
Ad-hoc Collaborative Document Annotation on a Tablet PC

Albert Huang
Department of Computer Science

Brown University
ashuang@cs.brown.edu

Thomas W. Doeppner and Ugur Cetintemel, Readers
{twd,ugur}@cs.brown.edu

May 2, 2003

1 Abstract

The use of technology as an effective educational
tool has been an elusive goal in the past. Specif-
ically, previous attempts at using small personal
computers in the classroom to aid students as
collaborative and note-taking tools have been
met with lukewarm responses. Many of these
past attempts were hampered by inferior hard-
ware and the lack of an efficient and user-friendly
interface. With the recent introduction of Tablet
PC products on the market, however, the limi-
tations imposed on software developers for mo-
bile computing systems have been dramatically
lowered. We present a collaborative annotation
system that allows students equipped with tablet
computers to work cooperatively in a either an
ad-hoc or a structured wireless classroom setting.

2 Introduction

The Electronic Student Notebook project aims
to investigate the potential of an electronic note-
book as an educational tool, with the intention
of eventually supplanting the paper notebook in
the classroom. Currently, paper notebooks have

the advantage of a virtually negligible cost com-
bined with widespread availability and adoption
that makes them the default choice when taking
down notes or annotations. They also, however,
are often difficult to organize and cumbersome.
Maintaining separate notebooks for each class a
student participates in quickly makes organiza-
tion for a single term difficult, and it is typically
the case that notebooks are discarded soon after
the course ends.

The electronic notebook has the potential
to address the organizational difficulties of pa-
per notebooks by providing an intuitive and
user-friendly interface for managing documents.
Notes taken during class, along with lecture
slides or documents distributed by the professor,
can be saved and easily accessed later on by the
student with the click of a button.

In addition to being able to do all this, how-
ever, the electronic notebook provides us with
the ability to do something we could not achieve
with a typical paper notebook – collaboratively
annotate documents and lecture slides. It is of-
ten the case that students learn better through
the explanations and viewpoints of their peers,
who are usually more similar to the student in
terms of educational background than the pro-

1



fessor. Students may often find it easier to un-
derstand a difficult concept once they have seen
notes taken by other students in the same class.

In this paper, we present a robust system for
collaboratively annotating documents in a class-
room setting. Due to the diverse nature of docu-
ments and file formats, our system aims to sup-
port as many different document formats as pos-
sible, providing an intuitive annotation interface
that is not unlike the paper notebook.

3 Design Rationale

Like most systems, the design must be based on
the needs and requirements of the end user. In
this section, we consider a few of the various sce-
narios that we hope to address and outline some
guiding principles that aid us in designing our
system.

3.1 Usage Scenario

At the beginning of class, the professor dis-
tributes lecture slides for that day. The slides
are immediately multicast to students who are
present in the classroom, and again on demand
as latecomers trickle in. As the professor con-
ducts the lecture, students begin taking notes.
The professor draws on her electronic slides much
the same way she would draw on transparen-
cies, and her notes are multicasted to everyone
present.

Certain students find the professors’ notes
a little easier to understand if viewed in a cer-
tain way, and make private annotations on the
same set of slides. Some students have agreed to
work closely together in the course, and choose to
share their notes with each other, so that as they
annotate the slides, they each see exactly what
notes the others are taking. When the slides be-
come too cluttered with notes, they are able to
choose whose notes to show and whose to hide.

Later on at night, a student decides to review
the material presented during class. Since all the
documents and annotations have been cached lo-
cally, all that needs to be done is choose which
ones to review.

Since their is no need for students to franti-
cally scribble down everything the professor has
written, students are able to focus more atten-
tion the materials being presented. Notes can be
taken not only on the initially distributed slides,
but also on the professors’ own notes made in
real-time.

3.2 Requirement Specification

Clients should be able to:

− create and annotate documents at any
point in time, even when isolated from a
structured network.

− annotate a variety of difference document
formats (e.g. PDF, Word, Powerpoint,
HTML, etc.)

− select sharing policies for annotations on
documents. This could range from not
sharing any notes at all to sharing with a
select number of clients to sharing indis-
criminately with all active clients. Policies
should be set on a document wide basis, so
for any given document either all the notes
are shared, or none at all.

