
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-032 June 6, 2008

Non-Metrical Navigation Through Visual
Path Control
Albert S. Huang and Seth Teller

Non-Metrical Navigation Through Visual Path Control

Albert Huang and Seth Teller

Abstract—
We describe a new method for wide-area, non-metrical robot

navigation which enables useful, purposeful motion indoors.
Our method has two phases: a training phase, in which a
human user directs a wheeled robot with an attached camera
through an environment while occasionally supplying textual
place names; and a navigation phase in which the user specifies
goal place names (again as text), and the robot issues low-level
motion control in order to move to the specified place. We
show that differences in the visual-field locations and scales of
features matched across training and navigation can be used
to construct a simple and robust control rule that guides the
robot onto and along the training motion path.

Our method uses an omnidirectional camera, requires ap-
proximate intrinsic and extrinsic camera calibration, and is ca-
pable of effective motion control within an extended, minimally-
prepared building environment floorplan. We give results for
deployment within a single building floor with 7 rooms, 6
corridor segments, and 15 distinct place names.

I. INTRODUCTION

Effective navigation in general environments presents a
fundamental challenge for humans, attracting attention since
antiquity. The classical formulation of robot motion plan-
ning [11] has focused on the construction and usage of a
precise metrical map of the robot’s workspace. In this setting,
high-level planners have required that the robot be able to
localize itself precisely within this map, and that the goal
pose also be expressed in this same reference frame.

These requirements are reasonable for structured settings
in which (for example): the robot is bolted to a factory floor;
materials to be manipulated are delivered to the robot by a
conveyor belt; humans are kept away for safety reasons; and
the environment is otherwise unchanging. Motion planning
methods for courier robots (e.g. in hospitals) intended to
move along marked paths also make these assumptions.
However both cases also require the environment to be
prepared extensively (or “structured”) beforehand by human
engineers, and maintained in the structured site for the
duration of robot operation.

In larger and more dynamic environments that are harder
to control and observe, the construction of a precise metrical
map is both difficult and, we argue, unnecessary. Both
measurement uncertainties and the sheer scale of a large en-
vironment serve to confound and overwhelm the localization
and map-building process. Humans commonly perform anal-
ogous complex navigation tasks in extended environments,
without relying upon global sensing or externally-provided
metrical coordinate systems. We believe humans do so using

The authors are with the EECS Department, CS & AI Labora-
torys, Massachusetts Institute of Technology, Cambridge, MA 02139,
{albert,teller}@csail.mit.edu

three mechanisms: (1) an ability to learn, from traversing
an environment, a topological map (with weak metrical
attributes) of the environment; (2) an ability to associate
natural-language names with map elements (i.e. places); and
(3) an ability to determine, using both vision and temporal
continuity, one’s proximity and orientation with respect to a
previously traversed place or path.

Our robot navigation method has two phases: a training
phase, in which a human user directs a wheeled robot with an
attached camera through an environment while occasionally
supplying textual place names; and a navigation phase in
which the user specifies goal place names (again as text),
and the robot issues low-level motion control to move to the
specified place.

During training, the robot constructs a graph of labeled
nodes and edges. Each graph node corresponds to a place
named by the user; each node label is supplied by the user
as a place name. Each graph edge corresponds to a path
traversed by the robot between two named places. Each edge
is associated with a set of descriptors for visual features
observed by the robot as it moved along the path.

Many features observed during training are re-observed
during navigation. We show that differences in the visual-
field locations of features matched across training and navi-
gation, and particularly the scale at which they are detected,
can be used to construct a simple and robust control rule that
guides the robot onto and along the training motion path,
reproducing the training path at any desired speed.

The remainder of this paper is structured as follows.
Section II describes related work in robot localization and
navigation. Section III gives an overview of our approach.
Section IV describes our experimental framework, evalua-
tion metrics, and experimental results. Section V discusses
the method’s behavior and failure modes, and Section VI
concludes.

II. RELATED WORK

This section describes a number of related efforts in
robotics, machine vision, and assistive technology.

Robotics researchers have long sought to develop efficient
SLAM (Simultaneous Localization and Mapping) algorithms
capable of producing accurate maps of an arbitrary environ-
ment, and an accurate estimate of the robot’s sensing path
through the environment, with little or no prior knowledge.
Researchers have proposed a variety of SLAM methods
that address the uncertainty inherent in sensor data and
robot motion, including topological [10], particle filter [21],
[15], feature-based [19], and hybrid [9], [2] methods. Suc-
cessful SLAM approaches have been developed based on

the combination of laser scan-matching with Bayesian state
estimation [9], [21].

