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Abstract

The Bluetooth specification describes a robust and powerful technology for short-
range wireless communication. Unfortunately, the specification is immense and com-
plicated, presenting a formidable challenge for novice developers. Currently, there
is a lack of satisfactory technical documentation describng Bluetooth application de-
velopment and the parts of the Bluetooth specification that are relevant to software
developers. This thesis explains Bluetooth programming in the context of Inter-
net programming and shows how most concepts in Internet programming are easily
translated to Bluetooth. It describes how these concepts can be implemented in the
GNU/Linux operating system using the BlueZ Bluetooth protocol stack and libraries.
A Python extension module is presented that was created to assist in rapid develop-
ment and deployment of Bluetooth applications. Finally, an inexpensive and trivially
deployed infrastructure for location aware computing is presented, with a series of
experiments conducted to determine how best to exploit such an infrastructure.
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Title: Principal Research Scientist
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Chapter 1

Introduction

This thesis argues that Bluetooth is a suitable technology for indoor location aware

computing, and that it is much simpler to use and program than has previously been

believed. We support this claim by constructing a system for location aware comput-

ing, evaluating it, and explaining how to program the system and Bluetooth devices

using concepts familiar to network programmers. This thesis does not attempt to ex-

plain Bluetooth in detail, as such documents already exist[23]. Rather, it approaches

Bluetooth from a software developer’s perspective, and describes only the portions of

the specification that are relevant to typical network programming tasks.

1.1 Motivation

Fourteen years ago, Mark Weiser laid the foundation for ubiquitous computing in a

seminal paper[32] describing his vision of the computer in years to come. In order

for computers to truly have a positive impact on human society, he wrote, they must

fade into society. They must assist and improve our lives without demanding our

constant care and attention. Technologies such as modern plumbing, electricity, the

telephone system, are all highly structured, complex, and requires years of study to

fully understand and master; yet the average person takes advantage of them every

day without even acknowledging their presence. They have faded into the background

of society, improving our lives without demanding our attention. This is the goal to
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which ubiquitous computing strives.

Imagine, for example, that Stacy is on her way home from work, and stops by

the grocery store. Earlier in the day, Stacy had run out of something but now she

can’t remember what, only that she wanted to pick something up at the grocery.

Fortunately, she glances down at her cell phone, which is telling her to buy some

orange juice. A few hours ago, Stacy told it to remind her the next time she stopped

by the grocery store to pick up some orange juice. Now, upon detecting that she’s

there, her cell phone alerts her.

On her way home, Stacy’s car flashes a warning and tells her that she shouldn’t

take her normal route because an accident has stopped all traffic on the highway. An

on-board computer receives real-time traffic updates and uses them in conjunction

with an internal road map and the current position of the car to calculate a recom-

mended path. Once Stacy responds and asks her car to show her the best way home,

it begins guiding her on an alternate route that avoids the congestion.

Later on, Stacy decides to go to the movies with her friends and catch the latest

showing. As they settle into their seats and watch the previews, none of them notice

that there are no reminders telling them to turn off their cell phones and pagers.

Nobody notices, because they don’t need to. Instead, their cell phones have already

detected that they’ve entered a movie theater and shouldn’t ring out loud in the

middle of the theater. As they shuffle out of the theater and back into their cars,

their cell phones automatically switch back to their normal modes of operation.

We have chosen these examples to emphasize the focus of our research and to

provide a plausible description of how computers may assist us in the near future. In

two of the examples, we chose the cell phone to represent the personal computational

device that almost everyone carries around, the device that assists and improves our

lives while requiring hardly any maintenance at all. We made this choice because

the cell phone is already commonplace. Indeed, a recent report[24] indicates that in

Taiwan, there are more active mobile phone subscriptions than there are people. This

is not an isolated trend, and cell phone usage has grown by staggering proportions all

around the world in recent years. It seems reasonable that with the growing power
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and falling cost of inexpensive computational components, cell phones could easily

become a central platform in ubiquitous computing.

1.2 Location Aware Computing

In all three examples, location-awareness is a crucial component needed for the system

to work properly. When we say that a computational device is location aware, we

mean that it has some notion of its physical location. The form in which the location

is stored can vary from precise latitude-longitude coordinates to broad conceptual

terms such as home, school, the office. Once a computer becomes location aware, it

can then perform different actions depending on its location. It can, as illustrated

above, remind users to actively do something based on where they are. It could

also take action without informing the user, such as switching to silent mode when

entering a meeting, classroom, or movie theater. It could serve as a navigation aid,

instructing the user where to go. There doesn’t even need to be a user nearby for

device to be location aware. A maintenance robot could perform routine tasks such

as sweeping the kitchen floor or taking out the trash if it knew where to do the right

things.

Many people have already had firsthand experience with location aware comput-

ing. The Global Positioning System (GPS)[12] currently serves as the backbone for

many location aware systems. High end vehicles using GPS that can already perform

the tasks mentioned in the second example are available to consumers today. Hav-

ing cemented its usefulness in society, GPS powered applications range from helping

navigationally challenged sailors and hikers find their way home to instantly giving

police the exact coordinates of where a 911 emergency call was placed.

Having identified location awareness as a critical ability needed for an effective

ubiquitous computing system, and having seen the proliferation of GPS and its ef-

fectiveness in providing these services, we might decide that this particular problem

has been solved and move on. Examining it a little more closely, however, reveals

that there are still many challenges that we face in location aware computing. GPS
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currently does not work well indoors or in crowded city environments, where ceil-

ings, walls, and buildings may obstruct the satellite signals needed to obtain a precise

location estimate. As a centralized infrastructure tightly controlled by a single gov-

ernment, GPS is only reliable as the weakest point in the system. In the event of

satellite failure, all GPS receivers would suffer. Finally, GPS can only provide accu-

rate position estimates to within a few meters, which is not sufficient for all purposes.

Although reliability is a concern, it is usually the case that the more important a

system becomes, the more carefully it will be maintained and serviced. The primary

disadvantages of GPS then become its limited precision and its failure to work in

areas without clear satellite reception, which unfortunately happens to be where a

vast portion of the human population spends its time. In order for a computational

device to be location aware in such places, it must utilize some other technology.

1.3 Bluetooth

Bluetooth [8, 9] was originally designed to provide power-efficient, low-cost short range

radio communications, and has matured into a powerful technology widely available

today. According to one market research study, 69 million Bluetooth chips were

shipped in 2003, approximately double that of the previous year, and are forecasted to

grow to 720 million units by 2008[16]. Laptops, cell phones, and PDAs are increasingly

shipped with an integrated Bluetooth radio.

Bluetooth, however, has largely remained confined to large industry, in part due

to its complexity and the lack of clear documentation. The specifications and docu-

ments that are available are generally complicated and convey much more information

than is needed for a single purpose. Most of the literature attempts to explain Blue-

tooth in its entirety, and not simply the parts of Bluetooth that are relevant to a

specific task. Specifically, software developers accustomed to network programming

methods who wish to apply their skills to Bluetooth programming are faced with

both an overwhelming quantity of information about Bluetooth in general as well as

a dearth of concise documentation explaining how their techniques can be easily ap-
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plied. Without the resources and expertise available to large industrial organizations,

novice developers are often turned away from Bluetooth.

This thesis makes four contributions. First, it explains Bluetooth programming in

the context of network programming and shows how techniques and methods typically

used in the latter easily translate to the former. Second, it presents a Python exten-

sion module that provides a simple and intuitive API for Bluetooth programming in

the GNU/Linux operating system. Third, it presents an introduction to Bluetooth

programming using the BlueZ API in the GNU/Linux operating system. Fourth, it

argues that Bluetooth is a technology well suited for creating an infrastructure for

location aware computing. This claim is supported by a description and evaluation

of such a system built and deployed using Bluetooth technologies.
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Chapter 2

Bluetooth programming

This chapter presents an overview of Bluetooth, with a special emphasis on the parts

that concern a software developer. Bluetooth programming is explained in the context

of TCP/IP and Internet programming, as the vast majority of network programmers

are already familiar and comfortable with this framework. It is our belief that the

concepts and terminology introduced by Bluetooth are easier to understand when

presented side by side with the Internet programming concepts most similar to Blue-

tooth.

2.1 Overview

Hovering at over 1,000 pages[8, 9], the Bluetooth specification is quite large and daunt-

ing to the novice developer. But upon closer inspection, it turns out that although

the specification is immense, the typical application programmer is only concerned

with a small fraction of it. A significant part of the specification is dedicated to

lower level tasks such as specifying the different radio frequencies to transmit on, the

timing and signalling protocols, and the intricacies needed to establish communica-

tion. Interspersed with all of this are the portions that are relevant to the application

developer. Although Bluetooth has its own terminology and ways of describing its

various concepts, we find that explaining Bluetooth programming in the context of

Internet programming is easy to understand since almost all network programmers
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are already familiar with those techniques. We do not try to explain in great detail

the actual Bluetooth specification, except where it aids in understanding how it fits

in with Internet programming.

Although Bluetooth was designed from the ground up, independently of the Ether-

net and TCP/IP protocols, it is quite reasonable to think of Bluetooth programming

in the same way as Internet programming. Fundamentally, they have the same prin-

ciples of one device communicating and exchanging data with another device. The

different parts of network programming can be separated into several components

• Choosing a device with which to communicate

• Figuring out how to communicate with it

• Making an outgoing connection

• Accepting an incoming connection

• Sending data

• Receiving data

Some of these components do not apply to all models of network programming. In

a connectionless model, for example, there is no notion of establishing a connection.

Some parts can be trivial in certain scenarios and quite complex in another. If the

numerical IP address of a server is hard-coded into a client program, for example,

then choosing a device is no choice at all. In other cases, the program may need to

consult numerous lookup tables and perform several queries before it knows its final

communication endpoint.

2.2 Choosing a communication partner

Every Bluetooth chip ever manufactured is imprinted with a globally unique 48-bit

address, which we will refer to as the Bluetooth address or device address. This is

identical in nature to the MAC addresses of Ethernet[26], and both address spaces
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are actually managed by the same organization - the IEEE Registration Authority.

These addresses are assigned at manufacture time and are intended to be unique and

remain static for the lifetime of the chip. It conveniently serves as the basic addressing

unit in all of Bluetooth programming.

For one Bluetooth device to communicate with another, it must have some way of

determining the other device’s Bluetooth address. This address is used at all layers

of the Bluetooth communication process, from the low-level radio protocols to the

higher-level application protocols. In contrast, TCP/IP network devices that use

Ethernet as their data link layer discard the 48-bit MAC address at higher layers of

the communication process and switch to using IP addresses. The principle remains

the same, however, in that the unique identifying address of the target device must

be known to communicate with it.

In both cases, the client program will often not have advance knowledge of these

target addresses. In Internet programming, the user will typically supply a host name,

such as csail.mit.edu, which the client must translate to a physical IP address using

the Domain Name System (DNS). In Bluetooth, the user will typically supply some

user-friendly name, such as ”My Phone”, and the client translates this to a numerical

address by searching nearby Bluetooth devices.

2.2.1 Device Name

Since humans do not deal well with 48-bit numbers like 0x000EED3D1829 (in much

the same way we do not deal well with numerical IP addresses like 64.233.161.104),

Bluetooth devices will almost always have a user-friendly name. This name is usually

shown to the user in lieu of the Bluetooth address to identify a device, but ultimately

it is the Bluetooth address that is used in actual communication. For many machines,

such as cell phones and desktop computers, this name is configurable and the user can

choose an arbitrary word or phrase. There is no requirement for the user to choose a

unique name, which can sometimes cause confusion when many nearby devices have

the same name. When sending a file to someone’s phone, for example, the user may

be faced with the task of choosing from 5 different phones, each of which is named
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”My Phone”.

Although names in Bluetooth differ from Internet names in that there is no central

naming authority and names can sometimes be the same, the client program still has

to translate from the user-friendly names presented by the user to the underlying

numerical addresses. In TCP/IP, this involves contacting a local nameserver, issuing

a query, and waiting for a result. In Bluetooth, where there are no nameservers, a

client will instead broadcast inquiries to see what other devices are nearby and query

each detected device for its user-friendly name. The client then chooses whichever

device has a name that matches the one supplied by the user.

2.3 Choosing a transport protocol

Once our client application has determined the address of the host machine it wants

to connect to, it must determine which transport protocol to use. This section de-

scribes the Bluetooth transport protocols closest in nature to the most commonly

used Internet protocols. Consideration is also given to how the programmer might

choose which protocol to use based on the application requirements.

Both Bluetooth and Internet programming involve using numerous different trans-

port protocols, some of which are stacked on top of others. In TCP/IP, many appli-

cations use either TCP or UDP, both of which rely on IP as an underlying transport.

TCP provides a connection-oriented method of reliably sending data in streams, and

UDP provides a thin wrapper around IP that unreliably sends individual datagrams

of fixed maximum length. There are also protocols like RTP for applications such as

voice and video communications that have strict timing and latency requirements.

While Bluetooth does not have exactly equivalent protocols, it does provide pro-

tocols which can often be used in the same contexts as some of the Internet protocols.

2.3.1 RFCOMM + TCP

The RFCOMM protocol provides roughly the same service and reliability guarantees

as TCP. Although the specification explicitly states that it was designed to emulate
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RS-232 serial ports (to make it easier for manufacturers to add Bluetooth capabilities

to their existing serial port devices), it is quite simple to use it in many of the same

scenarios as TCP.

In general, applications that use TCP are concerned with having a point-to-point

connection over which they can reliably exchange streams of data. If a portion of that

data cannot be delivered within a fixed time limit, then the connection is terminated

and an error is delivered. Along with its various serial port emulation properties

that, for the most part, do not concern network programmers, RFCOMM provides

the same major attributes of TCP.

