Approximate Expectation Propagation for Bayesian Inference on Large-scale Problems

Yuan Qi, Tommi S. Jaakkola, and David K. Gifford, MIT Computer Science and Artificial Intelligence Laboratory

October, 2005

1 Introduction

In this report, we present a novel approach for approximate Bayesian inference on large-scale networks. Speficifically, we consider the following model.

First, we write down the likelihood function of the data as

$$
\begin{align*}
p(\mathbf{y} \mid \mathbf{b}, \mathbf{s}) & =\prod_{k} \prod_{i} p\left(y_{i}^{k} \mid \mathbf{b}, \mathbf{s}\right) \tag{1}\\
& =\prod_{k} \prod_{i} \mathcal{N}\left(y_{i}^{k} \mid \sum_{j: a_{|i-j|}>0} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right) . \tag{2}
\end{align*}
$$

where k indexes experimental replicates, i indexes the probe positions, j indexes the binding positions, and $\mathcal{N}\left(\cdot \mid \sum_{j} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right)$ represents the probability density function of a Gaussian distribution with mean $\sum_{j} a_{|i-j|} s_{j} b_{j}$ and variance σ_{i}.

We assign prior distributions on the binding event b_{j} and the binding strength s_{j} :

$$
\begin{align*}
p\left(b_{j} \mid \pi_{j}\right) & =\pi_{j}^{b_{j}}\left(1-\pi_{j}\right)^{1-b_{j}} \tag{3}\\
p_{0}\left(s_{j}\right) & =\operatorname{Gamma}\left(s_{j} \mid c_{0}, d_{0}\right) \tag{4}
\end{align*}
$$

where Gamma $\left(\cdot \mid c_{0}, d_{0}\right)$ stands for the probability density functions of Gamma distributions with hyperparameters c_{0} and d_{0}.

We assign a hyperprior distribution on the binding probability π_{j} as:

$$
\begin{equation*}
p_{0}\left(\pi_{j}\right)=\operatorname{Beta}\left(\pi_{j} \mid \alpha_{0}, \beta_{0}\right) \tag{5}
\end{equation*}
$$

2 Approximate Expectation Propagation for Bayesian inference

First, given the data likelihood (2), the prior distributions (3) and (4) on the binding event \mathbf{b} and strength \mathbf{s}, and the hyperprior distribution (5) on the binding probability $\boldsymbol{\pi}$, the posterior distribution $p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi} \mid \mathbf{y})$ is proportional to the joint distribution $p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi}, \mathbf{y})$:

$$
p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi} \mid \mathbf{y}) \propto p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi}, \mathbf{y})=\prod_{i} g_{i}(\mathbf{b}, \mathbf{s}) \prod_{j} p_{0}\left(\pi_{j}\right) f_{j}\left(b_{j}, \pi_{j}\right) p_{0}\left(s_{j}\right)
$$

where i indexes probe positions, j indexes binding positions, $f_{j}\left(b_{j}, \pi_{j}\right)=p\left(b_{j} \mid \pi_{j}\right)$ is the prior for $b_{j}, g_{i}(\mathbf{b}, \mathbf{s})=\mathcal{N}\left(y_{i} \mid \sum_{j} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right)$ is the likelihood for the observation at the $i^{\text {th }}$ probe position, $p_{0}\left(\pi_{j}\right)$ is the hyperprior distribution of π_{j}, and $p\left(b_{j} \mid \pi_{j}\right)$ and $p_{0}\left(s_{j}\right)$ are the prior distributions of b_{j} and s_{j}, respectively. For simplicity and clarity, here we drop the superscript k, which indexes replicates, and only consider the case of one replicate. Since the posterior distribution $p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi} \mid \mathbf{y})$ cannot be computed in a closed form, we use EP to approximate this complicated posterior distribution by a distribution in the exponential family.