Researchers have exhibited motion control using similarity
measures on omnidirectional imagery, demonstrating motion
control over short distances (a few meters) [24]. Others have
used omnidirectional imagery for localization within a multi-
room environment while requiring that a global metrical map
be constructed prior to navigation [23]. Researchers have
also explored the idea of binding human names to particular
motion paths inferred from odometry, composing multiple
paths into routes and performing motion correction using
image cross-correlation [22]. A related approach took a pre-
specified topological map and manually acquired references
images at each link to demonstrate a topological navigation
capability based on visual servoing [17].

Researchers developing autonomous or assistive
wheelchairs have addressed issues of user goal specification,
high-level motion planning, and low-level motion control.
The Wheelsley wheelchair [25] provided indoor and
outdoor navigation through user gaze control (limiting
the specified goal poses to those visible to the user).
The TAO project [7] and University of Texas Intelligent
Wheelchair [8] used computer vision and infrared sensing to
track landmarks and distinctive places in the environment.
The VAHM project [3], [4] demonstrated path planning
with collision avoidance. The navigation system developed
by Yoder et al. [26] included a command interface similar
to ours, but required that the environment be prepared
with artificial visual fiducial markers at surveyed locations.
The Arizona State University wheelchair [14] provided
route-planning capability, but required a prior metrical map.
The PSUBOT [16], [20] navigated from room to room using
vision-based landmark tracking.

Recent advances in visual feature detection [12], feature
matching, and image retrieval have made vision-based, non-
metrical topological mapping and navigation attractive [6].
As precise metrical coordinates are not as useful in large-
scale environments, researchers have also begun using graph-
based methods for vision-based topological navigation [5],
[1].

Our approach falls within this last category, and demon-
strates that the scale of a visual feature, and not just its
location, provides highly useful information for vision-based
navigation. We use this information to construct a simple
and robust control rule for visual path following. In some
respects, it can be thought of as using both global and local
statistics of optical flow for path control.

III. VISUAL PATH CONTROL

This section describes the visual path control method.
After some preliminaries about the robot and sensors, we
describe the training phase and navigation phase.

A. Preliminaries
This section describes the conventions we use for robot

and camera coordinates, the camera’s field of view, and
the feature descriptor we use to characterize the robot’s
immediate visual environment.

Fig. 1. An omnidirectional camera frame of five outward-looking images.
Our camera also collects one upward-looking image (not shown), which is
unused by our method.

1) Body Coordinates and Omnidirectional Images: We
adopt a body coordinate system with its origin at the center
of the robot’s center axle. We define the azimuth angle or
“bearing” θ to be zero directly ahead of the robot, and to
increase counter-clockwise when viewed from above.

An omnidirectional camera is mounted with its center
directly above the robot origin (Figure 4), and captures image
“frames,” each associated with a monotonically-increasing
integer “frame index.” We define an altitude angle φ to be
zero at the image horizontal, and π/2 at the image vertical.
Our omnidirectional camera observes the entire hemisphere
above its center, along with an additional spherical sector
about π/3 radians high below the camera’s equatorial plane.
That is, it observes a solid angle of viewing directions
described by

d(θ, φ) = (cos θ cosφ, sin θ cosφ, sinφ)

where

−π ≤ θ < +π and − π/3 ≤ φ ≤ +π/2.

This paper addresses 3-DOF, i.e. (x, y, heading), motion
planning in a planar world, using only visual features left,
right, ahead of and behind (but not directly above or under-
neath) the robot.

2) SIFT Descriptors and Frame Signatures: To iden-
tify distinctive visual features, we use the “SIFT” (Scale-
Invariant Feature Transform) operator [12]. This operator
takes a raster image as input, and produces as output a
programmer-specifiable number of “interest regions” in the
image, and a multi-dimensional “SIFT descriptor” for each
interest region. Each SIFT descriptor consists of a location
and characteristic scale expressed in image coordinates, and
a histogram of image gradient directions sampled at many
locations within the (contrast-normalized) interest region
(cf. Figure 1).

