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1 Introduction
In this report, we present a novel approach for approximate Bayesian inference on large-scalenetworks. Spe�ci�cally, we consider the following model.First, we write down the likelihood function of the data as

p(yjb; s) =Y
k

Y
i
p(yki jb; s) (1)

=Y
k

Y
i
N (yki j X

j:aji�jj>0
aji�jjsjbj; �i): (2)

where k indexes experimental replicates, i indexes the probe positions, j indexes the bindingpositions, andN (�jPj aji�jjsjbj; �i) represents the probability density function of a Gaussiandistribution with mean Pj aji�jjsjbj and variance �i.We assign prior distributions on the binding event bj and the binding strength sj:
p(bjj�j) = �bjj (1� �j)1�bj (3)
p0(sj) = Gamma(sjjc0; d0) (4)

where Gamma(�jc0; d0) stands for the probability density functions of Gamma distributionswith hyperparameters c0 and d0.We assign a hyperprior distribution on the binding probability �j as:
p0(�j) = Beta(�jj�0; �0) (5)

2 Approximate Expectation Propagation for Bayesian
inference

First, given the data likelihood (2), the prior distributions (3) and (4) on the binding eventb and strength s, and the hyperprior distribution (5) on the binding probability �, theposterior distribution p(b; s;�jy) is proportional to the joint distribution p(b; s;�;y):
p(b; s;�jy) / p(b; s;�;y) =Y

i
gi(b; s)Y

j
p0(�j)fj(bj; �j)p0(sj)
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where i indexes probe positions, j indexes binding positions, fj(bj; �j) = p(bjj�j) is theprior for bj, gi(b; s) = N (yijPj aji�jjsjbj; �i) is the likelihood for the observation at the ithprobe position, p0(�j) is the hyperprior distribution of �j, and p(bjj�j) and p0(sj) are theprior distributions of bj and sj, respectively. For simplicity and clarity, here we drop thesuperscript k, which indexes replicates, and only consider the case of one replicate. Sincethe posterior distribution p(b; s;�jy) cannot be computed in a closed form, we use EP toapproximate this complicated posterior distribution by a distribution in the exponentialfamily.EP exploits the fact that the posterior is a product of simple terms. EP iteratively re�nesthe approximation of each term to improve the approximation of the posterior. Mathemati-cally, EP approximates p(b; s;�jy) as q(b; s;�):
q(b; s;�) =Y

j
q(bj; sj)q(�j) =Y

i

Y
j:aji�jj>0

~gi(bj; sj)Y
j
p0(�j)p0(sj) ~fj(bj) ~fj(�j) (6)

where gi(b; s) = Qj:aji�jj>0 ~gi(bj; sj) is the approximation term corresponding to the likeli-
hood term gi(b; s), and ~fj(bj) ~fj(�j) is the approximation term corresponding to the priorterm fj(bj; �j). For simplicity, we denote fj(bj; �j) and ~fj(bj) ~fj(�j) as f(bj; �j) and ~f(bj) ~f(�j),respectively. We use a mixture of Gamma distributions to model q(bj; sj), i.e.,

q(bj; sj) = q(bj)q(sjjbj)
where q(bj) is a binomial distribution and q(sjjbj) is a Gamma distribution conditional onthe binding event bj. Note that q(bj; sj) is still in the exponential family though it is amixture model.After initializing q(bj = 1) = 0:5, q(sjjbj) = p0(sj), and q(�j) = p0(�j), EP iterativelyperforms the following two phases, each of which has three steps, to re�ne the approximateposterior q(b; s;�), until reaching convergence or the maximal number of iterations:

1. Process each likelihood term as follows:
(a) Deletion: we compute the \leave-one-out" approximate posterior qni(b; s), bydividing the current approximate posterior q(b)q(sjb) by the old approximationterm gi(b; s) =Qj:aji�jj>0 ~gi(bj; sj).

qni(b; s) / q(b; s)Q
j ~gi(bj; sj) (7)

(b) Projection: given the \leave-one-out" approximate posterior qni(b; s), we compute
q̂(b; s) = argmin

�q(b;s)
KL(qni(b; s)gi(b; s)jj�q(b; s))

