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Abstract— This paper describes an algorithm for estimating
lane boundaries and curbs from a moving vehicle using noisy
observations and a probabilistic model of curvature. The
primary contribution of this paper is a curve model we call
lateral uncertainty, which describes the uncertainty of a curve
estimate along the lateral direction at various points on the
curve, and does not attempt to capture uncertainty along the
longitudinal direction of the curve. Additionally, our method
incorporates expected road curvature information derived from
an empirical study of a real road network.

Our method is notable in that it accurately captures the
geometry of arbitrarily complex lane boundary curves that are
not well approximated by straight lines or low-order polynomial
curves. It is independent of the direction of travel of the vehicle,
and is also able to incorporate sensor uncertainty associated
with individual observations. We analyze the benefits and
drawbacks of this approach, and show results of our algorithm
applied to real world data sets.

I. INTRODUCTION

The road networks of countries around the world form
the backbone of modern transportation, each day carrying
countless numbers of people and goods to their destinations.
To assist the safe and efficient transport of their travelers,
roadways are typically marked with painted and physical
boundaries that define the legal and safe regions of travel.
The exact nature and appearance of these markings vary from
region to region, but all serve to delineate the lanes within
which a single file of vehicles is intended to travel.

A system able to automatically and reliably estimate the
roadway and its lanes from a moving vehicle using on-board
sensor data would have enormous benefits for land-based
travel. It could be used for tasks ranging from wide scale road
and lane quality assessments, to acting as a safety system
for human driver assistance, to serving as a navigational
component in a fully autonomous vehicle.

These tasks each have slightly different requirements, but
all require that the system be able to divine the shape and
geometry of at least some part of the roadway and its lanes.
To do so, the system must utilize information from its on-
board sensors, and any other a priori information it has
available (e.g. from a road map).

We divide the lane-finding problem into three individual
sub-problems: Feature detection, boundary estimation, and
lane tracking. The feature detection problem refers to the
use of on-board sensors to detect road paint, curbs, and other
environmental markings such as color or texture discontinu-
ities that may be used to demarcate the roadway and its
lanes. The boundary estimation problem is that of using the
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Fig. 1. Lateral uncertainty allows us to concisely model the uncertainty
associated with a piecewise linear curve. (a) A camera image (b) Lidar-
detected (cyan) and vision-detected (yellow) lane boundary estimates, and
their lateral uncertainties projected into image space. (c) Three camera
images from the same scene projected onto a ground plane. (d) The lane
boundary estimates shown on the ground plane.

detected features to estimate the number and shape of each
of the lane boundaries. Finally, the lane tracking problem is
to infer the number and shape of the travel lanes.

In this paper, we consider the sub-problem of lane bound-
ary estimation for an autonomous vehicle. Specifically, given
a set of noisy observations that are likely to correspond
to portions of a lane boundary, we are concerned with
fusing those observations into curve estimates of potential
lane boundaries that are tracked and filtered over time and
space. Our system should be able to estimate lane boundaries
independently of their orientation with respect to the vehicle,
so that the system has good situational awareness when ex-
iting parking lots and arriving at intersections. Additionally,
our system must accurately model a wide variety of lane
boundary geometries, to the extent that they are useful for
describing the shape of the road and its lanes.

The primary contribution of this paper is an algorithm for
tracking boundary curves from noisy features using a novel
curve model we call lateral uncertainty, and an empirically
determined probabilistic model of curvature. The key insight
of this contribution is to describe the uncertainty of our
system’s estimates along the lateral direction of the curve,
and not on the longitudinal direction, as illustrated in Figure
1. Doing so allows us to robustly and efficiently incorporate



noisy observations into a tracked curve estimate.

II. RELATED WORK

Aspects of the lane-finding problem have been studied
for decades in the context of autonomous land vehicle
development [1], [2] and driver-assistance technologies [3],
[4], [5]. McCall and Trivedi provide an excellent survey [6].
Early work in autonomous vehicle development often made
simplifying assumptions such as on road curvature, and
exhibited limited autonomy in the sense that systems required
a human driver to “stage” the vehicle into a valid lane before
enabling autonomous operation, and to take control whenever
the system could not handle the required task, for example
during highway entrance or exit maneuvers [2]. Recent work
has attempted to relax many of these requirements [7], [8],
[9].

Because sensing the real world is an inherently uncer-
tain process, there has been much work on modeling this
uncertainty for lane estimation, starting from Dickmanns’s
original Kalman filter formulation [1]. Recently, Sehestedt et
al. described the use of a particle filter for boundary tracking
[10], and ZuWhan Kim presented an impressive system to
detect and track the left and right boundaries of a single lane
using a combination of a support vector machine, RANSAC
spline fitting, and a dynamic bayesian network [8].