SIFT features were designed to provide a measure of
invariance to changes in viewing direction and lighting
conditions, and have proved highly successful in the vision
literature for tasks such as object recognition [12] and vision-
based SLAM [18]. Our preliminary experiments indicate
that the SIFT operator reliably and consistently identifies
certain surface fragments in the environment as the camera
moves toward, abreast of, and beyond them, or while it
rotates in place, under a variety of natural and artificial
lighting conditions. It is thus a useful building block for the
construction of robust vision-based control methods.

We assume that the camera is approximately calibrated,
so that each image-space location corresponds to a known
direction (θ, φ) in camera coordinates. We fix the extrinsic
(camera-to-robot) calibration through the mounting proce-
dure above, aligning the camera and robot body (θ = 0)
axes manually. Approximate intrinsic calibration parameters
for our camera were supplied by its manufacturer; these are
sufficient for our purpose. We use the intrinsic calibration
information to estimate the range of bearing angles subtended
by each observed SIFT feature, i.e., the feature’s apparent
size.

Fig. 2. A pair of matched feature stacks, where the robot
has rotated by approximately π

2
radians. Matched features are

drawn in the same color, and vertical bars denote the scale of
each feature.

We define the “signature” of an omnidirectional video
frame as the set of SIFT descriptors observed in that frame.
We store the descriptors for each frame, and for each feature
its bearing θ and scale (apparent size) s (both in radians)
in each frame. Finally we define a “stack” of features in
a particular frame to be feature bearings and scales plotted
along a θ axis (Figure 2).

3) Place Graph: The training phase constructs, and the
navigation phase later uses, an underlying environment repre-
sentation that we call a “place graph.” As its name suggests,
this is a graph data structure, with additional information
attached to its nodes and edges.

Place graphs are connected and undirected. Each place
graph node corresponds to a distinct “place,” or particular
location in the environment, as indicated by the human
user. Each node (place) has a unique associated name as
specified by the user; names are stored as text strings in a flat
(non-hierarchical) manner. Example names in our environ-
ment include ”Kitchen,” “Robotics lab foyer,” “Robotics lab
east bay,” “Women’s room,” “Synthetic biology lab foyer,”
“Tom’s office,” etc.

Place names may refer to other names, as long as the
resulting name is unique, e.g., “Storage room off of the
Kitchen.” The user may also specify a numerical (unique
integer) name for any place which is functionally important –
e.g. a corridor junction – but for which specifying a globally
unique non-numeric name would be awkward or difficult.
(Consider an example from our environment: “Junction of
the corridor leading from the atrium to the printer station
with the corridor leading from the third-floor lounge to the
third-floor carrel area.”)

Each place graph edge is an undirected edge corresponding
to a motion path segment, traversed by the robot during
training, which connects two places (the places associated
with the nodes defining the edge). Each image captured
along a path segment has an associated feature stack. Each
path segment has an associated set of “feature traces” for
the features observed during motion along that segment.
For convenience, we define a parameter t ∈ [0..1] for each
segment as

t = (f − s)/(e− s)

where s and e > s are respectively the starting and ending
indices of frames captured along that segment, and f is
any intermediate frame index s ≤ f ≤ e. We say that the
“interior” of a place graph segment consists of all points on
the segment except its two defining endpoints.

B. Training Phase

Our approach is inspired by Lynch’s formulation of
“landmarks” (visually or functionally noteworthy places)
and “paths” (connections between landmarks) in his sem-
inal studies of human navigation strategies in urban areas
[13]. Rather than consider visual landmarks only at places,
however, we consider them as distributed throughout the
environment, and associate them with training motions from
place to place.

In the training phase, the place graph is initialized to the
null graph, i.e., a graph with no nodes and no edges. A
human user then leads the robot throughout the environ-
ment of interest, occasionally specifying a place name that
describes the robot’s current location. Whenever the robot
re-traverses a previously-named place, the user specifies its
place name. The captured images and user-supplied names
provide enough information for the training algorithm to
infer the following elements of the place graph:

• Nodes (created whenever the user specifies a place name
for the first time);

• Node labels (the user-specified place name);
• Edges (created whenever a path segment between two

places is traversed for the first time);
• Edge distance labels (set to the acquisition time for the

path segment corresponding to the edge); and
• Edge feature traces (extracted by storing SIFT features

within the imagery captured along the path segment).
These elements amount to a SLAM-like “map” represen-
tation of the traversed environment, which, although not
metrical, contains enough information to enable the robot to
orient itself when at place graph nodes, localize itself when
on place graph segments, and perform autonomous motion
along such segments during the navigation phase.