The biggest difference between TCP and RFCOMM from a network programmer’s

perspective is the choice of port number. Whereas TCP supports up to 65535 open

ports on a single machine, RFCOMM only allows for 30. This has a significant impact

on how to choose port numbers for server applications, and is discussed shortly.

2.3.2 L2CAP + UDP

UDP is often used in situations where reliable delivery of every packet is not crucial,

and sometimes to avoid the additional overhead incurred by TCP. Specifically, UDP

is chosen for its best-effort, simple datagram semantics. These are the same criteria

that L2CAP satisfies as a communications protocol.
L2CAP, by default, provides a connection-oriented1 protocol that reliably sends

individual datagrams of fixed maximum length2. Being fairly customizable, L2CAP
can be configured for varying levels of reliability. To provide this service, the trans-
port protocol that L2CAP is built on3 employs an transmit/acknowledgement scheme,
where unacknowledged packets are retransmitted. There are three policies an appli-
cation can use:

• never retransmit

• retransmit until total connection failure (the default)

1The L2CAP specification actually allows for both connectionless and connection-based channels,
but a connectionless channels are rarely used in practice. Since sending “connectionless” data
to a device requires joining its piconet, a time consuming process that is merely establishing a
connection at a lower level, connectionless L2CAP channels afford no advantages over connection-
oriented channels.

2The default maximum length is 672 bytes, but this can be negotiated up to 65535 bytes
3Asynchronous Connection-oriented logical transport
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• drop a packet and move on to queued data if a packet hasn’t been acknowledged
after a specified time limit (0-1279 milliseconds). This is useful when data must
be transmitted in a timely manner.

Although Bluetooth does allow the application to use best-effort communication

instead of reliable communication, several caveats are in order. The reason for this

is that adjusting the delivery semantics for a single L2CAP connection to another

device affects all L2CAP connections to that device. If a program adjusts the de-

livery semantics for an L2CAP connection to another device, it should take care to

ensure that there are no other L2CAP connections to that device. Additionally, since

RFCOMM uses L2CAP as a transport, all RFCOMM connections to that device are

also affected. While this is not a problem if only one Bluetooth connection to that

device is expected, it is possible to adversely affect other Bluetooth applications that

also have open connections.

The limitations on relaxing the delivery semantics for L2CAP aside, it serves as

a suitable transport protocol when the application doesn’t need the overhead and

streams-based nature of RFCOMM, and can be used in many of the same situations

that UDP is used in.

Given this suite of protocols and different ways of having one device communicate

with another, an application developer is faced with the choice of choosing which one

to use. In doing so, we will typically consider the delivery reliability required and

the manner in which the data is to be sent. As shown above and illustrated in Table

2.3.2, we will usually choose RFCOMM in situations where we would choose TCP,

and L2CAP when we would choose UDP.
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Requirement Internet Bluetooth
Reliable, streams-based TCP RFCOMM
Reliable, datagram TCP RFCOMM or L2CAP with infinite retransmit
Best-effort, datagram UDP L2CAP (0-1279 ms retransmit)

Table 2.1: A comparison of the requirements that would lead us to choose certain
protocols. Best-effort streams communication is not shown because it reduces to
best-effort datagram communication.

2.4 Port numbers and the Service Discovery Pro-

tocol

The second part of figuring out how to communicate with a remote machine, once a

numerical address and transport protocol are known, is to choose the port number.

Almost all Internet transport protocols in common usage are designed with the notion

of port numbers, so that multiple applications on the same host may simultaneously

utilize a transport protocol. Bluetooth is no exception, but uses slightly different

terminology. In L2CAP, ports are called Protocol Service Multiplexers, and can take

on odd-numbered values between 1 and 32767. In RFCOMM, channels 1-30 are

available for use. These differences aside, both protocol service multiplexers and

channels serve the exact same purpose that ports do in TCP/IP. L2CAP, unlike

RFCOMM, has a range of reserved port numbers (1-1023) that are not to be used

for custom applications and protocols. This information is summarized in table 2.4.

Through the rest of this thesis, the word port is use in place of protocol service

multiplexer and channel for clarity.

protocol terminology reserved/well-known ports dynamically assigned ports
TCP port 1-1024 1025-65535
UDP port 1-1024 1025-65535
RFCOMM channel none 1-30
L2CAP PSM odd numbered 1-4095 odd numbered 4097 - 32765

Table 2.2: Port numbers and their terminology for various protocols
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In Internet programming, server applications traditionally make use of well known

port numbers that are chosen and agreed upon at design time. Client applications will

use the same well known port number to connect to a server. The main disadvantage

to this approach is that it is not possible to run two server applications which both use

the same port number. Due to the relative youth of TCP/IP and the large number

of available port numbers to choose from, this has not yet become a serious issue.

The Bluetooth transport protocols, however, were designed with many fewer avail-

able port numbers, which means we cannot choose an arbitrary port number at design

time. Although this problem is not as significant for L2CAP, which has around 15,000

unreserved port numbers, RFCOMM has only 30 different port numbers. A conse-

quence of this is that there is a greater than 50% chance of port number collision

with just 7 server applications. In this case, the application designer clearly should

not arbitrarily choose port numbers. The Bluetooth answer to this problem is the

Service Discovery Protocol (SDP).

Instead of agreeing upon a port to use at application design time, the Bluetooth

approach is to assign ports at runtime and follow a publish-subscribe model. The

host machine operates a server application, called the SDP server, that uses one of

the few L2CAP reserved port numbers. Other server applications are dynamically

assigned port numbers at runtime and register a description of themselves and the

services they provide (along with the port numbers they are assigned) with the SDP

server. Client applications will then query the SDP server (using the well defined

port number) on a particular machine to obtain the information they need.

This raises the question of how do clients know which description is the one they

are looking for. The standard way of doing this in Bluetooth is to assign a 128-bit

number, called the Universally Unique Identifier (UUID), at design time. Following

a standard method[18] of choosing this number guarantees choosing a UUID unique

from those chosen by anyone else following the same method. Thus, a client and
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server application both designed with the same UUID can provide this number to the

SDP server as a search term.

As with RFCOMM and L2CAP, only a small portion of SDP has been described

here - those parts most relevant to a network programmer. Among the other ways

SDP can be used are to describe which transport protocols a server is using, to give

information such as a human-readable description of the service provided and who

is providing it, and to search on fields other than the UUID such as the service

name. Another point worth mentioning is that SDP is not even required to create

a Bluetooth application. It is perfectly possible to revert to the TCP/IP way of

assigning port numbers at design time and hoping to avoid port conflicts, and this

might often be done to save some time. In controlled settings such as the computer

science laboratory, this is quite reasonable. Ultimately, however, to create a portable

application that will run in the greatest number of scenarios, the application should

use dynamically assigned ports and SDP.

2.5 Establishing connections and transferring data

It turns out that choosing which machine to connect to and how to connect are the

most difficult parts of Bluetooth programming. In writing a server application, once

the transport protocol and port number to listen on are chosen, building the rest of the

application is essentially the same type of programming most network programmers

are already accustomed to. A server application waiting for an incoming Bluetooth

connection is conceptually the same as a server application waiting for an incoming

Internet connection, and a client application attempting to establish an outbound

connection appears the same whether it is using RFCOMM, L2CAP, TCP, or UDP.

Furthermore, once the connection has been established, the application is oper-

ating with the same guarantees, constraints, and error conditions as are encountered
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in Internet programming. Depending on the transport protocol chosen, packets may

be dropped or delayed. Connections may be severed due to host or link failures. Ex-

ternal factors such as congestion and interference may result in decreased quality of

service. Due to these conceptual similarities, it is perfectly reasonable to treat Blue-

tooth programming of an established connection in exactly the same manner that as

an established connections in Internet programming.

2.6 Bluetooth Profiles + RFCs

Along with the simple TCP, IP, and UDP transport protocols used in Internet pro-

gramming, there are a host of other protocols to specify, in great detail, methods

to route data packets, exchange electronic mail, transfer files, load web pages, and

more. Once standardized by the Internet Engineering Task Force in the form of Re-

quest For Comments (RFCs)[19], these protocols are generally adopted by the wider

Internet community. Similarly, Bluetooth also has a method for proposing, ratifying,

and standardizing protocols and specifications that are eventually adopted by the

Bluetooth community. The Bluetooth equivalent of an RFC is a Bluetooth Profile.

Due to the short-range nature of Bluetooth, the Bluetooth Profiles tend to be com-

plementary to the Internet RFCs, with emphasis on tasks that can assume physical

proximity. For example, there is a profile for exchanging physical location informa-

tion4, a profile for printing to nearby printers5, and a profile for using nearby modems6

to make phone calls. There is even a specification for encapsulating TCP/IP traffic in

a Bluetooth connection, which really does reduce Bluetooth programming to Internet

programming. An overview of all the profiles available is beyond the scope of this

chapter, but they are freely available for download at the Bluetooth website7

4Local Positioning Profile
5Basic Printing Profile
6Dial Up Networking Profile
7http://www.bluetooth.org/spec/
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Chapter 3

PyBluez

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

The Zen of Python, by Tim Peters

Chapter 2 introduced the high level concepts needed to apply standard network

programming techniques to Bluetooth programming. This chapter describes a Linux

Python extension module that allows these concepts to be easily and quickly imple-

mented in just a few lines of code.

Python is a versatile and powerful dynamically typed object oriented language,

providing syntactic clarity along with built-in memory management so that the pro-

grammer can focus on the algorithm at hand without worrying about memory leaks or

matching braces. Although Python has a large and comprehensive standard library,
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Bluetooth support is not yet part of the standard distribution. A well documented

C API allows software developers to create third-party extension modules that ex-

tend the language capabilities and provide access to operating system resources not

otherwise exposed in Python.

PyBluez is a Python extension module written in C that provides access to system

Bluetooth resources in an object oriented, modular manner. It is written for the

GNU/Linux operating system and the BlueZ Bluetooth protocol stack. Appendix A

provides instructions on how to obtain and install PyBluez.

3.1 Choosing a device

Example 3.1 shows a Python program that looks for a nearby device with the user-

friendly name “My Phone”. An explanation of the program follows.

Example 3.1: findmyphone.py

import Bluetooth

target name = ”My Phone”
ta r g e t add r e s s = None

nea rby dev i c e s = bluetooth . d i s c o v e r d e v i c e s ( )

for bdaddr in nea rby dev i c e s :
i f target name == bluetooth . lookup name ( bdaddr ) :

t a r g e t add r e s s = bdaddr
break

i f t a r g e t add r e s s i s not None :
print ” found ta r g e t b luetooth dev i c e with addres s ” , t a r g e t add r e s s

else :
print ” could not f i nd ta r g e t b luetooth dev i c e nearby ”

PyBluez represents a bluetooth address as a string of the form “xx:xx:xx:xx:xx”,

where each x is a hexadecimal character representing one octet of the 48-bit address,

with most significant octets listed first. Bluetooth devices in PyBluez will always be

identified using an address string of this form.

Choosing a device really means choosing a bluetooth address. If only the user-

friendly name of the target device is known, then two steps must be taken to find
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the correct address. First, the program must scan for nearby Bluetooth devices.

The routine discover devices() scans for approximately 10 seconds and returns a list of

addresses of detected devices. Next, the program uses the routine lookup name() to

connect to each detected device, requests its user-friendly name, and compares the

result to the target name.

Since both the Bluetooth detection and name lookup process are probabilis-

tic, discover devices () will sometimes fail to detect devices that are in range, and

lookup name() will sometimes return None to indicate that it couldn’t determine the

user-friendly name of the detected device. In these cases, it may be a good idea to

try again once or twice before giving up.

3.2 Communicating with RFCOMM

Bluetooth programming in Python follows the socket programming model. This is

a concept that should be familiar to almost all network programmers, and makes

the transition from Internet programming to Bluetooth programming much simpler.

Examples 3.2 and 3.3 show how to establish a connection using an RFCOMM socket,

transfer some data, and disconnect.

Example 3.2: rfcomm-server.py

import bluetooth

s e r v e r s o ck=bluetooth . BluetoothSocket ( b luetooth .RFCOMM )

port = 1
s e r v e r s o ck . bind ( ( ”” , port ) )
s e r v e r s o ck . l i s t e n (1 )

c l i e n t s o c k , addres s = s e r v e r s o ck . accept ( )
print ”Accepted connect ion from ” , addres s

data = c l i e n t s o c k . r ecv (1024)
print ” r e c e i v ed [%s ] ” % data

c l i e n t s o c k . c l o s e ( )
s e r v e r s o ck . c l o s e ( )
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Example 3.3: rfcomm-client.py

import bluetooth

bd addr = ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB”

port = 1

sock=bluetooth . BluetoothSocket ( b luetooth .RFCOMM )
sock . connect ( ( bd addr , port ) )

sock . send ( ” h e l l o ! ! ” )

sock . c l o s e ( )

In the socket programming model, a socket represents an endpoint of a commu-

nication channel. Sockets are not connected when they are first created, and are

useless until a call to either connect (client application) or accept (server application)

completes successfully. Once a socket is connected, it can be used to send and receive

data until the connection fails due to link error or user termination.

PyBluez currently supports two types of BluetoothSocket objects: RFCOMM and

L2CAP. The RFCOMM socket, shown above, is created by passing RFCOMM as an ar-

gument to the BluetoothSocket constructor. As the name suggests, it allocates resources

for an RFCOMM based communication channel. The second type of BluetoothSocket,

the L2CAP socket, is described in the next section.

An RFCOMM BluetoothSocket used to accept incoming connections must be at-

tached to operating system resources with the bind method. bind takes in a tuple

specifying the address of the local Bluetooth adapter to use and a port number to

listen on. Usually, there is only one local Bluetooth adapter or it doesn’t matter

which one to use, so the empty string indicates that any local Bluetooth adapter is

acceptable. Once a socket is bound, a call to listen puts the socket into listening

mode and it is then ready to accept incoming connections.