− distribute shared documents and annota-
tions to other clients in a secure and effi-
cient manner. Given our wireless network
environment, a reliable multicast system
should serve this purpose well.

− retrieve previously shared and annotated
documents for review and further annota-
tion.

2



In addition to these requirements, we would
like to be able to apply minor changes and revi-
sions to documents after we have begun annotat-
ing them, and reconcile the old annotations with
the updated document. This is a difficult prob-
lem that has not seen a satisfactory solution to
date, and we do not attempt to fully address it in
this paper. We do, however, provide an interface
in the API for applying changes and revisions in
documents, and leave it to specific implementa-
tions to optionally reconcile updated documents
with old annotations.

4 Architecture

4.1 Document structure

In order to support as many different document
formats as possible, we define a document as a
collection of individual files. The motivation to
diverge from the traditional notion of a docu-
ment as a single file comes primarily from the
desire to support formats like HTML, where a
document is often split across multiple files, es-
pecially when the document contains images that
we also want to preserve.

No attempt is made to interpret what kind
of files are actually part of the document. We
leave this task to the implementation, and treat
all files in a document as a simple collection of
data.

A document, while able to have multiple files,
must have a single file designated as its entry
point. This allows us to determine for the UI
which file to actually load when displaying the
document. For single-file documents such as
PDF and MS Word, the sole file is always the
entry point. For multiple-file documents like
HTML, the entry point is the first page to display
(quite often index.html or a similarly named
file).

Figure 1: representation of a document.

4.2 Annotations

In order to support as many different document
formats and methods of annotation as possible,
we adopt a fairly abstract and high level concept
of an annotation. An annotation is defined by
three properties

User The identity of the user who created the
annotation.

TimeStamp The date and time that the anno-
tation was received on the local client. For
all locally originated annotations, this will
be the creation time. For all other anno-
tations, it will be the time the annotation
was received.

Data The meat of the annotation, this is also
the most abstract. We leave it to the im-
plementation to define the structure of the
annotation data, requiring only that it be
comparable to other objects (for caching
purposes) and serializable, as defined by
the Microsoft .NET CLR.

In our current implementation, annotations
are further described as strokes of ink inter-
pretable by the Microsoft Tablet PC SDK. In
previous implementations, they have been inter-
preted as Microsoft Office Comment objects in-
terpretable by the Office Automation libraries.
Our framework, however, makes no distinction
between these different types and will accept any
serializable data structure as a valid annotation.

3



Figure 2: representation of an annotation

Each document, along with the actual data
files, also has a set of annotations associated with
it and an access specifier that allows the user to
set sharing policies on a document wide basis.
The access specifier operates in three modes.

private The default mode, this is analagous to
the traditional model of note taking where
no notes are shared with any other partic-
ipants.

public All notes taken by the client on the doc-
ument will be multicasted to all partici-
pants. If every participant operates in pub-
lic mode, then the result is almost identical
to the shared whiteboard model of annota-
tion.

custom The user can specify an access control
list, indicating exactly who to share anno-
tations with. Annotations will be securely
unicasted to the selected clients.

4.3 Document Cache

The document cache serves as the repository
where all documents and annotations are stored.
When a user imports a document into the sys-
tem to be annoated, a copy of the document is
made and imported into the cache, leaving the
original files untouched. The cached document
is made available for viewing and sharing, and
is central to both real-time collaborative annota-
tion as well as offline review of past collaboration
sessions.

Figure 3: representation of the document cache

The document cache maintains two notions
of a file – a local file, and a cache file. The
distinction is made to separate the actual sys-
tem level implementation of storing and locating
cached files from the interface we want to present
to users accessing files in the cache. For example,
there is no reason other modules in the system
need to know about where on disk a cached file
resides.

4.3.1 Local File

The local file is little more than a wrapper
around a file on disk. It provides integrity ser-
vices such as computing an MD5 hash of a file,
and read and write operations on the file, but
little more.

4.3.2 Cache File

This is what the document cache exposes to all
other modules. A cache file is a wrapper around
a local file and presents read and write opera-
tions, but does not allow direct access to the
local file. A cache file also provides an inter-
face to iteratively write downloaded portions of
a file to disk, indicate when the local copy is com-
plete, and whether or not the local copy is intact
(by comparing computed MD5 checksums with
checksums advertised by the sender).