Note that the guarantee of certain user input (in the current
implementation) enables us to avoid the difficult SLAM
sub-problem of “loop closing,” i.e., determining when a
place is revisited. The user provides loop closures simply
by indicating each place’s name whenever the robot arrives
at that place. Thus the training algorithm can insert an edge
e(u, v), in so doing closing a loop, exactly when places u

and v are visited in succession (in either order), but e(u, v)
does not previously exist in the place graph.

In summary, the training phase produces a place graph
with exactly one node (and associated name) for each named
place, and with an edge e(u, v) between two nodes u and v
if and only if the robot traversed a path segment from u to
v or from v to u or both. The next section describes how
a place graph can be used to achieve autonomous motion
planning and effective motion within the environment.

C. Common Ingredients

Both the training phase and the navigation phase use the
same technical ingredients. However, they are used in a
different order, and in slightly different ways. The following
table summarizes their use.

Training Phase Navigation Phase
Motion Control Place Names
(Supplied by User) (Supplied by User;

Queried within Map)
SIFT Feature Detection SIFT Feature Detection
(Inserted into Map) (Queried within Map)
Localization Localization
within Map within Map
Place Names Motion Control
(Supplied by User; (Generated by
Inserted into Map) Algorithm)

D. Navigation Phase

During navigation, the training process is reversed; the
user provides a place name as part of a command (e.g., “Go
to the Kitchen,”) and the robot must identify the “goal node”
corresponding the specified place name, or report failure if
no such node exists. Otherwise, the robot must move so as
to satisfy the user’s command. Our principal contribution is
the formulation of a robust control rule based on the relative
locations and scales of matched SIFT features.

Achieving a satisfying motion involves four sub-
computations: (1) localizing within the place graph; (2) de-
termining the goal node, if any, corresponding to the user-
specified place name; (3) formulating a high-level motion
plan (i.e., a path within the place graph) that leads to the goal
place; and (4) executing the motion plan as a series of low-
level motions. We discuss each sub-computation below. We
say that a camera frame or its features are “live” if they have
been captured during navigation, rather than during trainng.

1) Localization: Robot localization, in our setting, re-
quires that the robot determine its location and orientation
with respect to the place graph. This amounts to localization
on a 1-D manifold (along path segments) with occasional
discrete bifurcations (i.e., at place nodes) – a much simpler
problem than general 3-DOF (x, y, θ) localization in the
plane.

At the start of the navigation phase, the user places the
robot, with some arbitrary orientation, at a specified place
graph node. This provides a useful initial condition to the
navigation algorithm: the robot knows itself to be on a
particular place graph node. Subsequently, the robot attempts

to move so as to occupy the goal node while staying (very
nearly) on the training path.

There are two sub-cases of interest: “at-node” orienta-
tion and “along-segment” localization. At-node orientation
is invoked whenever the robot believes itself to be at a
place graph node, and that node is not the goal node. In
this case, the robot must orient itself so as to align with
the desired outgoing segment it wishes to traverse. Along-
segment localization is invoked whenever the robot believes
itself to be on (or near) a place graph segment, but not at
a node. Both cases are explained further in § III-D.5 and
§ III-D.6.

Location and orientation determination can be solved
using temporal continuity, if the robot location was known
at some earlier time and the robot has been at rest since that
time. Otherwise, location determination involves a search for
visual features within the place graph that match the set of
visual features currently being observed. If this search fails,
the robot enters a LOST state, reverting to manual control.

2) Goal Determination: Determining the goal node within
the graph amounts to searching for the node, if any, which
has as its associated name the place name specified by the
user. We use linear search over all graph nodes, and text
string comparison, to find the desired node.1 If no goal node
is found, the robot simply reports failure, and awaits another
user command.

3) High-Level Motion Plan: Formulating a high-level mo-
tion plan amounts to searching the graph for a shortest path
linking some source node in the graph (the robot’s current
location) with some goal node in the graph (corresponding
to the user-specified place name). Given distance labels on
each edge, single-source shortest path identification is a well-
understood problem, efficiently solvable (for example) using
Dijkstra’s algorithm.

The resulting high-level motion plan consists of a se-
quence of places and segments in alternation, to be traversed
by the robot as it moves from the current node to the goal
node. The only task remaining for the robot is to execute
the motion plan, i.e. traverse the derived sequence of places
and segments, while avoiding collisions. We assume that the
environment is static; the consequence of this assumption
is that if a path segment was traversed during training,
it will remain obstacle-free during the navigation phase.
(Our current implementation exploits this assumption by
generating precise motion control to stay on the training
paths, at the cost of some fragility in overall system behavior.
We plan to reduce the method’s fragility by adding low-level
obstacle avoidance in future.)