The RFCOMM BluetoothSocket used to establish an outgoing connection connects

to its target with the connect method, which also takes a tuple specifying an address

and port number. In example 3.3, the client tries to connect to the Bluetooth device
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with address “01:23:45:67:89:AB” on port 1. This example, and example 3.2, assumes

that all communication happens on RFCOMM port 1. Section 3.4 shows how to

dynamically choose ports and use SDP to search for which port a server is operating

on.

Error handling code has been omitted for clarity in the examples, but is fairly

straightforward. If any of the Bluetooth operations fail for some reason (e.g. connec-

tion timeout, no local bluetooth resources are available, etc.) then a BluetoothError is

raised with an error message indicating the reason for failure.

3.3 Communicating with L2CAP

Examples 3.4 and 3.5 demonstrate the basics of using L2CAP as a transport proto-

col. As should be fairly obvious, using L2CAP sockets is almost identical to using

RFCOMM sockets. The only difference is passing L2CAP to the BluetoothSocket con-

structor, and choosing an odd port number between 0x1001 and 0x8FFF instead

of 1-30. The default connection settings provide a connection for sending reliably

sequenced datagrams up to 672 bytes in size.

Example 3.4: l2cap-server.py

import bluetooth

s e r v e r s o ck=bluetooth . BluetoothSocket ( b luetooth .L2CAP )

port = 0x1001
s e r v e r s o ck . bind ( ( ”” , port ) )
s e r v e r s o ck . l i s t e n (1 )

c l i e n t s o c k , addres s = s e r v e r s o ck . accept ( )
print ”Accepted connect ion from ” , addres s

data = c l i e n t s o c k . r ecv (1024)
print ” r e c e i v ed [%s ] ” % data

c l i e n t s o c k . c l o s e ( )
s e r v e r s o ck . c l o s e ( )
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Example 3.5: l2cap-client.py

import bluetooth

sock=bluetooth . BluetoothSocket ( b luetooth .L2CAP)

bd addr = ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB”
port = 0x1001

sock . connect ( ( bd addr , port ) )

sock . send ( ” h e l l o ! ! ” )

sock . c l o s e ( )

As a maximum-length datagram protocol, packets sent on L2CAP connections

have an upper size limit. Both devices at the endpoints of a connection maintain

an incoming maximum transmission unit (MTU), which specifies the maximum size

packet can receive. If both parties adjust their incoming MTU, then it is possible

to raise the MTU of the entire connection beyond the 672 byte default up to 65535

bytes. It is also possible, but uncommon, for the two devices to have different MTU

values. In PyBluez, the set l2cap mtu method is used to adjust this value.

l 2 cap so ck = bluetooth . BluetoothSocket ( b luetooth .L2CAP )
.
. # connect the socke t
.

b luetooth . s e t l 2 cap mtu ( l2cap sock , 65535 )

This method is fairly straightforward, and takes an L2CAP BluetoothSocket and a

desired MTU as input. The incoming MTU is adjusted for the specified socket, and

no other sockets are affected. As with all the other PyBluez methods, a failure is

indicated by raising a BluetoothException.

Although we expressed reservations about using unreliable L2CAP channels in

section 2.3.2, there are cases in which an unreliable connection may be desired. Ad-

justing the reliability semantics of a connection in PyBluez is also a simple task, and

can be done with the set packet timeout method

bluetooth . s e t packe t t imeout ( bdaddr , timeout )

set packet timeout takes a Bluetooth address and a timeout, specified in millisec-
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onds, as input and tries to adjust the packet timeout for any L2CAP and RFCOMM

connections to that device. The process must have superuser privileges, and there

must be an active connection to the specified address. The effects of adjusting this

parameter will last as long as any active connections are open, including those which

outlive the Python program.

3.4 Service Discovery Protocol

So far this chapter has shown how to detect nearby Bluetooth device and establish

the two main types of data transport connections, all using fixed Bluetooth address

and port numbers that were determined at design time. As mentioned in section 2.4,

this is not a recommended practice in general.

Dynamically allocating port numbers and using the Service Discovery Protocol

(SDP) to search for and advertise services is a simple process in PyBluez. The

get available port method finds available L2CAP and RFCOMM ports, advertise service

advertises a service with the local SDP server, and find service searches Bluetooth

devices for a specific service.

bluetooth . g e t a v a i l a b l e p o r t ( p ro to co l )

get available port returns the first available port number for the specified protocol.

Currently, only the RFCOMM and L2CAP protocols are supported. get available port

only returns a port number, and does not actually reserve any resources, so it is

possible that the availability changes between the time we call get available port and

bind. If this happens, bind will simply raise a BluetoothException.

bluetooth . a d v e r t i s e s e r v i c e ( sock , name , uuid )

b luetooth . s t o p a dv e r t i s i n g ( sock )

b luetooth . f i n d s e r v i c e ( name = None , uuid = None , bdaddr = None )

These three methods provide a way to advertise services on the local Bluetooth
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device and search for them on one or many remote devices. advertise service takes a

socket that is bound and listening, a service name, and a UUID as input parameters.

PyBluez requires the socket to be bound and listening because there is no point in

advertising a service that does not exist yet. The UUID must always be a string of the

form “xxxx-xxxx-xxxx-xxxx”, where each ’x’ is a hexadecimal digit. The service will

be advertised as long as the socket is open, or until a call is made to stop advertising,

specifying the advertised socket.

find service can search either a single device or all nearby devices for a specific

service. It looks for a service with name and UUID that match name and uuid, at

least one of which must be specified.. If bdaddr is None, then all nearby devices will

be searched. In the special case that ‘‘ localhost” is used for bdaddr, then the locally

advertised SDP services will be searched. Otherwise, the function search the services

provided by the Bluetooth device with address bdaddr.

On return, find service returns a list of dictionaries. Each dictionary contains

information about a matching service and has the entries “host”, “name”, “protocol”,

and “port”. host indicates the address of the device advertising the service, name is

the name of the service advertised, protocol will be either “L2CAP”, “RFCOMM”,

or “UNKNOWN”, and port will be the port number that the service is operating on.

Typically, only the protocol and port number are needed to connect. Examples 3.6

and 3.7 show the RFCOMM client and server from the previous section modified to

use dynamic port assignment and SDP to advertise and discover services.

Here, the server from example 3.2 is modified to use get available port and advertise service .

The (poorly chosen) UUID “1234-5678-9ABC-DEF0” is used to identify the “FooBar

service”. The client from example 3.3 is modified to use find service to search for

the the server, and connects to the first server found. The client makes an implicit

assumption that the transport protocol used by the server is RFCOMM.
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Example 3.6: rfcomm-server-sdp.py

import bluetooth

s e r v e r s o ck=bluetooth . BluetoothSocket ( b luetooth .RFCOMM )

port = bluetooth . g e t a v a i l a b l e p o r t ( b luetooth .RFCOMM )
s e r v e r s o ck . bind ( ( ”” , port ) )
s e r v e r s o ck . l i s t e n (1 )
print ” l i s t e n i n g on port %d” % port

uuid = ”1234−5678−9ABC−DEF0”
bluetooth . a d v e r t i s e s e r v i c e ( s e rve r so ck , ”FooBar Se r v i c e ” , uuid )

c l i e n t s o c k , addres s = s e r v e r s o ck . accept ( )
print ”Accepted connect ion from ” , addres s

data = c l i e n t s o c k . r ecv (1024)
print ” r e c e i v ed [%s ] ” % data

c l i e n t s o c k . c l o s e ( )
s e r v e r s o ck . c l o s e ( )

3.5 Advanced usage

Although the techniques described in this chapter so far should be sufficient for most

Bluetooth applications with simple and straightforward requirements, some applica-

tions may require more advanced functionality or finer control over the Bluetooth sys-

tem resources. This section describes asynchronous device detection and the bluetooth

module.

3.5.1 Asynchronous device discovery

The device discovery and remote name request methods described earlier are both

synchronous methods in that they don’t return until the requests are complete, which

can often taken a long time. During this time, the controlling thread blocks and can’t

do anything else, such as responding to user input or displaying other information.

To avoid this, PyBluez provides the DeviceDiscoverer class for asynchronous device

discovery and name lookup.
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Example 3.7: rfcomm-client-sdp.py

import sys
import bluetooth

uuid = ”1234−5678−9ABC−DEF0”
se rv i c e matche s = bluetooth . f i n d s e r v i c e ( uuid = uuid )

i f l en ( s e rv i c e matche s ) == 0 :
print ” couldn ’ t f i nd the FooBar s e r v i c e ”
sys . e x i t (0 )

f i r s t ma t ch = se rv i c e matche s [ 0 ]
port = f i r s t ma t ch [ ” port ” ]
name = f i r s t ma t ch [ ”name” ]
host = f i r s t ma t ch [ ” host ” ]

print ” connect ing to \”%s \” on %s” % (name , host )

sock=bluetooth . BluetoothSocket ( b luetooth .RFCOMM )
sock . connect ( ( host , port ) )
sock . send ( ” h e l l o ! ! ” )
sock . c l o s e ( )

Example 3.8: asynchronous-inquiry.py

import bluetooth
import s e l e c t

class MyDiscoverer( b luetooth . Dev iceDiscoverer ) :

def p r e i nqu i r y ( s e l f ) :
s e l f . done = False

def dev i c e d i s c o v e r ed ( s e l f , address , d e v i c e c l a s s , name ) :
print ”%s − %s” % ( address , name)

def i nqu i r y comple t e ( s e l f ) :
s e l f . done = True

d = MyDiscoverer ( )
d . f i n d d e v i c e s ( lookup names = True )

r e a d f i l e s = [ d , ]

while True :
r f d s = s e l e c t . s e l e c t ( r e a d f i l e s , [ ] , [ ] ) [ 0 ]

i f d in r f d s :
d . p r o c e s s e v en t ( )

i f d . done : break

To asynchronously detect nearby bluetooth devices, create a subclass of DeviceDiscoverer

and override the pre inquiry, device discovered, and inquiry complete methods. To start the
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discovery process, invoke find devices , which returns immediately. pre inquiry is called

immediately before the actual inquiry process begins, and inquiry complete is called as

soon as the process completes.

MyDiscoverer exposes a fileno method, which allows it to be used with the select

module. This provides a way for a single thread of control to wait for events on many

open files at once, and greatly simplifies event-driven programs.

Call process event to have the DeviceDiscoverer process pending events, which can

be either a discovered device or the inquiry completion. When a nearby device is

detected, device discovered is invoked, with the address and device class of the detected

device. If lookup names was set in the call to find devices , then name will also be set to

the user-friendly name of the device. For more information about device classes, see

[7]. The DeviceDiscoverer class can be used directly with the select module, and can

easily be integrated into event loops of existing applications.

3.5.2 The bluetooth module

The bluetooth module provides classes and utility functions useful for the most common

Bluetooth programming tasks. More advanced functionality can be found in the

bluetooth extension module, which is little more than a thin wrapper around the

BlueZ C API described in the next chapter. Lower level Bluetooth operations, such

as establishing a connection with the actual Bluetooth microcontroller on the local

machine and reading signal strength information, can be performed with the bluetooth

module in most cases without having to resort to the C API. An overview of the classes

and methods available in bluetooth is beyond the scope of this chapter, but the module

documentation and examples are provided with the PyBluez distribution.
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3.6 Alternatives

The main purpose of PyBluez is to allow Bluetooth programmers to quickly and

easily develop and deploy Bluetooth applications. By providing high level objects

and methods, PyBluez allows the programmer to focus on designing the algorithm

and structure of the program instead having to worry about syntactic details, memory

management, and parsing complex data structures and byte strings. PyBluez is not

the only, or first, high level Bluetooth implementation with this goal.

3.7 Java

There are a number of Java bindings for Bluetooth programming currently avail-

able. The Java community has the advantage of having standardized on an API for

Bluetooth development, called JSR-82. Almost all Java Bluetooth implementations

adhere to this specification. This makes porting Bluetooth applications from one de-

vice to another much simpler. Current implementations of JSR-82 for the GNU/Linux

operating system include Rocosoft Impronto1, Avetana2, and JavaBluetooth3.

A disadvantage of using Java is that JSR-82 is very limited, providing virtually

no control over the device discovery process or established data connections. For

example, JSR-82 provides no method for adjusting delivery semantics, flushing a

cache of previously detected devices during a device discovery, or obtaining signal

strength information4. While JSR-82 is acceptable for creating simple Bluetooth

applications, it is not well suited for research and academic purposes. Furthermore,

Java and many JSR-82 implementations are not available on a number of platforms.

1http://www.rococosoft.com
2http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xm
3http://www.javabluetooth.org
4Cache flushing and signal strength were not covered in this chapter, but are described in the

PyBluez documentation and examples
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3.8 PyAffix

PyAffix5 is also a Python extension module for GNU/Linux that provides access to

system Bluetooth resources. Unlike PyBluez, PyAffix is written for the Affix Blue-

tooth protocol stack, which is an alternative Bluetooth implementation for GNU/Linux.

BlueZ is the official Bluetooth protocol stack for GNU/Linux, and almost all Linux

distributions are shipped with BlueZ. In order to use PyAffix, the user must first

remove BlueZ and install Affix - a complex and laborious process requiring a high

level of expertise. PyBluez originated as a port of PyAffix for BlueZ, and grew to

provide functionality not present in PyAffix.

5http://affix.sourceforge.net/pyaffix.shtml
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Chapter 4

Programming in BlueZ

There are reasons to prefer developing Bluetooth applications in C instead of in a

high level language such as Python. The Python environment might not be available

or might not fit on the target device; strict application requirements on program

size, speed, and memory usage may preclude the use of an interpreted language like

Python; the programmer may desire finer control over the local Bluetooth adapter

than PyBluez provides; or the project may be to create a shared library for other

applications to link against instead of a standalone application. As of this writing,

BlueZ is a powerful Bluetooth communications stack with extensive APIs that allows a

user to fully exploit all local Bluetooth resources, but it has no official documentation.