Our approach to the boundary estimation problem differs
from recent work in two key respects. Unlike previous
approaches, which are primarily concerned with detecting
and tracking boundaries in a sensor-relative or vehicle-
relative coordinate frame (usually a camera) [9], [8], [10],
our formulation estimates boundaries in a Cartesian frame
fixed to the local environment [11]. This has simplifying
ramifications, as it eases the fusion of multiple heterogeneous
sensors, and boundary curves do not move in this coordinate
frame. We typically propagate our state estimates forward
through time via the identity transformation. Second, our
piecewise linear uncertainty model allows us to model and
track an arbitrary number of curves without any restrictions
on their positions or orientations relative to the vehicle.

III. APPROACH

We represent a continuous parametric 2-D curve f as:

f(s) = (fx(s), fy(s))>, s ∈ [s1, sn] (1)

where fx(s) and fy(s) are the x and y coordinates of
the curve, parametrized by the scalar value s, and defined
on the domain s ∈ [s1, sn]. In the context of road and lane
boundaries, we treat a boundary curve as a single parametric
curve, with coordinates expressed in a Cartesian frame fixed
to the local environment. The length of the curve could be
on the order of meters for short streets or merge lanes, or
thousands of kilometers for a transcontinental highway.

For simplicity, we consider only curve representations
that are piecewise linear, and represent a curve f by its
n × 2 matrix of control points F = (f1, f2, . . . , fn)>. A
point f(s) on the curve can then be determined by simple
linear interpolation. We will refer to the curve alternately

as either f or F, depending on the context. Additionally,
we assume some method of inferring first and second order
curve derivatives from the control points when appropriate,
such as by fitting quadratic or cubic splines to the control
points [12].

The subject of this paper is to produce an estimate f̂ of
f , given a set of noisy observations. We seek to estimate the
region of f that is within sensor range of our vehicle, and
so we note that it is typically the case that the domain on
which f̂ is defined is a subset of the domain on which f is
defined. Thus, we define our estimate f̂ as:

f̂(s) = (f̂x(s), f̂y(s))>, s ∈ [r1, rn] (2)

and note that s1 ≤ r1 < rn ≤ sn.

A. Lateral Uncertainty

We do not typically have knowledge of the true form of
a boundary curve f , and would like to define a probability
distribution over its possible shapes. A straightforward ap-
proach is to assume that the control points of the polyline
are normally distributed, and represent the uncertainty with
a 2n× 1 mean vector and 2n× 2n covariance matrix.

The major drawback of this method is that allowing
the control points of the polyline to vary in all directions
provides unnecessarily many degrees of freedom. Specifi-
cally, the shape of the curve does not change significantly
if we move a control point of the polyline by a small
amount along the longitudinal direction. In the case of three
co-linear control points, moving the middle control point
longitudinally does not change the curve shape at all. Thus,
using a covariance matrix on the control point coordinates is
an inefficient way to represent uncertainty.

Instead, we propose to represent the probability distri-
bution over the shape of a curve using a mean Fµ =
(µ1,µ2, . . . ,µn)> and a lateral uncertainty term repre-
sented by the n × n covariance matrix Σ. Given a random
matrix G = (g1,g2, . . . ,gn)> of control points representing
a curve drawn from the distribution, such that each gi can
be expressed as:

gi = µi + wiµ̄i (3)

where wi is a scalar value, and µ̄i is the unit normal vector
of the curve at µi, we define the probability density of G
as:

PF̂,Σ(G) =
1

(2π)n/2|Σ|1/2
exp(−1

2
w>Σ−1w) (4)

where w = (w1, w2, . . . , wn)> is the vector of residuals,
distributed according to w ∼ N(0,Σ). For our purposes,
the mean is the true curve, such that Fµ = F and ūi =
f̄ i. Figure 1 illustrates this with a number of lane boundary
estimates, and their 3-σ lateral uncertainties marked by short
line segments at the control points of the curves. The cross-
covariances of Σ are not illustrated.

The intuition behind this formulation is that we allow the
control points of the curve to vary along the curve normal at



each control point. Thus, each control point has one degree
of freedom instead of two; even though G has 2n distinct
components, it has only n degrees of freedom.