4) SIFT Feature Matching: Both at-node and along-
segment motion control make use of a matching operation
between two sets of SIFT features (one observed during
training, one during navigation). To match a single SIFT
feature F to a set of N candidate SIFT features, we compute
the Euclidean distance [12] between the SIFT descriptor

1Much more efficient solutions to this problem are possible, for example
through string hashing. However this step requires negligible time in our
system so we have not sought to optimize it.

for F and each of the candidate descriptors, retaining the
two best (i.e. closest) candidates. If the best candidate is
much better than the second-best, we classify it as a match;
otherwise we conclude that F has no match. To identify
the best matches among two sets of M training features
and N navigation features respectively, we invoke the above
algorithm M times. To prevent many-to-one matching, we
removing matching feature pairs from both sets whenever a
match is found.

5) At-Node Motion Control: The robot believes itself to
be at a known node when one of two conditions holds.
First, at the start of the navigation phase, the user physically
places the robot at a node, and informs the robot of the node
name by specifying it as text. Second, whenever the robot
completes traversal of a known path segment in a particular
direction, it concludes that it has arrived at the place graph
node terminating that segment’s corresponding edge.

In either case, the currently occupied node is either the
goal node with the place name specified by the user, or it
is not. In the former case, the robot has satisfied the user’s
command and can stop moving and report success. In the
latter case, the robot must prepare to follow a path segment
originating at the current node which will bring it closer
to the goal node. (Such a path segment must exist, since the
place graph is connected, and both the current node and goal
node are known to be in the place graph.)

6) Along-Segment Motion Control: The robot achieves
travel along a segment simply by executing motions that
cause the traces of currently observed features to replicate
(approximately) the traces of matching features observed
during training. We define a virtual lookahead point or
“carrot” to lead the robot along the path segment. The
carrot’s position is initialized to match the robot’s (t = 0),
then t is gradually increased (causing the robot to follow
the carrot) until t = 1. We use the features observed at the
carrot position on the training path, and the features observed
during navigation, to formulate a robust control rule that
modifies the robot motion to correct any deviation from the
navigation path segment. The control rule takes as input two
feature sets C and N observed during training and during
navigation, respectively, and computes two outputs:

• An angle r such that rotating the robot from its current
position through this angle would align its features with
those observed at the carrot position; and

• A vector X which determines the direction of trans-
lation that will cause the scales of observed features
to better match the scales of any matching features
observed at the carrot position.

Features are used to compute control outputs as follows.
We use the simple observation that the scale of an observed
feature decreases with increasing distance between the robot
and the scene element giving rise to the feature. Thus if the
scale of a live feature is less than the scale of its training
match, then the robot should head towards that feature.
Conversely, if the scale of the live feature is greater than the
scale of its training match, then the robot should move away

Fig. 3. Each matched feature votes on the direction the robot should travel,
based on the scale difference from the matched training feature. Features
are shown here on a unit circle, with votes drawn as lines emanating from
the origin. The sum of every vote is drawn as a longer arrow. Red features
indicate a scale increase, blue features indicate a scale decrease, and features
with no significant scale change are shown in brown.

from that feature. In this way, each matched feature “votes”
on the direction in which the robot should move (Figure 3).

For each feature Li matched from live imagery to a
feature Ti in the training image, we use the camera’s intrinsic
parameters to compute unit vector Ri, in the robot’s body
frame, that points towards the feature. This vector is scaled
by a value repeli defined as:

if scale(Li) ∗ S < scale(Ti) then repeli = −1
if scale(Li) > scale(Ti) ∗ S then repeli = 1

else repeli = 0

where S is a threshold to suppress noise arising from the
feature scale computation. We have found S = 1.1 to be
a reasonable choice. The direction vector X can then be
defined as:

X =
∑

i

Ri ∗ repeli

When the robot is in exactly the same position as in the
target training image, X should have zero magnitude. When
the robot has a translation offset, X will point towards the
training position. The magnitude of X gives information on
how confident the robot is about its direction. If ||X|| is small
relative to the number of votes, then the robot is either lost, or
has reached its goal. The actual number of matched features
can be used to determine which. In making this decision, we
define the following variables:

nmatches = # of successfully matched features
nvotes = # of features with a non-zero vote on X

confidence =
||X||
nvotes

We then use the following criteria to determine whether
the robot is lost.
i f c o n f i d e n c e < K conf and nmatches < K l o s t
then