Furthermore, there is very little unofficial documentation as well1. Novice developers

requesting documentation on the official mailing lists2 are typically rebuffed and told

to figure out the API by reading through the BlueZ source code. This is a time

consuming process that can only reveal small pieces of information at a time, and is

quite often enough of an obstacle to deter many potential developers.

This chapter presents a short introduction to developing Bluetooth applications

in C with BlueZ. The tasks covered in chapter 2 are now explained in greater detail

1in conversation with BlueZ developers on the BlueZ mailing lists
2http://www.bluez.org/lists.html

41



here for C programmers.

4.1 Choosing a communication partner

A simple program that detects nearby Bluetooth devices is shown in example 4.1.

The program reserves system Bluetooth resources, scans for nearby Bluetooth devices,

and then looks up the user friendly name for each detected device. A more detailed

explanation of the data structures and functions used follows.

Example 4.1: A simple way to detect nearby Bluetooth devices

#include <s td i o . h>
#include <s t d l i b . h>
#include <unis td . h>
#include <sys / so cke t . h>

#include <bluetooth / bluetooth . h>
#include <bluetooth / hc i . h>
#include <bluetooth / h c i l i b . h>

int main ( int argc , char ∗∗ argv )
{

i n q u i r y i n f o ∗ i i = NULL;
int max rsp , num rsp ;
int dev id , sock , len , f l a g s ;
int i ;
char addr [ 1 9 ] = { 0 } ;
char name [ 2 4 8 ] = { 0 } ;

dev id = h c i g e t r o u t e (NULL) ;
sock = hc i open dev ( dev id ) ;
i f ( dev id < 0 | | sock < 0) {

per r o r ( ” opening so cke t ” ) ;
e x i t ( 1 ) ;

}

l en = 8 ;
max rsp = 255 ;
f l a g s = IREQ CACHE FLUSH;
i i = ( i n q u i r y i n f o ∗) mal loc ( max rsp ∗ s izeof ( i n q u i r y i n f o ) ) ;

num rsp = hc i i n q u i r y ( dev id , len , max rsp , NULL, &i i , f l a g s ) ;
i f ( num rsp < 0 ) pe r r o r ( ” h c i i n q u i r y ” ) ;

for ( i = 0 ; i < num rsp ; i++) {
ba2str (&( i i+i )−>bdaddr , addr ) ;
memset (name , 0 , s izeof (name ) ) ;
i f ( hc i r ead remote name ( sock , &( i i+i )−>bdaddr , s izeof (name ) ,

name , 0) < 0)
s t r cpy (name , ” [ unknown ] ” ) ;
p r i n t f ( ”%s %s\n” , addr , name ) ;
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}

f r e e ( i i ) ;
c l o s e ( sock ) ;
return 0 ;

}

Compilation

To compile our program, invoke gcc and link against libbluetooth

# gcc −o s implescan s implescan . c −l b l u e t o o th

Explanation

typedef struct {

u in t 8 t b [ 6 ] ;

} a t t r i b u t e ( ( packed ) ) bdaddr t ;

The basic data structure used to specify a Bluetooth device address is the bdaddr t.

All Bluetooth addresses in BlueZ will be stored and manipulated as bdaddr t struc-

tures. BlueZ provides two convenience functions to convert between strings and

bdaddr t structures.

int s tr2ba ( const char ∗ s tr , bdaddr t ∗ba ) ;

int ba2str ( const bdaddr t ∗ba , char ∗ s t r ) ;

str2ba takes an string of the form “XX:XX:XX:XX:XX:XX”, where each XX is a

hexadecimal number specifying an octet of the 48-bit address, and packs it into a

6-byte bdaddr t. ba2str does exactly the opposite.

Local Bluetooth adapters are assigned identifying numbers starting with 0, and a

program must specify which adapter to use when allocating system resources. This

can be done with hci get route , which returns the the resource number of the specified

adapter. Usually, there is only one adapter or it doesn’t matter which one is used, so

passing NULL to hci get route will retrieve the resource number of the first available

Bluetooth adapter.
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int h c i g e t r o u t e ( bdaddr t ∗bdaddr ) ;

int hc i open dev ( int dev id ) ;

Most Bluetooth operations require the use of an open socket. hci open dev is a

convenience function that opens a Bluetooth socket with the specified resource num-

ber3. To be clear, the socket opened by hci open dev represents a connection to the

microcontroller on the specified local Bluetooth adapter, and not a connection to a

remote Bluetooth device. Performing low level Bluetooth operations involves sending

commands directly to the microcontroller with this socket, and section 4.5 discusses

this in greater detail.

If there are multiple Bluetooth adapters present, then to use the adapter with ad-

dress “01:23:45:67:89:AB”, pass the bdaddr t representation of the address to hci get route .

char ∗ d e s t s t r = ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB” ;

bdaddr t des t ba ;

s tr2ba ( d e s t s t r , &dest ba ) ;

dev id = h c i g e t r o u t e ( &dest ba ) ;

After choosing the local Bluetooth adapter to use and allocating system resources,

the program is ready to scan for nearby Bluetooth devices. In the example, hci inquiry

performs a Bluetooth device discovery and returns a list of detected devices and some

basic information about them in the variable ii . On error, it returns -1 and sets errno

accordingly.

int h c i i n q u i r y ( int dev id , int len , int max rsp , const u in t 8 t ∗ lap ,

i n q u i r y i n f o ∗∗ i i , long f l a g s ) ;

hci inquiry is one of the few functions that requires the use of a resource number

instead of an open socket, so we use the dev id returned by hci get route . The inquiry

lasts for at most 1.28 * len seconds, and at most max rsp devices will be returned in

3for the curious, it makes a call to socket(AF BLUETOOTH, SOCK RAW, BTPROTO HCI),
followed by a call to bind with the specified resource number.
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the output parameter ii , which must be large enough to accommodate max rsp results.

We suggest using a max rsp of 255 for a standard 10.24 second inquiry.

If flags is set to IREQ CACHE FLUSH, then the cache of previously detected devices

is flushed before performing the current inquiry. Otherwise, if flags is set to 0, then

the results of previous inquiries may be returned, even if the devices aren’t in range

anymore.

The inquiry\ info structure is defined as

typedef struct {

bdaddr t bdaddr ;

u i n t 8 t pscan rep mode ;

u i n t 8 t pscan per iod mode ;

u i n t 8 t pscan mode ;

u i n t 8 t d ev c l a s s [ 3 ] ;

u i n t 1 6 t c l o c k o f f s e t ;

} a t t r i b u t e ( ( packed ) ) i n q u i r y i n f o ;

For the most part, only the first entry - the bdaddr field, which gives the address

of the detected device - is of any use. Occasionally, there may be a use for the

dev class field, which gives information about the type of device detected (i.e. if it’s a

printer, phone, desktop computer, etc.) and is described in the Bluetooth Assigned

Numbers[7]. The rest of the fields are used for low level communication, and are

not useful for most purposes. The interested reader can see the Bluetooth Core

Specification[9] for more details.

Once a list of nearby Bluetooth devices and their addresses has been found, the

program determines the user-friendly names associated with those addresses and

presents them to the user. The hci read remote name function is used for this purpose.

int hc i r ead remote name ( int sock , const bdaddr t ∗ba , int len ,

char ∗name , int timeout )

hci read remote name tries for at most timeout milliseconds to use the socket sock to

query the user-friendly name of the device with Bluetooth address ba. On success,
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hci read remote name returns 0 and copies at most the first len bytes of the device’s

user-friendly name into name. On failure, it returns -1 and sets errno accordingly.

4.2 RFCOMM sockets

As with Python, establishing and using RFCOMM connections boils down to the

same socket programming techniques we already know how to use for TCP/IP pro-

gramming. The only difference is that the socket addressing structures are different,

and we use different functions for byte ordering of multibyte integers. Examples

4.2 and 4.3 show how to establish a connection using an RFCOMM socket, transfer

some data, and disconnect. For simplicity, the client is hard-coded to connect to

“01:23:45:67:89:AB”.
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Example 4.2: rfcomm-server.c

#include <s td i o . h>
#include <unis td . h>
#include <sys / so cke t . h>

#include <bluetooth / bluetooth . h>
#include <bluetooth /rfcomm . h>

int main ( int argc , char ∗∗ argv )
{

struct s o ckaddr r c l o c addr = { 0 } , rem addr = { 0 } ;
char buf [ 1 0 2 4 ] = { 0 } ;
int s , c l i e n t , by te s r ead ;
int opt = s izeof ( rem addr ) ;

// a l l o c a t e socke t
s = socke t (AF BLUETOOTH, SOCK STREAM, BTPROTORFCOMM) ;

// bind socke t to por t 1 o f the f i r s t a v a i l a b l e
// l o c a l b l u e t oo t h adapter
l o c addr . r c f am i l y = AF BLUETOOTH;
lo c addr . rc bdaddr = ∗BDADDRANY;
lo c addr . r c channe l = ( u i n t 8 t ) 1 ;
bind ( s , ( struct sockaddr ∗)& loc addr , s izeof ( l o c addr ) ) ;

// put socke t in t o l i s t e n i n g mode
l i s t e n ( s , 1 ) ;

// accept one connect ion
c l i e n t = accept ( s , ( struct sockaddr ∗)&rem addr , &opt ) ;

ba2str ( &rem addr . rc bdaddr , buf ) ;
f p r i n t f ( s tde r r , ” accepted connect ion from %s\n” , buf ) ;
memset ( buf , 0 , s izeof ( buf ) ) ;

// read data from the c l i e n t
byte s r ead = read ( c l i e n t , buf , s izeof ( buf ) ) ;
i f ( by te s r ead > 0 ) {

p r i n t f ( ” r e c e i v ed [%s ]\n” , buf ) ;
}

// c l o s e connect ion
c l o s e ( c l i e n t ) ;
c l o s e ( s ) ;
return 0 ;

}
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Example 4.3: rfcomm-client.c

#include <s td i o . h>
#include <unis td . h>
#include <sys / so cke t . h>

#include <bluetooth / bluetooth . h>
#include <bluetooth /rfcomm . h>

int main ( int argc , char ∗∗ argv )
{

struct s o ckaddr r c addr = { 0 } ;
int s , s t a tu s ;
char dest [ 1 8 ] = ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB” ;

// a l l o c a t e a socke t
s = socke t (AF BLUETOOTH, SOCK SEQPACKET, BTPROTORFCOMM) ;

// s e t the connect ion parameters (who to connect to )
addr . r c f am i l y = AF BLUETOOTH;
addr . r c channe l = ( u i n t 8 t ) 1 ;
s t r2ba ( dest , &addr . rc bdaddr ) ;

// connect to s e rver
s t a tu s = connect ( s , ( struct sockaddr ∗)&addr , s izeof ( addr ) ) ;

// send a message
i f ( s t a tu s == 0 ) {

s t a tu s = wr i t e ( s , ” h e l l o ! ” , 6 ) ;
}

i f ( s t a tu s < 0 ) pe r r o r ( ”uh oh” ) ;

c l o s e ( s ) ;
return 0 ;

}

Most of this should look familiar to the experienced network programmer. As with

Internet programming, first allocate a socket with the socket system call. Instead of

AF INET, use AF BLUETOOTH, and instead of IPPROTO TCP, use BTPROTO RFCOMM.

Since RFCOMM provides the same delivery semantics as TCP, SOCK STREAM can

still be used for the socket type.

Addressing structures

To establish an RFCOMM connection with another Bluetooth device, incoming or

outgoing, create and fill out a struct sockaddr rc addressing structure. Like the struct sockaddr in

that is used in TCP/IP, the addressing structure specifies the details of an outgoing

connection or listening socket.
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struct s o ckaddr r c {

s a f am i l y t r c f am i l y ;

bdaddr t rc bdaddr ;

u i n t 8 t r c channe l ;

} ;

The rc family field specifies the addressing family of the socket, and will always be

AF BLUETOOTH. For an outgoing connection, rc bdaddr and rc channel specify the

Bluetooth address and port number to connect to, respectively. For a listening

socket, rc bdaddr specifies the local Bluetooth adapter to use, and is typically set

to BDADDR ANY to indicate that any local Bluetooth adapter is acceptable. For

listening sockets, rc channel specifies the port number to listen on.

A note on byte ordering

Since Bluetooth deals with the transfer of data from one machine to another, the use

of a consistent byte ordering for multi-byte data types is crucial. Unlike network byte

ordering, which uses a big-endian format, Bluetooth byte ordering is little-endian,

where the least significant bytes are transmitted first. BlueZ provides four convenience

functions to convert between host and Bluetooth byte orderings.

unsigned short int htobs ( unsigned short int num ) ;

unsigned short int btohs ( unsigned short int num ) ;

unsigned int htobl ( unsigned int num ) ;

unsigned int btohl ( unsigned int num ) ;

Like their network order counterparts, these functions convert 16 and 32 bit un-

signed integers to Bluetooth byte order and back. They are used when filling in the

socket addressing structures, communicating with the Bluetooth microcontroller, and

when performing low level operations on transport protocol sockets.
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Dynamically assigned port numbers

For Linux kernel versions 2.6.7 and greater, dynamically binding to an RFCOMM or

L2CAP port is simple. The rc channel field of the socket addressing structure used

to bind the socket is simply set to 0, and the kernel binds the socket to the first

available port. Unfortunately, for earlier versions of the Linux kernel, the only way

to bind to the first available port number is to try binding to every possible port and

stopping when bind doesn’t fail. The following function illustrates how to do this for

RFCOMM sockets.

int dynamic bind rc ( int sock , struct sockaddr r c ∗ sockaddr , u i n t8 t ∗port )
{

int e r r ;
for ( ∗port = 1 ; ∗port <= 31; ∗port++ ) {

sockaddr−>r c channe l = ∗port ;
e r r = bind ( sock , ( struct sockaddr ∗) sockaddr , s izeof ( sockaddr ) ) ;
i f ( ! e r r | | errno == EINVAL ) break ;

}
i f ( port == 31 ) {

e r r = −1;
er rno = EINVAL;

}
return e r r ;

}

The process for L2CAP sockets is similar, but tries odd-numbered ports 4097-

32767 (0x1001 - 0x7FFF) instead of ports 1-30.