EP exploits the fact that the posterior is a product of simple terms. EP iteratively refines the approximation of each term to improve the approximation of the posterior. Mathematically, EP approximates $p(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi} \mid \mathbf{y})$ as $q(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi})$:

$$
\begin{equation*}
q(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi})=\prod_{j} q\left(b_{j}, s_{j}\right) q\left(\pi_{j}\right)=\prod_{i} \prod_{j: a_{|i-j|}>0} \tilde{g}_{i}\left(b_{j}, s_{j}\right) \prod_{j} p_{0}\left(\pi_{j}\right) p_{0}\left(s_{j}\right) \tilde{f}_{j}\left(b_{j}\right) \tilde{f}_{j}\left(\pi_{j}\right) \tag{6}
\end{equation*}
$$

where $g_{i}(\mathbf{b}, \mathbf{s})=\prod_{j: a_{|i-j|}>0} \tilde{g}_{i}\left(b_{j}, s_{j}\right)$ is the approximation term corresponding to the likelihood term $g_{i}(\mathbf{b}, \mathbf{s})$, and $\tilde{f}_{j}\left(b_{j}\right) \tilde{f}_{j}\left(\pi_{j}\right)$ is the approximation term corresponding to the prior term $f_{j}\left(b_{j}, \pi_{j}\right)$. For simplicity, we denote $f_{j}\left(b_{j}, \pi_{j}\right)$ and $\tilde{f}_{j}\left(b_{j}\right) \tilde{f}_{j}\left(\pi_{j}\right)$ as $f\left(b_{j}, \pi_{j}\right)$ and $\tilde{f}\left(b_{j}\right) \tilde{f}\left(\pi_{j}\right)$, respectively. We use a mixture of Gamma distributions to model $q\left(b_{j}, s_{j}\right)$, i.e.,

$$
q\left(b_{j}, s_{j}\right)=q\left(b_{j}\right) q\left(s_{j} \mid b_{j}\right)
$$

where $q\left(b_{j}\right)$ is a binomial distribution and $q\left(s_{j} \mid b_{j}\right)$ is a Gamma distribution conditional on the binding event b_{j}. Note that $q\left(b_{j}, s_{j}\right)$ is still in the exponential family though it is a mixture model.

After initializing $q\left(b_{j}=1\right)=0.5, q\left(s_{j} \mid b_{j}\right)=p_{0}\left(s_{j}\right)$, and $q\left(\pi_{j}\right)=p_{0}\left(\pi_{j}\right)$, EP iteratively performs the following two phases, each of which has three steps, to refine the approximate posterior $q(\mathbf{b}, \mathbf{s}, \boldsymbol{\pi})$, until reaching convergence or the maximal number of iterations:

1. Process each likelihood term as follows:
(a) Deletion: we compute the "leave-one-out" approximate posterior $q^{\backslash i}(\mathbf{b}, \mathbf{s})$, by dividing the current approximate posterior $q(\mathbf{b}) q(\mathbf{s} \mid \mathbf{b})$ by the old approximation $\operatorname{term} g_{i}(\mathbf{b}, \mathbf{s})=\prod_{j: a_{|i-j|}>0} \tilde{g}_{i}\left(b_{j}, s_{j}\right)$.

$$
\begin{equation*}
q^{i}(\mathbf{b}, \mathbf{s}) \propto \frac{q(\mathbf{b}, \mathbf{s})}{\prod_{j} \tilde{g}_{i}\left(b_{j}, s_{j}\right)} \tag{7}
\end{equation*}
$$

(b) Projection: given the "leave-one-out" approximate posterior $q^{{ }^{i}}(\mathbf{b}, \mathbf{s})$, we compute

$$
\hat{q}(\mathbf{b}, \mathbf{s})=\underset{q(\mathbf{b}, \mathbf{s})}{\operatorname{argmin}} K L\left(q^{\backslash i}(\mathbf{b}, \mathbf{s}) g_{i}(\mathbf{b}, \mathbf{s}) \| \dot{q}(\mathbf{b}, \mathbf{s})\right)
$$