Fig. 4. The robot platform used for training and navigation experiments.
The omnidirectional camera is mounted approximately 1 meter off the
ground, centered above the vehicle’s only axle.

e n t e r LOST mode
e l s e i f c o n f i d e n c e < K conf and nmatches > K advance
then

advance c a r r o t
e l s e

move i n d i r e c t i o n X

Where Kconf , Klost, and Kadvance are experimentally
determined thresholds. In our experiments, we used Kconf =
0.2, Klost = 10, and Kadvance = 35.

IV. EXPERIMENTAL RESULTS

We evaluated the proposed method on a complex, spatially
extended floorplan with many offices, open spaces, and
branching corridors (Figure 5). Our robot platform was
custom-built with a two-wheel rear axle, front and rear single
casters, and one on-board laptop providing about 2GHz of
processing power (Figure 4). The omnidirectional camera
was purchased from Point Grey Research, which also sup-
plied rough intrinsic calibration parameters. We configured
the camera to output 6 images per second at 1024x768, of
which we discarded one (the top camera) and decimated
the others to 128x96. The camera lenses imposed significant
radial distortion, which we did not rectify; this affected the
repeatability of SIFT features.

Before the training phase, we chose a set of locations from
the environment to designate as named places. We chose
places based on familiarity, and functional utility.

Our environment contained about 196 square meters (or
approximately 2,110 square feet) of usable floor area, and
about 55 linear meters (or approximately 185 feet) of hall-
way. The user trained the robot by moving it through the
environment using a simple joy-stick controller (and a 10-
meter long cable, so as not to subtend a large angle in the
camera’s visual field). Each time a node was visited during
the training phase, the user would type in the name of the
node on a portable device, which would then transmit the
name to the robot.

Finally, the user can operate the robot in navigation mode,
sending it on a mission by providing the names of a start
node and goal node. An analysis is given for three missions
representative of the robot’s general performance (Figure 6).

In the first mission, the robot was place at node lab and
commanded to travel to node 7. The robot completed this

Fig. 5. Floorplan of the test environment, and the place graph defined
during the training phase. Edges indicate the path approximately taken
during training.

Fig. 6. A manually drawn diagram describing the paths taken in the three
described missions.

mission in 10 minutes by traveling through nodes 3, 5, and
6. The maximum observed deviation from the training path
was approximately 30 cm.

In the second mission, the robot was placed at node desk
A and commanded to travel to node lounge. Nodes 5 and 3
were reached without issue. Shortly after passing node 3, the
robot collided with a filing cabinet. This happened because
the lookahead point selected in the trained path was past a
turn the robot had not yet taken, causing the robot to turn
sooner than it should have.

The robot eventually moved past the filing cabinet on its
own and continued to nodes 9, 10, and 12. After reaching
node 12, the robot was unable to localize itself on the
training path from 12 to lounge. This was largely because
its orientation and position upon reaching 12 was slightly
different (offset by about 6 inches and rotated by 90 degrees)
from the trained path from 12 to lounge, and the severe radial

distortion of the camera negatively impacted the feature
matching. The total time taken to reach node 12 from desk
A was approximately 30 minutes.

Although SIFT is invariant to global lighting variations,
nonuniform changes in lighting, such as direct sunlight and
cast shadows, affect our method’s ability to localize on a
path. On a final mission from node 5 to lab during daylight
(the training was done at night), the robot was able to travel
from node 5 to node 3, but was not able to succesfully
travel from node 3 to lab. While a number of features
were succesfully matched, there were not enough consistent
matches to exceed the robot’s movement thresholds.

V. DISCUSSION

Our method has a number of limitations. It assumes a static
environment during both training and navigation (except for
illumination variations). During training, it requires that the
user name each place whenever it is traversed, not just the
first time. To begin navigation, it assumes that the user has
placed the robot at a place traversed during training, and has
specified its name. It does not perform collision avoidance
during navigation. We sketch briefly how each of these
limitations might be addressed through future algorithmic
or systems improvements.