4



4.4 Session

The session is the heart of the collaboration sys-
tem. Conceptually, a session is the logical rep-
resentation of a group, class, or project meeting.
Each session contains its own document cache,
which it uses to maintain persistent local copies
so that the user can return later on and review
the results of a collaborative session.

Our concept of a session loosely follows the
client/server model in that a single user must
first host a session before any other users may
participate. Once clients have joined a session,
however, the role of the host is diminshed to
the point where clients may continue to operate
even after the host disconnects (e.g. the pro-
fessor leaves class early while some students are
still engaged in a discussion) Prior to joining a
session, a client must first be authenticated and
authorized by the host before it is allowed to
participate. All communication after the initial
joining process is encrypted via a symmetric key
encryption scheme, where participants are given
the session-wide key upon being authenticated
by the host.

Lastly, it is possible to operate a session in
what we call saved mode. In saved mode, a client
is not connected to any network, but is able to
view the contents of a session’s document cache
and annotations, as well as any other data accu-
mulated throughout the session.

4.5 Reliable Multicast

Most of the messages that will be passed around
on the network will be targeted at multiple lis-
teners. This subsystem provides anonymous reli-
able multicast services built on top of UDP that
provides the same delivery guarantees as a typi-
cal reliable transport protocol such as TCP. This
system was provided by Roberto Almanza as a
part of his Masters Project, and is critical for
scalability of our system to large classrooms.

4.6 Document distribution

Document distribution is done in six stages. We
require the fairly complex exchange of messages
to reduce the likelihood of unnecessary network
traffic in a session with a large number of partici-
pants. Consider the following scenario: Ten stu-
dents are participating in a collaboration session,
looking over three documents. If an eleventh stu-
dent joins late, she must obtain those documents
somehow. A naive approach would be to query
for available documents, and for clients to im-
mediately send all the documents they have. In
our scenario, however, this could potentially re-
sult in the same three documents being sent ten
times each – clearly a waste of network resources.
To solve this problem, we look to typical human
group interaction. If a person asks a question
to which multiple people may know the answer,
people will usually wait a random amount of time
and respond if no one else has responded. In our
case, there is no need to tell a new participant
about a document you have if someone else has
already advertised it.

4.6.1 Document Query

When a client first joins an ongoing session, it
will multicast a query for available documents.

4.6.2 Advertisement

Upon hearing a query, a client will multicast
an advertisement for all the documents it has
cached. 1 A document advertisement will also
be multicasted when a client imports a new docu-
ment into its cache. The advertisement describes
the individual files that make up the document.

1This is actually what we’re trying to avoid, because
in a session with n participants each with the same m
documents, a single document query will generate n ∗ m
advertisements instead of the desired m. This will be
fixed in the future.

5



4.6.3 File Query

When a client detects an advertisement for a file
it does not yet have, it sets a timer to request
the file. If the timer expires before the client
detects a request for the same file, a message is
multicasted requesting the file.

4.6.4 Offer

When a client receives a file query for a file it
has cached, it sets a timer to respond with a
file offer. If the timer expires before the client
detects another offer for the same document, a
message is multicasted offering the file.

4.6.5 File Request

When a client receives an offer for a file, and
the client sent out a file query, it unicasts a file
request to the first client that makes an offer.

4.6.6 Transfer

If a client receives a unicasted file request, then
it will immediately begin multicasting the file.

5 Implementation

5.1 Environment

Previous versions of the Electronic Student
Notebook project, of which this is a continua-
tion, were implemented with C++ and the Mi-
crosoft Foundation Classes library. This time,
however, we chose to switch to C# and the Mi-
crosoft .NET Framework for a number of rea-
sons.

First and foremost, the .NET Framework and
C# language provide an abstract, high level API
in which to create user level applications. As
mentioned earlier, there is built in support for
the concept of serializable objects. Instead of
needing to worry over packet-level protocols and

the order in which we pack the bytes in, we are
able to focus are attention on the content of the
messages being passed. Although this will result
in relatively decreased performance, we make the
reasonable assumption that the platforms we are
targeting have sufficient processor, memory, and
network resources to support our demands. The
systems that we have been testing on all have
1GHz Transmeta processors with 20 GB disks
and 256 MB RAM, comparable to a standard
desktop computer today.