RFCOMM summary

Advanced TCP options that are often set with setsockopt, such as receive windows

and the Nagle algorithm, don’t make sense in Bluetooth, and can’t be used with RF-

COMM sockets. Aside from this, the byte ordering, and socket addressing structure

differences, programming RFCOMM sockets is virtually identical to programming

TCP sockets. To accept incoming connections with a socket, use bind to reserve oper-

ating system resource, listen to put it in listening mode, and accept to block and accept

an incoming connection. Creating an outgoing connection is also simple and merely

involves a call to connect. Once a connection has been established, the standard calls
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to read, write, send, and recv can be used for data transfer.

4.3 L2CAP sockets

As with RFCOMM, L2CAP communications are structured around socket program-

ming. Examples 4.4 and 4.5 demonstrate how to establish an L2CAP channel and

transmit a short string of data. For simplicity, the client is hard-coded to connect to

“01:23:45:67:89:AB”.

Example 4.4: l2cap-server.c

#include <s td i o . h>
#include <s t r i n g . h>
#include <sys / so cke t . h>

#include <bluetooth / bluetooth . h>
#include <bluetooth / l2cap . h>

int main ( int argc , char ∗∗ argv )
{

struct s o ckaddr l 2 l o c addr = { 0 } , rem addr = { 0 } ;
char buf [ 1 0 2 4 ] = { 0 } ;
int s , c l i e n t , by te s r ead ;
int opt = s izeof ( rem addr ) ;

// a l l o c a t e socke t
s = socke t (AF BLUETOOTH, SOCK SEQPACKET, BTPROTO L2CAP) ;

// bind socke t to por t 0x1001 o f the f i r s t a v a i l a b l e
// b l u e t oo t h adapter
l o c addr . l 2 f am i l y = AF BLUETOOTH;
lo c addr . l2 bdaddr = ∗BDADDRANY;
lo c addr . l2 psm = htobs (0 x1001 ) ;

bind ( s , ( struct sockaddr ∗)& loc addr , s izeof ( l o c addr ) ) ;

// put socke t in t o l i s t e n i n g mode
l i s t e n ( s , 1 ) ;

// accept one connect ion
c l i e n t = accept ( s , ( struct sockaddr ∗)&rem addr , &opt ) ;

ba2str ( &rem addr . l2 bdaddr , buf ) ;
f p r i n t f ( s tde r r , ” accepted connect ion from %s\n” , buf ) ;

memset ( buf , 0 , s izeof ( buf ) ) ;

// read data from the c l i e n t
byte s r ead = read ( c l i e n t , buf , s izeof ( buf ) ) ;
i f ( by te s r ead > 0 ) {

p r i n t f ( ” r e c e i v ed [%s ]\n” , buf ) ;
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}

// c l o s e connect ion
c l o s e ( c l i e n t ) ;
c l o s e ( s ) ;

}

Example 4.5: l2cap-client.c

#include <s td i o . h>
#include <s t r i n g . h>
#include <sys / so cke t . h>

#include <bluetooth / bluetooth . h>
#include <bluetooth / l2cap . h>

int main ( int argc , char ∗∗ argv )
{

struct s o ckaddr l 2 addr = { 0 } ;
int s , s t a tu s ;
char ∗message = ” h e l l o ! ” ;
char dest [ 1 8 ] = ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB” ;

i f ( argc < 2)
{

f p r i n t f ( s tde r r , ” usage : %s <bt addr >\n” , argv [ 0 ] ) ;
e x i t ( 2 ) ;

}

s trncpy ( dest , argv [ 1 ] , 1 8 ) ;

// a l l o c a t e a socke t
s = socke t (AF BLUETOOTH, SOCK SEQPACKET, BTPROTO L2CAP) ;

// s e t the connect ion parameters (who to connect to )
addr . l 2 f am i l y = AF BLUETOOTH;
addr . l2 psm = htobs (0 x1001 ) ;
s t r2ba ( dest , &addr . l2 bdaddr ) ;

// connect to s e rver
s t a tu s = connect ( s , ( struct sockaddr ∗)&addr , s izeof ( addr ) ) ;

// send a message
i f ( s t a tu s == 0 ) {

s t a tu s = wr i t e ( s , ” h e l l o ! ” , 6 ) ;
}

i f ( s t a tu s < 0 ) pe r r o r ( ”uh oh” ) ;

c l o s e ( s ) ;
}

For simple usage scenarios, the only differences are the socket type specified, the

protocol family, and the addressing structure. By default, L2CAP connections provide

reliable datagram-oriented connections with packets delivered in order, so the socket
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type is SOCK SEQPACKET, and the protocol is BTPROTO L2CAP. The addressing

structure struct sockaddr l2 differs slightly from the RFCOMM addressing structure.

struct sockaddr l 2 {
s a f am i l y t l 2 f am i l y ;
unsigned short l2 psm ;
bdaddr t l2 bdaddr ;

} ;

The l2 psm field specifies the L2CAP port number to use. Since it is a multibyte

unsigned integer, byte ordering is significant. The htbos function, described earlier, is

used here to convert numbers to Bluetooth byte order.

Maximum Transmission Unit

Occasionally, an application may need to adjust the maximum transmission unit

(MTU) for an L2CAP connection and set it to something other than the default of

672 bytes. In BlueZ, this is done with the getsockopt and setsockopt functions.

struct l 2 cap op t i on s {
u i n t16 t omtu ;
u i n t16 t imtu ;
u i n t16 t f l u s h t o ;
u i n t8 t mode ;

} ;

int s e t l 2cap mtu ( int sock , u i n t16 t mtu ) {
struct l 2 cap op t i on s opts ;

int opt l en = s izeof ( opts ) , e r r ;
e r r = getsockopt ( s , SOL L2CAP, L2CAP OPTIONS, &opts , &opt l en ) ;
i f ( ! e r r ) {

opts . omtu = opts . imtu = mtu ;
e r r = setsockopt ( s , SOL L2CAP, L2CAP OPTIONS, &opts , opt l en ) ;

}
return e r r ;

} ;

The omtu and imtu fields of the struct l2cap options are used to specify the outgoing

MTU and incoming MTU, respectively. The other two fields are currently unused

and reserved for future use. To adjust the connection-wide MTU, both clients must

adjust their outgoing and incoming MTUs. Bluetooth allows the MTU to range from

a minimum of 48 bytes to a maximum of 65,535 bytes.
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Unreliable sockets

It is slightly misleading to say that L2CAP sockets are reliable by default. Multiple

L2CAP and RFCOMM connections between two devices are actually logical connec-

tions multiplexed on a single, lower level connection4 established between them. The

only way to adjust delivery semantics is to adjust them for the lower level connection,

which in turn affects all L2CAP and RFCOMM connections between the two devices.

As we delve deeper into the more complex aspects of Bluetooth programming, the

interface becomes a little harder to manage. Unfortunately, BlueZ does not provide an

easy way to change the packet timeout for a connection. A handle to the underlying

connection is first needed to make this change, but the only way to obtain a handle

to the underlying connection is to query the microcontroller on the local Bluetooth

adapter. Once the connection handle has been determined, a command can be issued

to the microcontroller instructing it to make the appropriate adjustments. Example

4.6 shows how to do this.

Example 4.6: set-flush-to.c

#include <unis td . h>
#include <er rno . h>
#include <s t d l i b . h>
#include <sys / so cke t . h>

#include <sys / i o c t l . h>
#include <bluetooth / bluetooth . h>
#include <bluetooth / hc i . h>
#include <bluetooth / h c i l i b . h>

int s e t f l u s h t ime o u t ( bdaddr t ∗ba , int timeout )
{

int e r r = 0 , dd ;
struct h c i c o nn i n f o r e q ∗ cr = 0 ;
struct h c i r e q u e s t rq = { 0 } ;

struct {
u in t 1 6 t handle ;
u i n t 1 6 t f l u s h t imeou t ;

} cmd param ;

struct {
u in t 8 t s t a tu s ;
u i n t 1 6 t handle ;

4In Bluetooth terminology refers to this as the ACL connection
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} cmd response ;

// f i n d the connect ion handle to the s p e c i f i e d b l u e t oo t h dev ice
cr = ( struct h c i c o nn i n f o r e q ∗) mal loc (

s izeof ( struct h c i c o nn i n f o r e q ) +
s izeof ( struct hc i c onn in f o ) ) ;

bacpy ( &cr−>bdaddr , ba ) ;
cr−>type = ACL LINK ;
dd = hc i open dev ( h c i g e t r o u t e ( &cr−>bdaddr ) ) ;
i f ( dd < 0 ) {

e r r = dd ;
goto c leanup ;

}
e r r = i o c t l (dd , HCIGETCONNINFO, (unsigned long ) c r ) ;
i f ( e r r ) goto c leanup ;

// b u i l d a command packet to send to the b l u e t oo t h m ic r ocon t r o l l e r
cmd param . handle = cr−>conn in fo−>handle ;
cmd param . f l u s h t imeou t = htobs ( timeout ) ;
rq . og f = OGF HOST CTL;
rq . o c f = 0x28 ;
rq . cparam = &cmd param ;
rq . c l en = s izeof ( cmd param ) ;
rq . rparam = &cmd response ;
rq . r l e n = s izeof ( cmd response ) ;
rq . event = EVT CMD COMPLETE;

// send the command and wai t f o r the response
e r r = hc i s end r eq ( dd , &rq , 0 ) ;
i f ( e r r ) goto c leanup ;

i f ( cmd response . s t a tu s ) {
e r r = −1;
e r rno = b t e r r o r ( cmd response . s t a tu s ) ;

}

c leanup :
f r e e ( cr ) ;
i f ( dd >= 0) c l o s e (dd ) ;
return e r r ;

}

On success, the packet timeout for the low level connection to the specified device

is set to timeout ∗ 1.28 milliseconds. A timeout of 0 is used to indicate infinity, and is

how to revert back to a reliable connection. The bulk of this function is comprised of

code to construct the command packets and response packets used in communicating

with the Bluetooth controller. The Bluetooth Specification defines the structure of

these packets and the magic number 0x28. In most cases, BlueZ provides convenience

functions to construct the packets, send them, and wait for the response. Setting the

packet timeout, however, seems to be so rarely used that no convenience function for
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it currently exists.

4.4 Service Discovery Protocol

The process of searching for services involves two steps - detecting all nearby devices

with a device inquiry, and connecting to each of those devices in turn to search for

the desired service. Despite Bluetooth’s piconet abilities, the early versions don’t

support multicasting queries, so this must be done the slow way. Since detecting

nearby devices was covered in section 4.1, only the second step is described here.

Searching a specific device for a service also involves two steps. The first part,

shown in example 4.7, requires connecting to the device and sending the search re-

quest. The second part, shown in in example 4.8, involves parsing and interpreting

the search results.

Example 4.7: Step one of searching a device for a service with UUID 0xABCD

#include <bluetooth / b luetooth . h>

#include <bluetooth /sdp . h>

#include <bluetooth / s dp l i b . h>

int main ( int argc , char ∗∗ argv )
{

u i n t32 t s v c uu i d i n t [ ] = { 0x0 , 0x0 , 0x0 , 0xABCD } ;
uu id t svc uu id ;
int e r r ;
bdaddr t ta r g e t ;
s d p l i s t t ∗ r e s p o n s e l i s t = NULL, ∗ s e a r c h l i s t , ∗ a t t r i d l i s t ;
s d p s e s s i o n t ∗ s e s s i o n = 0 ;

s t r 2ba ( ” 0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB” , &ta r g e t ) ;

// connect to the SDP server running on the remote machine
s e s s i o n = sdp connect ( BDADDRANY, &target , SDP RETRY IF BUSY ) ;

// s p e c i f y the UUID of the app l i c a t i on we ’ re search ing f o r
sdp uu id128 cr eate ( &svc uuid , &s v c uu i d i n t ) ;
s e a r c h l i s t = sdp l i s t append ( NULL, &svc uu id ) ;

// s p e c i f y t ha t we want a l i s t o f a l l t he matching app l i c a t i on s ’ a t t r i b u t e s
u i n t32 t range = 0 x 0 0 0 0 f f f f ;
a t t r i d l i s t = sdp l i s t append ( NULL, &range ) ;

// ge t a l i s t o f s e r v i c e records t ha t have UUID 0xabcd
e r r = s d p s e r v i c e s e a r c h a t t r r e q ( s e s s i on , s e a r c h l i s t , \

SDP ATTR REQ RANGE, a t t r i d l i s t , &r e s p o n s e l i s t ) ;
.
.
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The uuid t data type is used to represent the 128-bit UUID that identifies the

desired service. To obtain a valid uuid t, create an array of 4 32-bit integers and use

the sdp uuid128 create function, which is similar to the str2ba function for converting

strings to bdaddr t types. sdp connect synchronously connects to the SDP server running

on the target device. sdp service search attr req searches the connected device for the

desired service and requests a list of attributes specified by attrid list . It’s easiest to

use the magic number 0 x0000ffff to request a list of all the attributes describing the

service, although it is possible, for example, to request only the name of a matching

service and not its protocol information.

Continuing our example, we now get to the tricky part - parsing and interpreting

the results of a search. Unfortunately, there isn’t an easy way to do this. Taking the

result of our search above, example 4.8 shows how to extract the RFCOMM channel

of a matching result.