This step can be interpreted as projecting a complicated distribution $q^{\backslash i}(\mathbf{b}, \mathbf{s}) g_{i}(\mathbf{b}, \mathbf{s})$ into a simpler distribution $\hat{q}(\mathbf{b}, \mathbf{s})$, through the above KL minimization. This
minimization can be achieved by matching the moments of $\hat{q}(\mathbf{b}, \mathbf{s})$ to those of $q^{\backslash i}(\mathbf{b}, \mathbf{s}) g_{i}(\mathbf{b}, \mathbf{s})$. However, the computation of the moments of $q^{i}(\mathbf{b}, \mathbf{s}) g_{i}(\mathbf{b}, \mathbf{s})$ is not tractable since the likelihood term $g_{i}(\mathbf{b}, \mathbf{s})$ involves many latent variables b_{j} and s_{j}, leading to a high-dimensional integration over s_{j} and summation over b_{j}. To address this problem, we approximate the needed integrations based on Gaussian approximation and quadratures (See Section 2.1).
Given $\hat{q}(\mathbf{b}, \mathbf{s})$, we update $\tilde{g}_{i}^{\text {new }}(\mathbf{b}, \mathbf{s})$ as follows:

$$
\tilde{g}_{i}^{\text {new }}(\mathbf{b}, \mathbf{s}) \propto\left(\hat{q}(\mathbf{b}, \mathbf{s}) / q^{\backslash i}(\mathbf{b}, \mathbf{s})\right)^{\lambda} \tilde{g}_{i}(\mathbf{b}, \mathbf{s})^{1-\lambda}
$$

where λ is a step size that controls the update speed.
(c) Inclusion: we replace the old approximation term $\tilde{g}_{i}(\mathbf{b}, \mathbf{s})$ with a new one to obtain $q^{\text {new }}(\mathbf{b}, \mathbf{s})$.

$$
\begin{equation*}
q^{\mathrm{new}}(\mathbf{b}, \mathbf{s})=q(\mathbf{b}, \mathbf{s}) \frac{\tilde{g}_{i}^{\mathrm{new}}(\mathbf{b}, \mathbf{s})}{\tilde{g}_{i}(\mathbf{b}, \mathbf{s})}=q^{\backslash i}(\mathbf{b}, \mathbf{s}) \tilde{g}_{i}^{\text {new }}(\mathbf{b}, \mathbf{s}) \tag{8}
\end{equation*}
$$

2. Process each prior term $f\left(b_{j}, \pi_{j}\right)$ as follows:
(a) Deletion: we compute the "leave-one-out" approximate posterior $q^{{ }^{i}}\left(b_{j}, \pi_{j}\right)$, by dividing the current approximate posterior $q\left(b_{j}\right) q\left(\pi_{j}\right)$ by the old approximation term $\tilde{f}\left(b_{j}\right) \tilde{f}\left(\pi_{j}\right)$.

$$
\begin{equation*}
q^{\backslash j}\left(b_{j}, \pi_{j}\right)=q^{\backslash j}\left(b_{j}\right) q^{\backslash j}\left(\pi_{j}\right) \propto \frac{q\left(b_{j}\right) q\left(\pi_{j}\right)}{\tilde{f}\left(b_{j}\right) \tilde{f}\left(\pi_{j}\right)} \tag{9}
\end{equation*}
$$

(b) Projection: given the "leave-one-out" approximate posterior $q^{\backslash i}\left(b_{j}, \pi_{j}\right)$, we compute

$$
\hat{q}\left(b_{j}\right) \hat{q}\left(\pi_{j}\right)=\underset{q\left(b_{j}\right) \dot{q}\left(\pi_{j}\right)}{\operatorname{argmin}} K L\left(q^{\backslash j}\left(b_{j}, \pi_{j}\right) f\left(b_{j}, \pi_{j}\right) \| \dot{q}\left(b_{j}\right) \dot{q}\left(\pi_{j}\right)\right)
$$