Secondly, the speed of development that we
achieve using the Microsoft .NET toolset could
not be achieved in any other development envi-
ronment. The performance losses that we suffer
as a result of unoptimized message passing and a
bytecode language are heavily offset by the rate
at which we are able to progress.

5.2 API

We separate the core components of our frame-
work, which are described above in section 4,
into a shared library that we expose to specific
implementations. Functionality for creating and
participating in sessions, importing and annotat-
ing documents, and loading saved sessions are all
built into a DLL.

5.3 User interface

The actual interface exposed to the user speci-
fies what document formats it is able to anno-
tate, as well as defines the exact structure of
the annotations and how to display them along-
side the document. Currently, we have built
a GUI based on the Tablet PC SDK that in-
terprets pen strokes as annotations. Supported
document formats are exported into Windows
Metafile (WMF) images and used as an image
underlay on which users are able to write and
draw notes. A print spooler is currently be-
ing implemented that would allow applications

6



to print directly to WMF images that could be
imported and annotated.

In this specific implementation, we have
opted to ignore much of the document specific
data such as hyperlinks and text and treat entire
documents as collections of images. This ham-
pers our ability to revise and update documents,
but also provides a more intuitive interface for
taking annotations. We are also developing a
GUI linking against the same core library that
embeds Microsoft Office application windows in
our UI and automates them to insert annota-
tions. By working directly with the Office file
formats, we are able to preserve all of the origi-
nal document data, as well as efficiently and ef-
fectively apply minor updates and revisions to
documents while still preserving the accuracy of
our notes.

5.4 Supported Document Formats

Currently, our system supports annotating Mi-
crosoft Word and Powerpoint documents, with
support for PDF expected in the near future.
We do not yet have a satisfactory model for an-
notating HTML, largely because our user inter-
face discards all notions of hyperlinks and text.
Being able to annotate without losing document
data was a major consideration in our design,
but for the first implementation we felt the in-
tuitive pen interface gave us more in annotation
versatility than what we lost in document infor-
mation. When the print spooler is finished, we
will also be able to annotate virtually every type
of document format using the same interface.

Because document formats are so diverse, it
would be infeasible to preesent a single unified
annotation interface that could annotate more
than one or two different types of documents
without discarding some document information.
We have made progress in creating annotation
interfaces that annotate without losing data, as
exemplified by our Word and Powerpoint au-

tomation interface, but this requires either the
availability of automation interfaces, or for us to
implement our own interface that can parse and
understand the given document format. Docu-
ment types that satisfy the former requirement
are rare and far between, and the latter is beyond
our current technical abilities.

6 Further Research

In the fall of 2003, our collaborative annotation
system will be deployed in an actual classroom
environment to analyze its effectiveness as an ed-
ucational tool. With a recent donation of Tablet
PCs from Microsoft, we are able to equip a num-
ber of students with Tablet PCs to use for the
class. If successful, we would expand the study
to include additional classes and subjects beyond
computer science.

We have not currently integrated the secu-
rity and authentication subsystem, and it would
be interesting to see its effects once it has been
incorporated into the project.

7 Conclusion

With the introduction of powerful and afford-
able tablet PCs on the general market, more and
more students will be using them in their daily
lives. We introduce a system for investigating
their potential as educational tools in the spe-
cific area of collaborative document annotation.
This system is both robust and adaptive, allow-
ing us to work with a variety of different doc-
ument formats and operate in an unstructured
wireless environment where internet access is not
available.

7



Figure 4: A screen shot of the current user interface. Documents available for annotation appear
in the top left. The user can select sharing modes in the bottom left, and drawing on the current
document with the stylus will result in annotations.

References

[GRI] Griess, Peter. A Distributed, Revision-Controlled Document Storage System for the
Electronic Student Notebook, Senior Honors Thesis

[DOE] Doeppner, Thomas W. An Electronic Notebook, NSF Project Proposal

8