Example 4.8: parsing and interpreting a search result
s d p l i s t t ∗ r = r e s p o n s e l i s t ;

// go through each of the s e r v i c e records
for ( ; r ; r = r−>next ) {

s dp r e co r d t ∗ r ec = ( sdp r e co r d t ∗) r−>data ;
s d p l i s t t ∗ p r o t o l i s t ;

// ge t a l i s t o f t he pro t oco l sequences
i f ( s dp g e t a c c e s s p r o t o s ( rec , &p r o t o l i s t ) == 0 ) {
s d p l i s t t ∗p = p r o t o l i s t ;

// go through each pro t oco l sequence
for ( ; p ; p = p−>next ) {

s d p l i s t t ∗pds = ( s d p l i s t t ∗)p−>data ;

// go through each pro t oco l l i s t o f t he pro t oco l sequence
for ( ; pds ; pds = pds−>next ) {

// check the pro t oco l a t t r i b u t e s
sdp data t ∗d = ( sdp data t ∗) pds−>data ;
int proto = 0 ;
for ( ; d ; d = d−>next ) {

switch ( d−>dtd ) {
case SDP UUID16 :
case SDP UUID32 :
case SDP UUID128 :

proto = sdp uu i d to p r o to ( &d−>va l . uuid ) ;
break ;

case SDP UINT8 :
i f ( proto == RFCOMMUUID ) {

p r i n t f ( ”rfcomm channel : %d\n” ,d−>va l . i n t8 ) ;
}
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break ;
}

}
}
s d p l i s t f r e e ( ( s d p l i s t t ∗)p−>data , 0 ) ;

}
s d p l i s t f r e e ( p r o t o l i s t , 0 ) ;

}

p r i n t f ( ” found s e r v i c e r ecord 0x%x\n” , rec−>handle ) ;
s d p r e c o r d f r e e ( r ec ) ;

}

s dp c l o s e ( s e s s i o n ) ;
}

Getting the protocol information requires digging deep into the search results.

Since it’s possible for multiple application services to match a single search request,

a list of service records is used to describe each matching service. For each service

that’s running, it’s (theoretically, but not usually done in practice) possible to have

different ways of connecting to the service. So each service record has a list of protocol

sequences that each describe a different way to connect. Furthermore, since protocols

can be built on top of other protocols (e.g. RFCOMM uses L2CAP as a transport),

each protocol sequence has a list of protocols that the application uses, only one of

which actually matters. Finally, each protocol entry will have a list of attributes,

like the protocol type and the port number it’s running on. Thus, obtaining the

port number for an application that uses RFCOMM requires finding the port number

protocol attribute in the RFCOMM protocol entry.

In this example, several new data structures have been introduced that we haven’t

seen before.

typedef struct s d p l i s t t {
struct s d p l i s t t ∗next ;
void ∗data ;

} s d p l i s t t ;

typedef void (∗ s d p f r e e f u n c t ) ( void ∗)

s d p l i s t t ∗ s dp l i s t append ( s d p l i s t t ∗ l i s t , void ∗d ) ;
s d p l i s t t ∗ s d p l i s t f r e e ( s d p l i s t t ∗ l i s t , s d p l i s t f u n c t f ) ;

Since C does not have a built in linked-list data structure, and SDP search criteria
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and search results are essentially nothing but lists of data, the BlueZ developers wrote

their own linked list data structure and called it sdp list t . For now, it suffices to

know that appending to a NULL list creates a new linked list, and that a list must be

deallocated with sdp list free when it is no longer needed.

typedef struct {
u i n t32 t handle ;
s d p l i s t t ∗pattern ;
s d p l i s t t ∗ a t t r l i s t ;

} s dp r e co r d t ;

The sdp record t data structure represents a single service record being adver-

tised by another device. Its inner details aren’t important, as there are a number

of helper functions available to get information in and out of it. In this example,

sdp get access protos is used to extract a list of the protocols for the service record.

typedef struct s dp da ta s t r u c t sdp data t ;
struct s dp da ta s t r u c t {

u i n t8 t dtd ;
u i n t16 t a t t r Id ;
union {

i n t 8 t i n t8 ;
i n t 1 6 t int16 ;
i n t 3 2 t int32 ;
i n t 6 4 t int64 ;
u i n t128 t int128 ;
u i n t8 t uint8 ;
u i n t16 t uint16 ;
u i n t32 t uint32 ;
u i n t64 t uint64 ;
u i n t128 t uint128 ;
uu id t uuid ;
char ∗ s t r ;
sdp data t ∗dataseq ;

} va l ;
sdp data t ∗next ;
int un i tS i z e ;

} ;

Finally, there is the sdp data t structure, which is ultimately used to store each

element of information in a service record. At a high level, it is a node of a linked list

that carries a piece of data (the val field). As a variable type data structure, it can

be used in different ways, depending on the context. For now, it’s sufficient to know

that each protocol stack in the list of protocol sequences is represented as a singly

linked list of sdp data t structures, and extracting the protocol and port information
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requires iterating through this list until the proper elements are found. The type of

a sdp data t is specified by the dtd field, which is what we use to search the list.

sdpd - The SDP daemon

Every Bluetooth device typically runs an SDP server that answers queries from other

Bluetooth devices. In BlueZ, the implementation of the SDP server is called sdpd, and

is usually started by the system boot scripts. sdpd handles all incoming SDP search

requests. Applications that need to advertise a Bluetooth service must use inter-

process communication (IPC) methods to tell sdpd what to advertise. Currently,

this is done with the named pipe /var/run/sdp. BlueZ provides convenience functions

written to make this process a little easier.

Registering a service with sdpd involves describing the service to advertise, con-

nected to sdpd, instructing sdpd on what to advertise, and then disconnecting.

Describing a service

Describing a service is essentially building the service record that was parsed in the

previous examples. This involves creating several lists and populating them with

data attributes. Example 4.9 shows how to describe a service application with UUID

0xABCD that runs on RFCOMM channel 11, is named “Roto-Rooter Data Router”,

provided by “Roto-Rooter”, and has the description “An experimental plumbing

router”

Example 4.9: Describing a service

#include <bluetooth / bluetooth . h>
#include <bluetooth /sdp . h>
#include <bluetooth / s dp l i b . h>

s d p s e s s i o n t ∗ r e g i s t e r s e r v i c e ( )
{

u in t 3 2 t s e r v i c e u u i d i n t [ ] = { 0 , 0 , 0 , 0xABCD } ;
u i n t 8 t rfcomm channel = 11 ;
const char ∗ se rv ice name = ”Roto−Rooter Data Router” ;
const char ∗ s e r v i c e d s c = ”An exper imenta l plumbing route r ” ;
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const char ∗ s e r v i c e p r o v = ”Roto−Rooter” ;

uu id t root uuid , l2cap uuid , rfcomm uuid , svc uuid ;
s d p l i s t t ∗ l 2 c a p l i s t = 0 ,

∗ r f comm l i s t = 0 ,
∗ r o o t l i s t = 0 ,
∗ p r o t o l i s t = 0 ,
∗ a c c e s s p r o t o l i s t = 0 ;

sdp da ta t ∗ channel = 0 , ∗psm = 0 ;

s dp r e c o r d t record = sdp r e c o r d a l l o c ( ) ;

// s e t the genera l s e r v i c e ID
sdp uu id128 c r ea te ( &svc uuid , &s e r v i c e u u i d i n t ) ;
s d p s e t s e r v i c e i d ( &record , svc uuid ) ;

// make the s e r v i c e record p u b l i c l y browsab le
sdp uu id16 c r ea te (&root uuid , PUBLIC BROWSE GROUP) ;
r o o t l i s t = sdp l i s t a ppend (0 , &roo t uu id ) ;
sdp s e t browse g roups ( &record , r o o t l i s t ) ;

// s e t l2cap in format ion
sdp uu id16 c r ea te (& l2cap uuid , L2CAP UUID) ;
l 2 c a p l i s t = sdp l i s t a ppend ( 0 , &l2 cap uu id ) ;
p r o t o l i s t = sdp l i s t a ppend ( 0 , l 2 c a p l i s t ) ;

// s e t rfcomm informat ion
sdp uu id16 c r ea te (&rfcomm uuid , RFCOMM UUID) ;
channel = sdp da ta a l l o c (SDP UINT8 , &rfcomm channel ) ;
r f c omm l i s t = sdp l i s t a ppend ( 0 , &rfcomm uuid ) ;
s dp l i s t a ppend ( r fcomm l i s t , channel ) ;
s dp l i s t a ppend ( p r o t o l i s t , r f c omm l i s t ) ;

// a t t ach p ro t o co l in format ion to s e r v i c e record
a c c e s s p r o t o l i s t = sdp l i s t a ppend ( 0 , p r o t o l i s t ) ;
s d p s e t a c c e s s p r o t o s ( &record , a c c e s s p r o t o l i s t ) ;

// s e t the name , prov ider , and d e s c r i p t i o n
s d p s e t i n f o a t t r (&record , service name , s e r v i c e p r o v , s e r v i c e d s c ) ;
.
.

Registering a service

Building the description is quite straightforward, and consists of taking those five

fields and packing them into data structures. Most of the work is just putting lists

together. Once the service record is complete, the application connects to the lo-

cal SDP server and registers a new service, taking care afterwards to free the data

structures allocated earlier.
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.

.
int e r r = 0 ;
s dp s e s s i o n t ∗ s e s s i o n = 0 ;

// connect to the l o c a l SDP server , r e g i s t e r the s e r v i c e record , and
// di sconnec t
s e s s i o n = sdp connect ( BDADDRANY, BDADDR LOCAL, SDP RETRY IF BUSY ) ;
e r r = s d p r e c o r d r e g i s t e r ( s e s s i on , &record , 0 ) ;

// c leanup
s dp da ta f r e e ( channel ) ;
s d p l i s t f r e e ( l 2 c a p l i s t , 0 ) ;
s d p l i s t f r e e ( r f comm l i s t , 0 ) ;
s d p l i s t f r e e ( r o o t l i s t , 0 ) ;
s d p l i s t f r e e ( a c c e s s p r o t o l i s t , 0 ) ;

return s e s s i o n ;
}

The special argument BDADDR LOCAL causes sdp connect to connect to the local

SDP server (via the named pipe /var/run/sdp) instead of a remote device. Once an

active session is established with the local SDP server, sdp record register advertises a

service record. The service will be advertised for as long as the session with the SDP

server is kept open. As soon as the SDP server detects that the socket connection

is closed, it will stop advertising the service. sdp close terminates a session with the

SDP server.

s d p s e s s i o n t ∗ sdp connect ( const bdaddr t ∗ src , const bdaddr t ∗dst , u i n t32 t
f l a g s ) ;

int s dp c l o s e ( s d p s e s s i o n t ∗ s e s s i o n ) ;

int s d p r e c o r d r e g i s t e r ( s d p s e s s i o n t ∗ s e s s , s dp r e co r d t ∗ rec , u i n t8 t f l a g s ) ;

4.5 Advanced BlueZ programming

In addition to the L2CAP and RFCOMM sockets described in this chapter, BlueZ pro-

vides a number of other socket types. The most useful of these is the Host Controller

Interface (HCI) socket, which provides a direct connection to the microcontroller on

the local Bluetooth adapter. This socket type, introduced in section 4.1, can be

used to issue arbitrary commands to the Bluetooth adapter. Programmers requiring

precise control over the Bluetooth controller to perform tasks such as asynchronous

62



device discovery or reading signal strength information should use HCI sockets.

The Bluetooth Core Specification[8, 9] describes communication with a Bluetooth

microcontroller in great detail, which we summarize here. The host computer can

send commands to the microcontroller, and the microcontroller generates events to

indicate command responses and other status changes. A command consists of a

Opcode Group Field that specifies the general category the command falls into, an

Opcode Command Field that specifies the actual command, and a series of command

parameters. In BlueZ, hci send cmd is used to transmit a command to the microcon-

troller.

int hci send cmd ( int sock , u i n t16 t ogf , u i n t16 t ocf , u i n t8 t plen ,
void ∗param ) ;

Here, sock is an open HCI socket, ogf is the Opcode Group Field, ocf is the Opcode

Command Field, and plen specifies the length of the command parameters param.

Calling read on an open HCI socket waits for and receives the next event from the

microcontroller. An event consists of a header field specifying the event type, and

the event parameters. A program that requires asynchronous device detection would,

for example, send a command with ocf of OCF INQUIRY and wait for events of type

EVT INQUIRY RESULT and EVT INQUIRY COMPLETE. The specific codes to use for

each command and event are defined in the specifications and in the BlueZ source

code.

4.6 Chapter Summary

This chapter has provided an introduction to Bluetooth programming with BlueZ.

The concepts covered in chapter 2 were presented here in greater detail with examples

on how to implement them in BlueZ. Many other useful aspects of BlueZ were left

out for brevity. Specifically, the command line tools and utilities that are distributed
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with BlueZ, such as hciconfig , hcitool, sdptool, and hcidump, are not described here.

These utilities, which are invaluable to a serious Bluetooth developer, are already

well documented. Only the simplest aspects of using the Service Discovery Protocol

were covered - just enough to search for and advertise services. Additionally, other

socket types such as BTPROTO SCO and BTPROTO BNEP were left out, as they are not

crucial to forming a working knowledge of programming with BlueZ. Unfortunately,

as of now there is no official API reference to refer to, so more curious readers are

advised to download and examine the BlueZ source code5.

5available at http://www.bluez.org
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Chapter 5

The Bluetooth Location

Infrastructure

A low cost and easy to deploy location awareness infrastructure requires a fast and

reliable method to find nearby devices. Location aware computing provides applica-

tions with knowledge of the physical location where the computation is taking place,

allowing applications to operate in a more context-sensitive fashion. However, to

date, the infrastructure is expensive and difficult to deploy. Bluetooth is a stable,

inexpensive, and mature technology upon which a location aware infrastructure can

be built.