The above KL divergence can be minimized by moment matching. The details are in Section 2.2. Given $\hat{q}\left(b_{j}\right) \hat{q}\left(\pi_{j}\right)$, we update $\tilde{f}^{\text {new }}\left(b_{j}\right) \tilde{f}^{\text {new }}\left(\pi_{j}\right)$ as follows:

$$
\begin{align*}
\tilde{f}^{\text {new }}\left(b_{j}\right) & \propto\left(\hat{q}\left(b_{j}\right) / q^{\backslash j}\left(b_{j}\right)\right)^{\lambda} \tilde{f}\left(b_{j}\right)^{1-\lambda} \tag{10}\\
\tilde{f}^{\text {new }}\left(\pi_{j}\right) & \propto\left(\hat{q}\left(\pi_{j}\right) / q^{\backslash j}\left(\pi_{j}\right)\right)^{\lambda} \tilde{f}\left(\pi_{j}\right)^{1-\lambda} \tag{11}
\end{align*}
$$

where λ is a step size that controls the update speed.
(c) Inclusion: we replace the old approximation term $\tilde{f}\left(b_{j}\right) \tilde{f}\left(\pi_{j}\right)$ with a new one to obtain $\left.q^{\text {new }}\left(b_{j}\right) q^{\text {new }} \pi_{j}\right)$.

$$
\begin{align*}
q^{\text {new }}\left(b_{j}\right) & =q\left(b_{j}\right) \frac{\tilde{f}^{\text {new }}\left(b_{j}\right)}{\tilde{f}\left(b_{j}\right)}=q^{\backslash j}\left(b_{j}\right) \tilde{f}^{\text {new }}\left(b_{j}\right) \tag{12}\\
q^{\text {new }}\left(\pi_{j}\right) & =q^{\backslash j}\left(\pi_{j}\right) \tilde{f}^{\text {new }}\left(\pi_{j}\right) \tag{13}
\end{align*}
$$

2.1 Approximate moment matching for incorporating likelihood terms

This section proposes an efficient way to approximate the needed moments in the projection step when incorporating the likelihood terms $g_{i}(\mathbf{b}, \mathbf{s})$.

We define the normalization constants Z and $Z_{b_{k}}$:

$$
\begin{align*}
Z & =\sum_{\mathbf{b}} \int q^{\backslash i}(\mathbf{b}, \mathbf{s}) g_{i}(\mathbf{b}, \mathbf{s}) \mathrm{d} \mathbf{s} \tag{14}\\
& =\sum_{\left\{b_{m}\right\}_{m \in J}} \int \mathcal{N}\left(y_{i} \mid \sum_{j \in J} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right) \prod_{j \in J} q^{\backslash i}\left(b_{j}\right) \prod_{j \in J} q^{\backslash i}\left(s_{j} \mid b_{j}\right) \mathrm{ds} \tag{15}\\
Z_{b_{k}} & =\sum_{\left\{b_{m}\right\}_{m \neq k, m \in J}} \int \mathcal{N}\left(y_{i} \mid \sum_{j \in J} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right) \prod_{j \neq k, j \in J} q^{\backslash i}\left(b_{j}\right) \prod_{j \neq k, j \in J} q^{\backslash i}\left(s_{j} \mid b_{j}\right) \mathrm{ds} \tag{16}
\end{align*}
$$

where J represents the set $\left\{j: a_{|i-j|}>0\right\}$. Given Z and $Z_{b_{k}}$, we can easily compute the $q\left(b_{k}\right)$ as follows:

$$
\begin{equation*}
\hat{q}\left(b_{k}\right)=q^{\backslash i}\left(b_{k}\right) \frac{Z_{b_{k}}}{Z} \tag{17}
\end{equation*}
$$

However, a direct and exact calculation of Z and $Z_{b_{k}}$ is computationally expensive because of the high-dimensional integration over s and summation over $\left\{b_{m}\right\}_{m \neq k, m \in J}$. Therefore, we propose the following method to approximate Z and $Z_{b_{k}}$.