Our current system assumes that if a path was traversed
during training, it will remain passable, i.e., that the envi-
ronment is static (except for changes in lighting). The static
environment assumption is also used as the basis for an
expectation that at all times during navigation, some features
visible during training can be reacquired. If this is not the
case, then the method must be able to tolerate brief periods
of being lost, i.e., it must be able to localize or relocalize.

A more capable system would perform low-level obstacle
detection and collision avoidance, executing local deviations
from previously traversed segments, or replanning, as neces-
sary due to obstacles encountered during navigation. A global
index of all visual features observed during training would be
useful for this purpose. Moreover, if faced with an entirely
unfamiliar local scene, the robot could attempt to traverse
it until it sees something it recognizes. This approach could
also be used for automatic initialization, and for reacquisition
of the training path after brief detours for collision avoidance.

The method uses user naming for two purposes. The first
is to solve SLAM loop closing easily (at the cost of an added
user burden). The second is to provide for a natural command
interface during navigation. We hope to retain the second
capability, while removing the burden attendant on the first
capability, by incorporating SLAM loop-closure techniques
from the vision and robotics literature into our method.

Many corridor junctions have no natural global names,
but they do have local names. It would be useful to specify
the globally non-unique name “corner” (or “T-junction” or
“four-way junction”) wherever two corridors meet, and have
the training algorithm infer a globally unique name from
the unique names of other nodes one or more hops away
in the place graph, and some high-level logic. In the long
run, we expect to be able to remove this limitation entirely

by improving the training algorithm so that it can infer the
existence of junctions (from segments that overlap partially,
but diverge). This would obviate the need for users to specify
place names for such ”un-named” (but important!) locations.

The method can retrace only those motion paths that
have been demonstrated to the robot during training. The
addition of a collision-avoidance capability should enable it
to traverse, during navigation, logical segments which were
not traversed during training, for example, moving through
the center of a room of which the robot was trained only
around the perimeter.

Our current system assumes a single user training a single
robot within a single environment. We hope to investigate
multiple users training single or multiple robots within
(overlapping) subsets of a single environment. In this way,
the burden of training the robot on the entire environment
can be distributed across several users, and each user will get
the benefit of the group’s training (provided that the method
can match different users’ names for places during or after
training).

VI. CONCLUSION

This paper described a robot navigation method based
on searching a place graph for a route to a goal node,
then using the image feature descriptors stored with edges
along the route for vision-based motion control. The paper
also described how the robot can construct a place graph
automatically, provided suitable training by a human user.
During training, the user provides a kind of narrated tour to
the robot, giving the robot distinct names for distinct places
and exhibiting the existence of motion paths connecting
certain pairs of places. In both training and navigation, the
only human-robot interaction required for place description is
the utterance (typing) of a name whenever the robot traverses
a place.

Our method has a number of advantages. It does no
metrical egomotion estimation or require odometry. It per-
forms no feature tracking within any image sequence, but
only feature matching across the training and navigation
sequences. It does not require accurate intrinsic or extrinsic
camera calibration. It does not retain raw image data, but
only much more compact and sparse image descriptors. As
a result, it is quite simple to describe and replicate, and
it is capable of successful navigation within a complex
environment encompassing an extended office floorplan with
a mix of visually rich and visually spare areas.

The method also has a number of significant limitations. It
assumes a static environment during both training and nav-
igation (except for illumination variations). During training,
it requires that the user name each place whenever it is tra-
versed, not just the first time. To begin navigation, it assumes
that the user has placed the robot at a place traversed during
training, and has specified its name. During navigation, it
can traverse only those paths that were exhibited by the
user during training, and it does not perform collision avoid-
ance. We sketched how each of these limitations might be

addressed through future interface, algorithmic, or systems
improvements.

REFERENCES

[1] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose. Navigation using an
appearance based topological map. In Proc. IEEE Int. Conf. Robotics
and Automation, 2007.

[2] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An atlas framework for scalable mapping. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2003.

[3] G. Bourhis and Y. Agostini. Man-machine cooperation for the control
of an intelligent powered wheelchair. Journal of Intelligent and
Robotic Systems, 22:269–287, 1998.

[4] G. Bourhis and Y. Agostini. The vahm robotized wheelchair: system
architecture and humanmachine interaction. Journal of Intelligent and
Robotic Systems, 22(1):39–50, 1998.

[5] F. Fraundorfer, C. Engels, and D. Nister. Topological mapping,
localization and navigation using image collections. In Proc. IEEE
Int. Workshop on Intelligent Robots and Systems, 2007.

