (Q(b7s)/q\ (b,S)) gi(bas)l )\7
where ) is a step size that controls the update speed.

Inclusion: we replace the old approximation term g;(b, s) with a new one to obtain
qnew (b, S) .

7 (b,s) = (b, >% — 0¥(b,5)5" (b, 5) ®)

2. Process each prior term f(b;, ;) as follows:

()

Deletion: we compute the “leave-one-out” approximate posterior ¢‘'(b;, 7;), by
dividing the current approximate posterior ¢(b;)g(m;) by the old approximation

term f(b;)f(r;).

Vb, ) = V(b )gVi () o LL4(T)
¢V (b, m;) = ¢V (b;)q" (7;) )7 r) (9)

Projection: given the “leave-one-out” approximate posterior q\i(bj, T;), we com-
pute
G(b;)d(m;) = argmin K L(qV (b, ;) f (b, m;)|1¢(b;)d(m;))
4(b;)d(m;)
The above KL divergence can be minimized by moment matching. The details
are in Section 2.2. Given ¢(b;)G(r;), we update f(b;)f"* (x;) as follows:

Fo (by) oc (@(by) /4% (b)) F(b;)' (10)
Fro () oc (a(m5) /g () ()= (11)

where A is a step size that controls the update speed.

Inclusion: we replace the old approximation term f(b;)f(7;) with a new one to
obtain ¢"*"(b;)¢"" ;).

7 ) = alt) T8 = V) ) (12
) = 0V ) ) (13



2.1 Approximate moment matching for incorporating likelihood
terms

This section proposes an efficient way to approximate the needed moments in the projection
step when incorporating the likelihood terms g;(b, s).
We define the normalization constants Z and Zj,:

Z = Z/q\i(b,s)gi(b,s)ds (14)
> /N(?/if > aijisibi o) [T " 0) ] 0" (s41b5)ds (15)

{bm}tmes jed jedJ jeJ
Ly, = Z /N(yz| Za\i—j|8jbj70¢) H q\i(bj) H q\i(5j|bj)ds (16)
{bm btk mes jeJ j#kjeT j#kged

where J represents the set {j : a;_; > 0}. Given Z and Z,, we can easily compute the
q(by) as follows:

. ; Z
q(bg) = ¢\ (bk)%

However, a direct and exact calculation of Z and Z,, is computationally expensive because
of the high-dimensional integration over s and summation over {b, }mzkmes. Therefore, we
propose the following method to approximate Z and Z, .

Define y, = Z#k ai—j5;b; + n;, where n; ~ N(0,0;). The probability distribution
of yi is a mixture of independent distributions of s;b; and n;. We approximate 3, =
Z#k aji—j|8jb; + n; by a Gaussian distribution with mean m; and variance vy based on
moment matching, such that the approximate distribution N (i x|mg, vi) has the same mean
and variance as the exact distribution:

Z Z/b 55q" Vi(s4]D5)dsm (18)

(17)

j#k,jeT b;
Y Vb =1)<s; > (19)
JFk,jed
w=0lt Y (0= Do, +a (b =D - ¢ =) <s5>")  (20)
jF#k,geJ

where < s; > and v,; are, respectively, the mean and the variance of q\'(sj|b; = 1). This
approximation can be justified by the central limit theorem: the distribution of the sum-
mation of many similar independent variables converges to a Gaussian distribution. Having
obtained my and zj, we can rewrite Z and Z;, as follows:

Ly, & /N(yz — )| Skbk M, uk)q" (0k) " (sk |bg)dsi, (21)

72 =3 0" () %, (22)



where ¢\'(s{|b) = Gamma(si\céé,dx). Then, we use the Hermite-Gauss quadrature to
approximate the integration in equation (21). The Hermite-Gauss quadrature is a nu-
merical integration technique. It approximates an integration as a weighted sum of inte-
grants evaluated at quadrature nodes. As with importance sampling, it is crucial to have
a good proposal distribution to draw the quadrature nodes. Ideally the Gaussian pro-
posal distribution should be similar to the distribution §(sg|b;), which is proportional to
[N (y; — a|i_k‘skbk|mk,vk)q\i(sk|bj)dsk. Therefore, we want to use a Gaussian distribution
that has the same moments as §(sx|b;). Since we have not obtained the new approximate
posterior ¢(s|b;) yet, we match the moments of the Gaussian proposal distribution with
those of q(sk|bx):

N (yi — apipisebilme, vi) gV (sg|b
Ly, R / ’ | K/(zkilk k/\k)k) L k)N(Sk\//«k,)\k)dsk (23)
~ ng./\/(yi — ik SEDx M, v )0V (7] k) (24)

N (sl Ar)

where g and A, are, respectively, the mean and variance of ¢(sg|bg), and s¢ and w? are,
respectively, the Gaussian-Hermite quadrature node and the corresponding weight from
N (sg|pn, Ar). Note that from equation (21), we can directly compute Z,, o without us-
ing any approximation:

Zp=0 = N (yilmy, vp,) (25)

Similarly, we can compute the new mean and the new variance of ¢(sg|bx) as follows:

= —/sk/\/ yl|z:a|Z 51850, 0%) l_Iq\Z Hq\l s;1bj)d (26)

jeJ jeJ jed
1 . wISIN (y; — apsiby|my, vi) gV (s2|bx)
— \¢ b k ] k > k 27
z %q 2 N (sl A e
/\ / N yz| Z Qli— j\sjbp o) H q\l ) H q\i(3j|bj)ds - :ugk (28)
jeJ jeJ jed
1 , w9 (s9)2N (yi — arsibr|mn, vi) gV (57 |br)
— \i(p k ‘ k ’ k 2 9

It is not difficult to see that §(sk|bx = 0) = q(sk|bx = 0). Therefore, we only need to use
equations (28) and (29) to compute the new mean and the new variance of ¢(sx|by = 1).

Finally, we convert the moment parameters into the natural parameters ¢, and chk of
the Gamma distributions for §(s|b):

by — Iubk/)\bk (30)
dbk = /’Lbkﬁbk (31)

Once having the natural parameters of ¢(sx|bx) and ¢(bg), it is straightforward to compute
q(sk, br) = 4(551bx)q(br)-



2.2 Moment matching for incorporating prior terms
This section presents moment matchmg when incorporating the prior terms f;(b;, 7;) =

\j
; % (1 7)1 b, Given ¢V () o 757 (1 ;)P "~ we compute the normalization constants

j
when processing these terms:

/q\J i1 — ;) bida, (32)
[(ap, )T (Bs,) (5b )

33
F(Oéb + By,) (33)
7= qY(m;) 7%, (34)
bj
where I'(-) is a Gamma function, and
s, = o+, (35)
By, =B = b+ 1, (36)
Having Z,, and Z, we can compute ¢(b;) easily:
) 7,
b)) = (b)) 2 (37)
Then we compute the mean m,; and variance v,, of ¢(m;) as follows:
Oébj
Maj|p; = ——>— 38
]‘bj abj +6b] ( )
My, b'ﬁbj
Unjlo; = L (39)

(abj + /Bbj)(abj + Bbj + 1)

My, = Zd(bj)mﬁj\bj (40)
bj

= Z q/\(b])(mfl’]‘b] + ,Uﬂ'j‘bj) - m72rj (41)
b

Finally, we convert the moment parameters into the natural parameters ¢&; and Bj of the
Beta distribution for §(r;):

mg.
& = (1 —mg)—2 — my, (42)
X 1
B = aj(mﬂj - 1) (43)