This step can be interpreted as projecting a complicated distribution qni(b; s)gi(b; s)into a simpler distribution q̂(b; s), through the above KL minimization. This
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minimization can be achieved by matching the moments of q̂(b; s) to those ofqni(b; s)gi(b; s). However, the computation of the moments of qni(b; s)gi(b; s) isnot tractable since the likelihood term gi(b; s) involves many latent variables bjand sj, leading to a high-dimensional integration over sj and summation overbj. To address this problem, we approximate the needed integrations based onGaussian approximation and quadratures (See Section 2.1).Given q̂(b; s), we update ~gnewi (b; s) as follows:
~gnewi (b; s) / �q̂(b; s)=qni(b; s)��~gi(b; s)1��;

where � is a step size that controls the update speed.
(c) Inclusion: we replace the old approximation term ~gi(b; s) with a new one to obtainqnew(b; s).

qnew(b; s) = q(b; s) ~gnewi (b; s)~gi(b; s) = qni(b; s)~gnewi (b; s) (8)
2. Process each prior term f(bj; �j) as follows:

(a) Deletion: we compute the \leave-one-out" approximate posterior qni(bj; �j), bydividing the current approximate posterior q(bj)q(�j) by the old approximationterm ~f(bj) ~f(�j).
qnj(bj; �j) = qnj(bj)qnj(�j) / q(bj)q(�j)~f(bj) ~f(�j) (9)

(b) Projection: given the \leave-one-out" approximate posterior qni(bj; �j), we com-pute q̂(bj)q̂(�j) = argmin
�q(bj)�q(�j)

KL(qnj(bj; �j)f(bj; �j)jj�q(bj)�q(�j))
The above KL divergence can be minimized by moment matching. The detailsare in Section 2.2. Given q̂(bj)q̂(�j), we update ~fnew(bj) ~fnew(�j) as follows:

~fnew(bj) / �q̂(bj)=qnj(bj)�� ~f(bj)1�� (10)~fnew(�j) / �q̂(�j)=qnj(�j)�� ~f(�j)1�� (11)
where � is a step size that controls the update speed.

(c) Inclusion: we replace the old approximation term ~f(bj) ~f(�j) with a new one toobtain qnew(bj)qnew�j).
qnew(bj) = q(bj) ~fnew(bj)~f(bj) = qnj(bj) ~fnew(bj) (12)
qnew(�j) = qnj(�j) ~fnew(�j) (13)
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2.1 Approximate moment matching for incorporating likelihood

terms

This section proposes an e�cient way to approximate the needed moments in the projectionstep when incorporating the likelihood terms gi(b; s).We de�ne the normalization constants Z and Zbk :
Z =X

b

Z qni(b; s)gi(b; s)ds (14)
= X

fbmgm2J

Z N (yijX
j2J

aji�jjsjbj; �i)Y
j2J

qni(bj)Y
j2J

qni(sjjbj)ds (15)
Zbk = X

fbmgm 6=k;m2J

Z N (yijX
j2J

aji�jjsjbj; �i) Y
j 6=k;j2J

qni(bj) Y
j 6=k;j2J

qni(sjjbj)ds (16)
where J represents the set fj : aji�jj > 0g. Given Z and Zbk , we can easily compute theq(bk) as follows:

q̂(bk) = qni(bk)ZbkZ (17)
However, a direct and exact calculation of Z and Zbk is computationally expensive becauseof the high-dimensional integration over s and summation over fbmgm 6=k;m2J . Therefore, wepropose the following method to approximate Z and Zbk .De�ne ynk = P

j 6=k aji�jjsjbj + ni, where ni � N (0; �i). The probability distributionof yk is a mixture of independent distributions of sjbj and ni. We approximate ynk =P
j 6=k aji�jjsjbj + ni by a Gaussian distribution with mean mk and variance vk based onmoment matching, such that the approximate distribution N(ynkjmk; vk) has the same meanand variance as the exact distribution:

mk = X
j 6=k;j2J

X
bj

Z bjsjqni(bj)qni(sjjbj)dsm (18)
= X

j 6=k;j2J
qni(bj = 1) < sj > (19)

vk = �2
i + X

j 6=k;j2J

�qni(bj = 1)vsj + qni(bj = 1)(1� qni(bj = 1)) < sj >2 � (20)
where < sj > and vsj are, respectively, the mean and the variance of qni(sjjbj = 1). Thisapproximation can be justi�ed by the central limit theorem: the distribution of the sum-mation of many similar independent variables converges to a Gaussian distribution. Havingobtained mk and zk, we can rewrite Z and Zbk as follows:

Zbk �
Z N (yi � aji�kjskbkjmk; vk)qni(bk)qni(skjbk)dsk (21)

Z =X
bk

qni(bk)Zbk (22)
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where qni(sgkjbk) = Gamma(sgkjcnibk ; dnibk). Then, we use the Hermite-Gauss quadrature toapproximate the integration in equation (21). The Hermite-Gauss quadrature is a nu-merical integration technique. It approximates an integration as a weighted sum of inte-grants evaluated at quadrature nodes. As with importance sampling, it is crucial to havea good proposal distribution to draw the quadrature nodes. Ideally the Gaussian pro-posal distribution should be similar to the distribution q̂(skjbj), which is proportional toR N (yi � aji�kjskbkjmk; vk)qni(skjbj)dsk. Therefore, we want to use a Gaussian distributionthat has the same moments as q̂(skjbj). Since we have not obtained the new approximateposterior q̂(skjbj) yet, we match the moments of the Gaussian proposal distribution withthose of q(skjbk):
Zbk �

Z N (yi � aji�kjskbkjmk; vk)qni(skjbk)N (skj�k; �k) N (skj�k; �k)dsk (23)
�X

g
wgN (yi � aji�kjsgkbkjmk; vk)qni(sgkjbk)N (sgkj�k; �k) (24)

where �k and �k are, respectively, the mean and variance of q(skjbk), and sg and wg are,respectively, the Gaussian-Hermite quadrature node and the corresponding weight fromN (skj�k; �k). Note that from equation (21), we can directly compute Zbk=0 without us-ing any approximation:
Zbk=0 = N (yijmk; vk) (25)

Similarly, we can compute the new mean and the new variance of q̂(skjbk) as follows:
�bk = 1Zbk

Z skN (yijX
j2J

aji�jjsjbj; �i)Y
j2J

qni(bj)Y
j2J

qni(sjjbj)ds (26)
= 1Z

X
bk

qni(bk)X
g

wgsgkN (yi � aksgkbkjmk; vk)qni(sgkjbk)N (sgkj�k; �k) (27)
�bk = 1Zbk

Z s2kN (yijX
j2J

aji�jjsjbj; �i)Y
j2J

qni(bj)Y
j2J

qni(sjjbj)ds� �2
bk (28)

= 1Z
X
bk

qni(bk)X
g

wg(sgk)2N (yi � aksgkbkjmk; vk)qni(sgkjbk)N (sgkj�k; �k) � �2
bk (29)

It is not di�cult to see that q̂(skjbk = 0) � q(skjbk = 0). Therefore, we only need to useequations (28) and (29) to compute the new mean and the new variance of q̂(skjbk = 1).Finally, we convert the moment parameters into the natural parameters ĉbk and d̂bk ofthe Gamma distributions for q̂(skjbk):
ĉbk = �bk=�bk (30)
d̂bk = �bk�bk (31)

Once having the natural parameters of q̂(skjbk) and q̂(bk), it is straightforward to computeq̂(sk; bk) = q̂(skjbk)q̂(bk).
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2.2 Moment matching for incorporating prior terms

This section presents moment matching when incorporating the prior terms fj(bj; �j) =
�bjj (1��j)1�bj . Given qnj(�j) / ��njj �1

j (1��j)�njj �1, we compute the normalization constantswhen processing these terms:
Zbj =

Z qnj(�j)�bjj (1� �j)1�bjd�j (32)
/ �(�bj)�(�bj)�(�bj + �bj) (33)

Z =X
bj

qnj(�j)Zbj (34)
where �(�) is a Gamma function, and

�bj = �nj
j + bj (35)

�bj = �njj � bj + 1; (36)
Having Zbj and Z, we can compute q̂(bj) easily:

q̂(bj) = qnj(bj)ZbjZ (37)
Then we compute the mean m�j and variance v�j of q̂(�j) as follows:

m�j jbj = �bj�bj + �bj (38)
v�j jbj = m�j jbj�bj(�bj + �bj)(�bj + �bj + 1) (39)
m�j =X

bj
q̂(bj)m�j jbj (40)

v�j =X
bj

q̂(bj)(m2
�j jbj + v�j jbj)�m2

�j (41)
Finally, we convert the moment parameters into the natural parameters �̂j and �̂j of theBeta distribution for q̂(�j):

�̂j = (1�m�j)m2
�jv�j �m�j (42)

�̂j = �j( 1m�j
� 1) (43)
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