Define $y_{\backslash k}=\sum_{j \neq k} a_{|i-j|} s_{j} b_{j}+n_{i}$, where $n_{i} \sim \mathcal{N}\left(0, \sigma_{i}\right)$. The probability distribution of y_{k} is a mixture of independent distributions of $s_{j} b_{j}$ and n_{i}. We approximate $y_{\backslash k}=$ $\sum_{j \neq k} a_{|i-j|} s_{j} b_{j}+n_{i}$ by a Gaussian distribution with mean m_{k} and variance v_{k} based on moment matching, such that the approximate distribution $N\left(y_{\backslash k} \mid m_{k}, v_{k}\right)$ has the same mean and variance as the exact distribution:

$$
\begin{align*}
m_{k} & =\sum_{j \neq k, j \in J} \sum_{b_{j}} \int b_{j} s_{j} q^{\backslash i}\left(b_{j}\right) q^{\backslash i}\left(s_{j} \mid b_{j}\right) \mathrm{d} s_{m} \tag{18}\\
& =\sum_{j \neq k, j \in J} q^{\backslash i}\left(b_{j}=1\right)<s_{j}> \tag{19}\\
v_{k} & =\sigma_{i}^{2}+\sum_{j \neq k, j \in J}\left(q^{\backslash i}\left(b_{j}=1\right) v_{s_{j}}+q^{\backslash i}\left(b_{j}=1\right)\left(1-q^{\backslash i}\left(b_{j}=1\right)\right)<s_{j}>^{2}\right) \tag{20}
\end{align*}
$$

where $<s_{j}>$ and $v_{s_{j}}$ are, respectively, the mean and the variance of $q^{\backslash i}\left(s_{j} \mid b_{j}=1\right)$. This approximation can be justified by the central limit theorem: the distribution of the summation of many similar independent variables converges to a Gaussian distribution. Having obtained m_{k} and z_{k}, we can rewrite Z and $Z_{b_{k}}$ as follows:

$$
\begin{align*}
Z_{b_{k}} & \approx \int \mathcal{N}\left(y_{i}-a_{|i-k|} s_{k} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(b_{k}\right) q^{\backslash i}\left(s_{k} \mid b_{k}\right) \mathrm{d} s_{k} \tag{21}\\
Z & =\sum_{b_{k}} q^{\backslash i}\left(b_{k}\right) Z_{b_{k}} \tag{22}
\end{align*}
$$

where $q^{\backslash i}\left(s_{k}^{g} \mid b_{k}\right)=\operatorname{Gamma}\left(s_{k}^{g} \mid c_{b_{k}}^{\backslash i}, d_{b_{k}}^{\backslash i}\right)$. Then, we use the Hermite-Gauss quadrature to approximate the integration in equation (21). The Hermite-Gauss quadrature is a numerical integration technique. It approximates an integration as a weighted sum of integrants evaluated at quadrature nodes. As with importance sampling, it is crucial to have a good proposal distribution to draw the quadrature nodes. Ideally the Gaussian proposal distribution should be similar to the distribution $\hat{q}\left(s_{k} \mid b_{j}\right)$, which is proportional to $\int \mathcal{N}\left(y_{i}-a_{|i-k|} s_{k} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(s_{k} \mid b_{j}\right) \mathrm{d} s_{k}$. Therefore, we want to use a Gaussian distribution that has the same moments as $\hat{q}\left(s_{k} \mid b_{j}\right)$. Since we have not obtained the new approximate posterior $\hat{q}\left(s_{k} \mid b_{j}\right)$ yet, we match the moments of the Gaussian proposal distribution with those of $q\left(s_{k} \mid b_{k}\right)$:

$$
\begin{align*}
Z_{b_{k}} & \approx \int \frac{\mathcal{N}\left(y_{i}-a_{|i-k|} s_{k} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(s_{k} \mid b_{k}\right)}{\mathcal{N}\left(s_{k} \mid \mu_{k}, \lambda_{k}\right)} \mathcal{N}\left(s_{k} \mid \mu_{k}, \lambda_{k}\right) \mathrm{d} s_{k} \tag{23}\\
& \approx \sum_{g} w^{g} \frac{\mathcal{N}\left(y_{i}-a_{|i-k|} s_{k}^{g} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(s_{k}^{g} \mid b_{k}\right)}{\mathcal{N}\left(s_{k}^{g} \mid \mu_{k}, \lambda_{k}\right)} \tag{24}
\end{align*}
$$