We propose placing Bluetooth devices key locations throughout a building, turning

them into location beacons. The user is equipped with a locator device, usually a

Bluetooth-enabled cell phone or PDA mobile device, which scans the environment

for the location beacons. When a locator is within 10 meters, the location beacons

respond, allowing the locator to estimate its position. In this chapter, we describe

the deployment and evaluation of such a system.
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5.1 Requirements

An effective location aware system should emphasize three main features. The first

concerns the physical performance of the system. The second concerns protecting and

preserving the privacy of the users of the system. The third concerns its practicality,

with an emphasis on deployment, usage, and maintenance costs.

5.1.1 Performance

The performance of a location aware system can be characterized by how accurately

it provides location measurements and how frequently it can update them. An ideal

system would provide perfect accuracy that is continuously updated, with the time

between updates being imperceptibly small. In practice, there is typically a price-

performance tradeoff that limits the accuracy of a system. Although performance

requirements will vary with the intended applications, we find it reasonable to require

a system to have room-level precision maintainable at walking speed. This roughly

translates to 3-meter accuracy with updates spaced a few seconds apart.

5.1.2 Privacy

Privacy is one of the most oft cited concerns in ubiquitous computing and could ulti-

mately be the biggest factor in its success or failure. Formal studies[5, 28, 20] indicate

that it is a major concern for consumers and participants in a location aware system.

At first, it may not seem intuitive. After all, most people don’t take special care to

hide their daily movements, and typically don’t mind if their friends, colleagues, or

acquaintances happen to know where they are. But once the system makes it possible

to immediately and precisely determine someone’s location over an entire day, week,

or month, we suddenly become much more wary of our situation, and are less willing

to participate. We find it intrusive and Orwellian that someone else could track our
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every movement, especially without our knowledge.

In light of these concerns, we stipulate that a well-designed location aware system

should preserve the privacy of its users. Users should be able to choose whether or

not to reveal their location and identity to others, and should not be actively tracked

without explicit consent. It should not be possible for the system to track users

without permission.

5.1.3 Practicality

Ultimately, in order for a location aware system to be useful and effective, it must

also be practical. The infrastructure should be inexpensive and scale easily with the

covered area. It should not be difficult or expensive (with respect to both time and

money) to deploy or maintain. The devices that are to take advantage of this network

should be able to do so easily, cheaply, and with as little modification as possible.

With the recent proliferation of mobile electronic devices, there has been a trend

towards integration and unification of as much functionality as possible into a single

device. We seldom see anyone carrying around a cell phone, PDA, digital camera,

MP3 player, and pager all at once. Despite all of these being potentially useful

devices, it is simply too troublesome to bother with each individual device. The

hassles of charging the batteries, carrying them around, keeping track of where they

are, far outweigh the benefits they provide. Instead, performance and features are

often sacrificed for convenience and ease of use. For this reason, we place special

emphasis on requiring as little additional hardware as possible.

5.2 Related Work

A number of systems providing support for location aware computing have already

been created. Here, we briefly describe a few of the different approaches and analyze
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them in the context of our requirements.

5.2.1 ActiveBat

The Active Bat sensing system[14, 31] pioneered the use of sound to provide location

estimates in indoor environments. In the Active Bat system, transmitters are attached

to mobile devices, and periodically emit a combination of RF and ultrasonic signals.

An array of specially tuned and calibrated receivers placed in known positions around

the environment record the emitted signals and relay them to a central station. To

compute the distance from a receiver to the mobile device, the time-of-flight difference

between the RF and ultrasonic signals is measured and multiplied by the speed of

sound. Distance measurements to a mobile device from each receiver are collected

and used to estimate the true position of the device to centimeter-level accuracy.

Since ultrasound does not pass through walls, glass, or other partitions, the Ac-

tive Bat system adheres to our human notion of space and locality. If we are in a

closed room, the system will never erroneously estimate that we are on another floor,

standing outside the building, or even in an adjacent room. By the same token, if

there is no direct path for sound to travel from the tracked object to the receivers

(e.g. if the object is in a closed drawer), then it is much more difficult to provide an

accurate location estimate.

When the Active Bat system was created, privacy in ubiquitous computing was

not as significant a concern as it is today. This is reflected in its design, which allows

a centralized system to have total knowledge of the locations of its participants, while

the tracked objects themselves do not have this knowledge. In order for a mobile

device to obtain knowledge of its own location, the centrally controlled system must

transmit that information to the device.

Another drawback to Active Bat is that it does not scale well, both in terms

of price and performance. As the number of tracked objects increases in a region,
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their is greater contention for the RF and ultrasonic channels on which the system

operates. Collisions can happen more frequently, degrading the performance of the

system. The specialized hardware is currently prohibitively expensive to deploy and

maintain on a large scale. Although the hardware costs could be brought down by

mass manufacturing and integration with other devices, each receiver still needs to

be carefully calibrated and maintained.

5.2.2 Cricket

The Cricket[27] location system, like Active Bat, uses time-of-flight measurements

computed from the difference in arrival times of RF and ultrasonic signals to obtain

distance measurements from one device to another. The main difference is that

instead of the tracked objects actively transmitting information, it is the statically

positioned beacons that actively transmit information in the Cricket system. Beacons

can be programmed with a location coordinate, which is relayed during each of its

transmissions. The mobile devices carry passive listeners that can receive the signals

emitted by the beacons and perform distance and location estimates individually. By

using the same technology and general methods as Active Bat, Cricket is also able to

achieve centimeter-level accuracy.

From the very beginning, Cricket was designed to afford its users a sense of privacy.

By creating the system in such a way that mobile devices never actively transmit, they

made it much more difficult to track a user without permission. In some situations,

such as an environment where the users trust the centralized system, it may be desired

or beneficial to track users centrally, which can be accomplished by having mobile

devices transmit their information individually.

One advantage of Cricket over Active Bat is that it is highly scalable with respect

to the number of tracked objects it can support in a single space. Since additional

listeners do not use any shared resources, there is no issue of channel contention or

69



signal collision. It becomes possible to support a large number of listeners in close

proximity without any performance degradation. Like Active Bat, however, Cricket

requires specialized hardware that is currently on the order of hundreds of dollars per

listener and beacon, making it unaffordable for the general public.

5.2.3 802.11 signal strength

Many recent efforts in providing location aware services have focused on 802.11 tech-

nologies. The first of these, RADAR[4] operates on the same principle of having

many beacons providing service to mobile devices. 802.11 base stations, which nor-

mally serve as network access points, are used as beacons and any 802.11 device

capable of measuring signal strength can take advantage of the location aware ser-

vices. Instead of using time-of-flight measurements to provide distance measurements,

a RADAR device estimates its position by comparing base station signal strength

measurements with an internal radio map. The radio map is constructed by obtain-

ing signal strength measurements at every position in the desired area of coverage,

presumably done by a system administrator at installation time. In typical office

environments, RADAR is able to estimate a user’s position to within approximately

3-meters. Recent progress[21, 22] in using Bayesian inference has improved this to

meter-level accuracy.

In the original implementation, mobile devices broadcasted signals, which were

collected and measured by base stations. In this form, RADAR closely resembled Ac-

tive Bat, and consequently afforded no privacy for the individual user. It is certainly

possible to shift the transmitter and receiver roles so that the mobile device acts as

a passive listener measuring signals emitted by base stations.

802.11 signal strength based methods have the advantage that they can take ad-

vantage of widely deployed hardware that is already used for other purposes. In many

cases, the base stations are already in place and can be used without modification.
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The primary disadvantages are that such systems do not adapt well to dynamic en-

vironments, and that building the radio map is a significant undertaking. If a single

base station moves, then hundreds of square meters of the radio map are affected.

Ultimately, it seems impractical to provide location aware services on a large scale

using radio maps and signal strength measurements.

5.2.4 Bluetooth

We are not the first to propose Bluetooth as a location tracking infrastructure. Anas-

tasi et al[3] used statically positioned Bluetooth devices to constantly scan for other

Bluetooth devices in the vicinity. Detected devices were then entered into a central

database which was used to track the location of all moving Bluetooth devices. This

approach is cost effective in that it makes use of readily available hardware. The

disadvantages are that it allows for no privacy and requires specialized software on

the trackers as well their connectivity to a centralized database. Numerous trackers

constantly scanning for nearby devices is also wasteful of radio resources and can

interfere with other technologies, such as 802.11, operating in the 2.4 GHz spectrum.

The Local Positioning Profile(LPP) [13] defines a standardized protocol for Blue-

tooth devices to exchange positioning data. A device whose location is known runs

a Local Positioning (LP) Server, to which other Bluetooth devices can connect. LP

Clients can request positioning information from LP Servers, which may be derived

from preset configurations, GPS data, cellular data, or automatically generated, and

then infer their own positions. The primary purpose of the LPP is to provide a means

for devices to exchange data, and leaves much room for techniques to be developed for

determining a device’s actual position given the position of other devices. The LPP

also does not take privacy into consideration, as it is required for both client and server

to have knowledge of both Bluetooth device addresses, allowing a well-coordinated

network of LP servers to track clients as they issue requests.

71



5.3 The Bluetooth location system

In this section, we describe the deployment of our infrastructure and analyze the basic

technique for scanning for and discovering location beacons. We also show that using

multiple co-located Bluetooth devices improves the reliability and robustness of our

system.

The infrastructure for our system consisted of 30 D-Link DBT-120 USB Bluetooth

adapters, purchased for US$30 each. Research groups in our building were asked

to spare a single USB port in their computers. The beacons were then placed in

computers approximately every 10 meters on six different floors. The Bluetooth device

for each beacon was given the user friendly name of the form “OKN-building-room”,

where building and room indicated the building and room number of the beacon. The

only software installed on the host machines were the device drivers. On average,

configuring a machine to host one of our beacons took less than three minutes. The

most time consuming part of the deployment was actually tracking down the system

administrators for the machines we wanted to use, and obtaining their permission1.

Client software was written for several types of locators and used to test the

effectiveness of the infrastructure. A Linux client was used on laptops, desktops, and

a HP iPAQ 5550. A C++ Symbian client was used on Nokia 6600 cellular phones. To

choose an algorithm for determining the position of a locator, a series of experiments

were conducted to analyze the process of device detection and communication in

Bluetooth.

1Ironically, despite being a hub of research in computer science, many lab members had no
idea what Bluetooth is and does, or how it would affect their computer. One researcher whose
computer was not hosting a beacon expressed sincere concern that nearby Bluetooth devices would
make his workstation vulnerable to crackers. Coincidentally, this incident occurred in the Theory of
Computation research area.
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5.3.1 Detecting beacons

A Bluetooth device inquiry, which is a broadcast of a predefined sequence of bits while

hopping channels pseudorandomly, is used to detect nearby beacons. A response to

an inquiry consists of a 48-bit Bluetooth address, a 24-bit device class field describing

the device, and some synchronization information.

The ideal beacon would always listen for the inquiry sequence and respond almost

immediately upon detection. A number of factors can cause a beacon to either not

respond or to not detect an inquiry.

- Electromagnetic noise and interference with other devices in the 2.4 GHz range

may hinder communications.

- A beacon cannot listen for an inquiry all the time. It must allocate time to

listen for connection requests, and to participate in active connections.

- Upon first detecting a device inquiry, a beacon will always enter a backoff stage,

in which it idles for 0 to 0.33 seconds randomly.

- A beacon, while listening for inquiries, will listen on one of 32 predefined chan-

nels at a time. During an inquiry, the locator will inquire on half of these

channels for 2.56 seconds, switch to the other half for another 2.56 seconds, and

then alternate two more times. Consequently, it is possible that a locator will

not even inquire on the same channel on which a beacon is listening on for at

least 2.56 seconds.

While nothing can be done about noise and interference from other radio sources2,

something can be done to improve the beacon detection speed. As can be seen from

Figure 5-1, it can take 10 seconds for a locator to detect a beacon, and we have

observed times when it has taken even longer.

2This is a problem addressed in version 1.2 of the Bluetooth specification, which allows for
adaptive frequency hopping to avoid channels being used by co-located, interfering devices. However,
existing Bluetooth 1.1 and 1.0 devices are not able to take advantage of this ability.
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Figure 5-1: The locator divides the 32 inquiry channels into two disjoint sets of
channels, say S and T, If a beacon happens to be listening on a channel in S, then
it will be discovered in the first 2.56 seconds. Otherwise, it will not be discovered
at least until the locator switches to set T. The graph on the left is the cumulative
success while the one on the right is the instantaneous.

The Bluetooth specification is optimized for the situation where many devices are

all in the same vicinity. Device inquiry is especially slow because of the pessimistic

backoff algorithms used to minimize collisions. The recommended duration for a

device inquiry is 10.24 seconds[8], which is longer than many applications can tolerate.

As shown in Figure 5-1, however, more than half of the detected devices are detected

in the first 2.56 seconds of the inquiry.

5.3.2 Two heads are better than one

To reduce the average time to detect a beacon, we placed two Bluetooth USB devices

in the PC. The locator needs to wait for a response from only one beacon. Our

experiments show that the beacons responded independently of each other, providing

an ideal increase in response rate. The locator was placed approximately 8 meters

from two co-located beacons, with a closed door, some wooden office furniture, and a

metal filing cabinet in between the locator and the beacons. Additionally, a host of

other active Bluetooth and WiFi devices were operating in the vicinity. By adding a

Bluetooth device to the beacon, we significantly increased its tolerance for noise and
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Figure 5-2: When beacons A and B are in the exact same location, the locator needs
only to hear a response to an inquiry from either one.

interference. Unfortunately, this also has the effect of doubling the cost of a single

beacon. These results are shown in Figure 5-2.