[6] T. Goedeme, T. Tuytelaars, and L. Van Gool. Visual topological map
building in self-similar environments. In Int. Conf. Informatics in
Control, Automation and Robotics, August 2006.

[7] T. Gomi and A. Griffith. Developing intelligent wheelchairs for the
handicapped. In V. Mittal, H. A. Yanco, J. Aronis, and R. C. Simpson,
editors, Lecture Notes in Artificial Intelligence: Assistive Technology
and Artificial Intelligence, pages 150–178. Springer-Verlag, 1998.

[8] W. S. Gribble, R. L. Browning, M. Hewett, E. Remolina, and B. J.
Kuipers. Integrating vision and spatial reasoning for assistive nav-
igation. In V. Mittal, H. A. Yanco, J. Aronis, and R. C. Simpson,
editors, Lecture Notes in Artificial Intelligence: Assistive Technology
and Artificial Intelligence, pages 179–193. Springer-Verlag, 1998.

[9] J-S. Gutmann and K. Konolige. Incremental mapping of large
cyclic environments. In International Symposium on Computational
Intelligence in Robotics and Automation, 1999.

[10] B. J. Kuipers. The spatial semantic hierarchy. Artificial Intelligence,
2000.

[11] J-C. Latombe. Robot Motion Planning. Boston: Kluwer Academic
Publishers, 1991.

[12] David G. Lowe. Object recognition from local scale-invariant features.
In Proc. of the International Conference on Computer Vision ICCV,
pages 1150–1157, 1999.

[13] Kevin Lynch. Image of the City. MIT Press, 1960.
[14] R. L. Madarasz, L. C. Heiny, R. F. Cromp, and N. M. Mazur. The

design of an autonomous vehicle for the disabled. Autonomous Mobile
Robots: Control, Planning, and Architecture, pages 351–359, 1991.
Originally appeared in IEEE Journal of Robotics and Automation,
Volume RA-2, Number 3, September 1986, pages 117-126.

[15] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:
A factored solution to the simultaneous localization and mapping
problem. In Proceedings of the AAAI National Conference on Artificial
Intelligence, Edmonton, Canada, 2002. AAAI.

[16] M. A. Perkowski and K. Stanton. Robotics for the handicapped. In
Northcon Conference Record, pages 278–284, 1991.

[17] Jose Santos-Victor, Raquel Vassallo, and Hans Schneebeli. Topological
maps for visual navigation. In ICVS, pages 21–36, 1999.

[18] Stephen Se, David Lowe, and Jim Little. Local and global localization
for mobile robots using visual landmarks. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 414–420, Maui, Hawaii, October 2001.

[19] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-
lationships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles, pages 167–193. Springer-Verlag, 1990.

[20] K. B. Stanton, P. R. Sherman, M. L. Rohwedder, C. P. Fleskes,
D. R. Gray, D. T. Minh, C. Espinoza, D. Mayui, M. Ishaque, and
M. A. Perkowski. Psubot - a voice-controlled wheelchair for the
handicapped. In Proceedings of the 33rd Midwest Symposium on
Circuits and Systems, volume 2, pages 669–672, 1991.

[21] S. Thrun. A probabilistic online mapping algorithm for teams of
mobile robots. Int. J. Robotics Research, 20(5):335–363, May 2001.

[22] Raquel Frizera Vassallo, Josi Santos-Victor, and Hans Jvrg Schneebeli.
Using motor representations for topological mapping and navigation.
In Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 478–483, EPFL, Lausanne,
Switzerland, October 2001.

[23] J. Wolf, W. Burgard, and H. Burkhardt. Using an image retrieval
system for vision-based mobile robot localization. In Proc. of the
International Conference on Image and Video Retrieval (CIVR), 2002.

[24] Y. Yagi, K. Shouya, and M. Yachida. Environmental map generation
and ego-motion estimation in a dynamic environment for an omni-
directional image sensor. In Proc. IEEE Int. Conf. Robotics and
Automation, pages 3493–3498, May 2000.

[25] H. A. Yanco. Shared User-Computer Control of a Robotic Wheelchair
System. PhD thesis, Massachusetts Institute of Technology, September
2000.

[26] J.-D. Yoder, E. T. Baumgartner, and S. B. Skaar. Initial results in the
development of a guidance system for a powered wheelchair. IEEE
Transactions on Rehabilitation Engineering, 4(3):143– 151, 1996.