where μ_{k} and λ_{k} are, respectively, the mean and variance of $q\left(s_{k} \mid b_{k}\right)$, and s^{g} and w^{g} are, respectively, the Gaussian-Hermite quadrature node and the corresponding weight from $\mathcal{N}\left(s_{k} \mid \mu_{k}, \lambda_{k}\right)$. Note that from equation (21), we can directly compute $Z_{b_{k}=0}$ without using any approximation:

$$
\begin{equation*}
Z_{b_{k}=0}=\mathcal{N}\left(y_{i} \mid m_{k}, v_{k}\right) \tag{25}
\end{equation*}
$$

Similarly, we can compute the new mean and the new variance of $\hat{q}\left(s_{k} \mid b_{k}\right)$ as follows:

$$
\begin{align*}
\mu_{b_{k}} & =\frac{1}{Z_{b_{k}}} \int s_{k} \mathcal{N}\left(y_{i} \mid \sum_{j \in J} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right) \prod_{j \in J} q^{\backslash i}\left(b_{j}\right) \prod_{j \in J} q^{\backslash i}\left(s_{j} \mid b_{j}\right) \mathrm{d} \mathbf{s} \tag{26}\\
& =\frac{1}{Z} \sum_{b_{k}} q^{\backslash i}\left(b_{k}\right) \sum_{g} \frac{w^{g} s_{k}^{g} \mathcal{N}\left(y_{i}-a_{k} s_{k}^{g} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(s_{k}^{g} \mid b_{k}\right)}{\mathcal{N}\left(s_{k}^{g} \mid \mu_{k}, \lambda_{k}\right)} \tag{27}\\
\lambda_{b_{k}} & =\frac{1}{Z_{b_{k}}} \int s_{k}^{2} \mathcal{N}\left(y_{i} \mid \sum_{j \in J} a_{|i-j|} s_{j} b_{j}, \sigma_{i}\right) \prod_{j \in J} q^{\backslash i}\left(b_{j}\right) \prod_{j \in J} q^{\backslash i}\left(s_{j} \mid b_{j}\right) \mathrm{d} \mathbf{s}-\mu_{b_{k}}^{2} \tag{28}\\
& =\frac{1}{Z} \sum_{b_{k}} q^{i}\left(b_{k}\right) \sum_{g} \frac{w^{g}\left(s_{k}^{g}\right)^{2} \mathcal{N}\left(y_{i}-a_{k} s_{k}^{g} b_{k} \mid m_{k}, v_{k}\right) q^{\backslash i}\left(s_{k}^{g} \mid b_{k}\right)}{\mathcal{N}\left(s_{k}^{g} \mid \mu_{k}, \lambda_{k}\right)}-\mu_{b_{k}}^{2} \tag{29}
\end{align*}
$$

It is not difficult to see that $\hat{q}\left(s_{k} \mid b_{k}=0\right) \approx q\left(s_{k} \mid b_{k}=0\right)$. Therefore, we only need to use equations (28) and (29) to compute the new mean and the new variance of $\hat{q}\left(s_{k} \mid b_{k}=1\right)$.

Finally, we convert the moment parameters into the natural parameters $\hat{c}_{b_{k}}$ and $\hat{d}_{b_{k}}$ of the Gamma distributions for $\hat{q}\left(s_{k} \mid b_{k}\right)$:

$$
\begin{align*}
\hat{c}_{b_{k}} & =\mu_{b_{k}} / \lambda_{b_{k}} \tag{30}\\
\hat{d}_{b_{k}} & =\mu_{b_{k}} \beta_{b_{k}} \tag{31}
\end{align*}
$$

Once having the natural parameters of $\hat{q}\left(s_{k} \mid b_{k}\right)$ and $\hat{q}\left(b_{k}\right)$, it is straightforward to compute $\hat{q}\left(s_{k}, b_{k}\right)=\hat{q}\left(s_{k} \mid b_{k}\right) \hat{q}\left(b_{k}\right)$.