Similarly, when the locator was equipped with two Bluetooth devices, and per-

formed inquiries with both devices simultaneously, location beacons were also discov-

ered more quickly. These results are summarized in Figure 5-3. In order to achieve

the improved response rate, however, the discoverability of the locator’s Bluetooth

devices had to be disabled, otherwise, performance actually decreased as the locator

began responding to its own inquiries. Response rate of a single Bluetooth device in

range was still not as fast as when a beacon is equipped with two Bluetooth devices

and the locator with one. We attribute this to the backoff algorithm used during the

inquiry scan process.

5.3.3 Adjusting Page Timeout

A beacon response to a device inquiry does not provide much to the locator other

than the beacon’s address. To obtain more information, such as the location of the

beacon, the locator can perform a remote name request or establish a connection

to the beacon using a transport protocol such as L2CAP or RFCOMM. A remote

name request creates a temporary connection to retrieve a 248-byte data string that
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Figure 5-3: When a locator is equipped with multiple Bluetooth devices and uses
them to perform simultaneous inquiries, devices in range are detected much more
rapidly. Using two co-located beacons is even faster.

is usually interpreted as the user-friendly name of the target device, whereas a higher

level connection allows the exchange of arbitrary data. Both of these actions involve

paging the beacon, a time consuming process similar to a device inquiry, and reveal the

locator’s Bluetooth address. As noted earlier, a well coordinated network of beacons

would then be able to track a locator using only its address.

The Bluetooth specification recommends 5.12 seconds as the timeout when pag-

ing3 a remote device. Since paging is the most time consuming part of forming a

connection, setting a page timeout effectively sets a connection timeout. To see if ex-

tending the page timeout significantly increased the chance of connecting to a device,

we performed numerous remote name requests with the page timeout set to 20.48

seconds. Figure 5-4 shows that if the name of a remote device was resolved during

the 20.48 second time period, it was resolved in the first 5.12 seconds 87% of the

time. Note that some Bluetooth implementations, such as BlueZ for Linux, raise the

default timeout significantly to increase the chance of successfully paging on the first

try.

3Note that the specification recommends a time period twice as long for inquiries.
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Figure 5-4: The name request process is similar in nature to the inquiry process, but
uses a different set of 32 channels. If the name of a device is resolved, it is usually
done so during the first 5.12 seconds of the name request - the amount of time it
takes for the locator to iterate through both trains A and B.

5.3.4 Determining beacon position

The position of a detected beacon must be known in order for the beacon to be

useful to the locator. This information could be stored on the beacon and replayed to

querying locators4 or the locator could maintain a lookup table storing the positions

of all known beacons. The observations made from the above experiments suggest

two different algorithms that a locator could use to efficiently detect and determine

the position of nearby beacons. In both methods, the locator maintains a software

cache that maps beacon addresses to locations. The first method incrementally builds

the cache by querying unrecognized beacons, and the second method assumes the

cache has already been built and will never change. Remembering that beacons are

configured to have Bluetooth user-friendly names that correspond to beacon position,

we can use remote name requests to query a beacon for its position.

• Method A Perform a device inquiry for 10.24 seconds. After the first 2.56

seconds, the inquiry is canceled as soon as a device is discovered whose name is

4This is exactly what LPP[13] is designed to do - provide a standardized method for the transfer
of positioning information from the beacon to the locator. However, at the time of writing, LPP
was still in draft form and we found other methods much simpler.
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not in the software cache. Remote name requests with a page timeout of 5.12

seconds are sent to all unrecognized beacons and the responses cached. Repeat.

• Method B A software cache containing all known Bluetooth beacons in the

building is is preloaded into memory. The locator repeatedly performs device

inquiries, and never issues any remote name requests. Unrecognized Bluetooth

devices are ignored. Repeat.

An experiment was conducted to evaluate these two methods along with a third

method, which we called the naive method.

• Method C (naive) Perform a device inquiry for 10.24 seconds. Remote name

requests with a page timeout of 20.48 seconds are sent to all unrecognized

beacons and the response cached. Repeat.

Three locators, each using one of the three methods, were carried around the

building for forty minutes, collecting localization data. Our results, summarized in

Table 5.1, show that method B was by far the fastest. Out of 34 beacons detected

by locator B, it was either the first or only locator to detect the beacons 30 times.

Locator A consistently detected beacons faster than C, but slower than B, and locator

C was usually the last to detect a beacon.

For each beacon that a locator discovered, we averaged the difference between the

time that it was discovered and the time that it was first discovered by any of the

other two locators. We found that on average, method C was 19.5 seconds slower to

detect a beacon than the first method (not necessarily B), method A was 8.5 seconds

slower than the first method, and method B had only a 0.9 second delay on average.

Method B had the advantage of not needing to perform any remote name requests

at all. In areas dense with Bluetooth devices, the algorithm could safely ignore

unrecognized devices. Additionally, as it doesn’t establish any connections, method
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locator only to detect first to detect second to detect third to detect
A 0 3 19 2
B 10 20 3 1
C 0 2 3 16

Table 5.1: Locator B was almost always the first or only locator to detect a beacon.
Locator A was usually second to detect a beacon, and locator C was usually last.

B can guarantee complete anonymity. The only disadvantage is that the software

cache must be obtained from somewhere else.

We find that method A is useful in situations where positioning is desired in an

unfamiliar environment, where the software cache for method B could not be updated

before entering the area. In a known environment, however, method B is faster in all

respects. In no circumstances is method C to be preferred.

5.3.5 Estimating locator position

Once a locator has detected one or more beacons and determined their positions, the

locator can then estimate its own position. The simplest approach is to conclude that

the locator is somewhere within the geometric intersection of the areas in range of

each detected beacon (see Figure 5-5). In this way, the precision with which a locator

can determine its position is directly related to the number of beacons it detects and

the placement of each beacon.

a b

A B C

L

L

Figure 5-5: a) When the locator L can only detect one beacon, it can only conclude
that it is somewhere within the circle b) When two beacons are detected, much greater
resolution is achievable, and the locator can conclude it is somewhere in the shaded
region

79



5.3.6 Signal Strength

The method used in the previous section to estimate the locator position is unsatis-

fying, in part because of its simplicity, and in part because of its low resolution. The

Bluetooth 1.2 specification[9] supports device inquiries that report signal strength

of discovered devices. Given the intuition that signal strength and distance from a

device share an inverse relationship, it is natural to ask if signal strength could be

used to refine an estimate of the locator’s position.

The radio maps used by 802.11 location systems such as RADAR[4] consist of

signal strength measurements made at a number of different locations. Since 802.11

and Bluetooth both operate in the same frequency band, it seems reasonable to

conclude that the same inference techniques that work for 802.11 systems also work

for Bluetooth. The major drawbacks to these methods is that they make very strong

assumptions about the RF conditions in the areas mapped, and that they require a

labor intensive off-line training process to initialize the radio maps. These methods

are highly sensitive to changes in network topology; the maps must be updated every

time some furniture is moved in order to stay accurate.

A weaker approach to take is to compute a distance estimate to each beacon in

range based on the signal strength measured from that beacon, and to then compute a

position estimate from those distance estimates. This is a well studied problem in ra-

dio literature[11]. In theory, by obtaining three distance measurements, trilateration

can be used to calculate locator position. More than three distance measurements

yields an overdetermined system of linear equations that can be solved with least

squares techniques.

In practice, however, signal strength is a poor choice to use for estimating dis-

tance. Especially indoors, a multitude of factors affect signal strength measurements.

Large shadowing and high multipath effects can amplify or severely diminish a signal.

Radio signals in the 2.4 GHz frequency range that Bluetooth operates in are highly
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Figure 5-6: Signal strength readings taken at three different distances. In all three
cases, the distribution is highly varied and non-Gaussian.

susceptible to occluding structures such as furniture, walls, water, and people (since

people are mostly water). The result is a signal with significant non-Gaussian noise

that is poorly correlated with distance. Figure 5-6 shows three histograms of signal

strength measurements for several beacons at three different distances. The beacons

were all in different locations, and the measurements were collected over a period of

days and then aggregated. The distances were arbitrarily chosen.

Due to the non-Gaussian structure of the signal strength noise, standard noisy

inference techniques such as Kalman filtering are not well suited for estimating dis-

tances. Additionally, it does not seem likely that any probabilistic inference methods

can provide an accurate estimate of the distance to a single beacon using only sig-

nal strength measurements for that beacon. Although probabilistic methods are well

suited for use in radio maps, as described earlier, there is too much noise in an indi-

vidual signal strength measurement to obtain an precise measurement.

5.4 Discussion

By taking advantage of an existing computational infrastructure, we were able to

deploy our system on a building-wide scale with a minimal investment of capital

81



and labor. We did not need to mount any hardware in special places, run cables,

or displace any existing equipment or furniture. The only physical change to the

environment needed was the addition of 30 small USB devices. Locators did not

require specialized hardware, and could immediately determine their position to an

accuracy of 3-10 meters, depending on beacon density.

Unfortunately, we underestimated the high maintenance costs associated with re-

lying on other research groups to host our beacons. Host machines were frequently

moved, reformatted with a new operating system (without the Bluetooth device

drivers), or decommissioned. Without a system to notify us of these changes, we

were not able to efficiently determine when beacons were disabled. After six months

of operation, fewer than half of the original beacons were still operating. This prob-

lem was exacerbated due to the fact that each research group administered its own

machines, each of which might be running a different operating system (the most

common being OS X, Windows 2000/XP, Debian Linux, and Fedora Linux).

A second disadvantage was that beacons could only be placed in areas where

computers with USB support were already running. This was not an issue in research

areas, where there is a high density of desktop computers, but quickly became a

problem when we wanted to expand our infrastructure to areas such as the cafeteria,

classrooms, and bathrooms. In those areas, the cost of deploying a single beacon rose

by an order of magnitude.

The crippling factor was the system’s reliance on host computers, which were only

necessary to provide power to the beacons and initialize them. We noted that host-

beacon communication was only required during the initialization process, and that

at all other times, the host computer was merely an expensive power source.

We are in the process of constructing a second infrastructure to address the prob-

lems encountered in the first system. In the second version of our system, we continue

to use USB Bluetooth adapters, which are now widely retailed for $US20 each. In
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addition to the Bluetooth adapters, we purchased 30 four-port USB hubs with exter-

nal AC adapters, available for $US10 each. To initialize a beacon, shown in Figure

5.4, we first connect it to the USB hub, which is in then connected to a typical 120V

power outlet. The hub is connected to a laptop computer, which automatically ini-

tializes the beacon and allows it to be discovered by the locators. In our system, a

single laptop running Debian Linux was used to initialize all the beacons. In the lap-

top’s default configuration, connecting and disconnecting the USB hub was sufficient

to initialize the beacon. A small status light on the D-Link adapter automatically

indicates whether it is initialized or not.

A system built in this manner no longer relies on host computers to be present.

The only sub-infrastructure it requires is an electrical power system, which is readily

available in all places it would be deployed. Beacons can be deployed in a much

wider variety of locations in a much simpler fashion that does not require significant

centralized coordination.

The major disadvantage of this system is its susceptibility to power failure. If a

beacon loses power, even momentarily, then it must be re-initialized. We currently

regard this feature as unplanned maintenance, similar to technical difficulties with

elevators or access card readers. Since our building rarely loses electrical power more

than once or twice a year, we do not view this as a significant problem. In extremely

large scale deployments spanning multiple buildings and city blocks, a single power

failure could require a significant recovery time. If the system were to be deployed

on such a large scale, however, it would be relatively inexpensive to design and man-

ufacture a self-initializing beacon.
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Figure 5-7: A beacon in the current version of our system consists of a USB hub (top
right), AC adapter (left), and USB Bluetooth adapter (bottom right).

5.5 Chapter Summary

This chapter presents an infrastructure for location aware computing that is inex-

pensive and trivial to deploy. Previous systems rely on specialized hardware, are

prohibitively expensive to deploy and maintain, or do not scale well with the area

serviced. Our system uses commodity electronics that are already widely available,

and easily scales with size. Locator devices such as cell phones and PDAs often do

not need any hardware modification at all to take advantage of the system. With

sufficient beacon density, a locator is able to determine its position to room-level

accuracy, or approximately 3-meters.

The first version of the system suffered from high maintenance and poor reliability.

Relying on PCs to host the beacons used in the infrastructure meant the beacons

were disabled or rendered ineffective as soon as a PC was turned off, reformatted, or

physically moved. These problems were addressed and a second system, which is not

as susceptible to these issues, is currently being deployed.
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Appendix A

Installing PyBluez

This appendix describes how to obtain and install PyBluez.

Requirements

• GNU/Linux Operating System

• Bluez libraries ≥ v 2.11

• C development and compilation environment

• Python ≥ v 2.3

• distutils Python extension module

Obtaining PyBluez

PyBluez is distributed at http://org.csail.mit.edu/pybluez The latest versions

and updates can be obtained on the downloads page linked at that web site. A direct

link to the latest version of PyBluez (0.2 at the time of writing this document) is

http://org.csail.mit.edu/pybluez/release/pybluez-src-latest.tar.gz
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Building PyBluez

After downloading the latest distribution, unpack the .tar.gz file and issue the

command

# python setup.py build

This will invoke the Python distutils module and automatically configure and

compile PyBluez.

Installing PyBluez

Installing PyBluez onto a host machine requires superuser privileges. To install the

compiled module, issue the following command

# python setup.py install

This will ensure that the PyBluez extension module has been built correctly and

install it as a third-party extension module on the host system. To test the installa-

tion, invoke the Python interpreter and import the bluetooth module. For example,

# python

Python 2.3.4 (#2, Dec 3 2004, 13:53:17)

[GCC 3.3.5 (Debian 1:3.3.5-2)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import bluetooth

If the import completes without any exceptions being raised, then PyBluez was

successfully installed and is ready for use.
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