2.2 Moment matching for incorporating prior terms

This section presents moment matching when incorporating the prior terms $f_{j}\left(b_{j}, \pi_{j}\right)=$ $\pi_{j}^{b_{j}}\left(1-\pi_{j}\right)^{1-b_{j}}$. Given $q^{\backslash j}\left(\pi_{j}\right) \propto \pi_{j}^{\alpha_{j}^{\backslash j}-1}\left(1-\pi_{j}\right)^{\beta_{j}^{\backslash j}-1}$, we compute the normalization constants when processing these terms:

$$
\begin{align*}
Z_{b_{j}} & =\int q^{\backslash j}\left(\pi_{j}\right) \pi_{j}^{b_{j}}\left(1-\pi_{j}\right)^{1-b_{j}} \mathrm{~d} \pi_{j} \tag{32}\\
& \propto \frac{\Gamma\left(\alpha_{b_{j}}\right) \Gamma\left(\beta_{b_{j}}\right)}{\Gamma\left(\alpha_{b_{j}}+\beta_{b_{j}}\right)} \tag{33}\\
Z & =\sum_{b_{j}} q^{\backslash j}\left(\pi_{j}\right) Z_{b_{j}} \tag{34}
\end{align*}
$$

where $\Gamma(\cdot)$ is a Gamma function, and

$$
\begin{align*}
\alpha_{b_{j}} & =\alpha_{j}^{\backslash j}+b_{j} \tag{35}\\
\beta_{b_{j}} & =\beta_{j}^{\backslash j}-b_{j}+1, \tag{36}
\end{align*}
$$

Having $Z_{b_{j}}$ and Z, we can compute $\hat{q}\left(b_{j}\right)$ easily:

$$
\begin{equation*}
\hat{q}\left(b_{j}\right)=q^{\backslash j}\left(b_{j}\right) \frac{Z_{b_{j}}}{Z} \tag{37}
\end{equation*}
$$

Then we compute the mean $m_{\pi_{j}}$ and variance $v_{\pi_{j}}$ of $\hat{q}\left(\pi_{j}\right)$ as follows:

$$
\begin{align*}
m_{\pi_{j} \mid b_{j}} & =\frac{\alpha_{b_{j}}}{\alpha_{b_{j}}+\beta_{b_{j}}} \tag{38}\\
v_{\pi_{j} \mid b_{j}} & =\frac{m_{\pi_{j} \mid b_{j}} \beta_{b_{j}}}{\left(\alpha_{b_{j}}+\beta_{b_{j}}\right)\left(\alpha_{b_{j}}+\beta_{b_{j}}+1\right)} \tag{39}\\
m_{\pi_{j}} & =\sum_{b_{j}} \hat{q}\left(b_{j}\right) m_{\pi_{j} \mid b_{j}} \tag{40}\\
v_{\pi_{j}} & =\sum_{b_{j}} \hat{q}\left(b_{j}\right)\left(m_{\pi_{j} \mid b_{j}}^{2}+v_{\pi_{j} \mid b_{j}}\right)-m_{\pi_{j}}^{2} \tag{41}
\end{align*}
$$

Finally, we convert the moment parameters into the natural parameters $\hat{\alpha}_{j}$ and $\hat{\beta}_{j}$ of the Beta distribution for $\hat{q}\left(\pi_{j}\right)$:

$$
\begin{align*}
& \hat{\alpha}_{j}=\left(1-m_{\pi_{j}}\right) \frac{m_{\pi_{j}}^{2}}{v_{\pi_{j}}}-m_{\pi_{j}} \tag{42}\\
& \hat{\beta}_{j}=\alpha_{j}\left(\frac{1}{m_{\pi_{j}}}-1\right) \tag{43}
\end{align*}
$$