We have defined G such that each of its control points lies
on the normal vector of a control point of F. To evaluate the
probability density of an arbitrary curve g, we can re-sample
the control points to satisfy this requirement. The probability
estimate is accurate as long as the difference between the
original curve g and the polyline representation G is small
(e.g. as measured by the area between the two).

If we re-sample the control points of a curve on which a
probability distribution has been defined, then we will also
need to re-define the distribution in terms of the new control
points. If H is a k×n matrix, where k is the number of new
control points, then HG is a random variable with mean
HF and lateral uncertainty equal to H>ΣH. A re-sampling
of curve control points simply amounts to choosing H such
that each row of H has at most two non-zero entries that are
adjacent and sum to unity.

B. Estimation

In estimating and tracking boundary curves, we do not
have absolute knowledge of either the true curves, or the true
probability distributions. Instead, we work with estimates
of these values. We refer to our estimate of F as F̂ =
(f̂1, f̂2, . . . , f̂n)>, our estimate of Σ as Q, and our estimate of
f̄ i as f̆ i. These estimates are themselves random variables,
and if our model is correct, the expected values of these
estimates are the true values. As is standard practice in
estimation, we will often use the estimates in place of the
true values for our work.

C. Observations

We define a noisy observation z of f as:

z(u) = f(c(u)) + v(u)f̄(c(u)), u ∈ [u1, um] (5)

where v(u) is a scalar noise term, f̄(u) is the unit normal
vector of f at u, and c(u) is a parametrization function that
maps values of u to values of s. It is typically the case that
z is only a partial observation of f , such that s1 ≤ c(u1) <
c(um) ≤ sn. Thus, z is a random curve whose probability
distribution is determined by f and v(u).

As before, we represent z with the control point matrix
Z = (z1, z2, . . . , zm)> and the lateral uncertainty covariance
matrix R. In particular, each control point zi can be described
as:

zi = f ci
+ vif̄ ci

(6)

where ci is the discrete version of the parametrization
function c, and vi is a noise term such that the vector v =
(v1, v2, . . . , vm) is a random variable distributed according
to v ∼ N(0,R).

If we define Fz to be the m×2 matrix with f ci
as the ith

row, and F̄z to be the m× 2 matrix with f̄ ci as the ith row,
then we can re-write Z as:

Z = Fz + diag(v)F̄z (7)

In short, we define an observation Z to be a polyline where
each control point of the observation corresponds to a point
on the true curve, plus a noise component along the lateral
direction of the true curve.

D. Data Association

Given a curve estimate F̂ with lateral uncertainty Q, and
an observation Z with lateral uncertainty R, we would like to
determine if Z is an observation of f , or if it is an observation
of a different curve. We assume that Z is sampled such that
each control point zi lies on the normal vector of f̂ ci

. Thus,
each zi can be expressed as:

zi = f̂ ci
+ eif̆ ci

(8)

for a scalar value ei. Denote P as the m×m sub-matrix
of Q such that Pj,k = Qcj ,ck

. Additionally, define the vector
e of residuals to be e = (e1, e2, . . . , em)>. Finally, define
the scalar random variable y to be the Mahalanobis distance:

y = e>(R + P)−1e (9)

If z is an observation of the curve f , then e has zero
mean, and y obeys a χ2 distribution with m degrees of
freedom [13]. With this, we can compute a p-value and
apply a standard goodness-of-fit test to determine if z is an
observation of f , or if it is an observation of a different curve.

When simultaneously estimating and tracking multiple
curves, we can apply a greedy matching procedure, whereby
an observation is associated with the curve that best “ex-
plains” the observation. If no tracked curve could reasonably
have been expected to generate the observation, then a
new curve is defined, initialized to the mean and lateral
uncertainty of the observation.

E. Curvature Prediction

The data association procedure described above is appli-
cable only when the observation and tracked curve have
longitudinal overlap. It is often the case that the observation
z is actually part of the true curve f , but has no overlap
with the current estimate f̂ . For example, when tracking a
lane boundary marked with a dashed line, when a new dash
is observed, we would like to associate it with the existing
curve estimate even though it has no overlap.

Intuitively, if we have observed one portion of a curve, we
can reliably predict the shape of the nearby unobserved parts
of the curve. The direction and curvature of lane boundaries
do not change very rapidly, and are governed by the physical
limitations of the vehicles they carry. In order to make this
prediction, we must first have a model of how the curve
evolves over space.

The state of Massachusetts publishes a dataset containing
the geometry of more than 61,000km of public roads in the
state, produced by individuals manually annotating ortho-
rectified aerial imagery [14]. We fit a simple first-order
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Fig. 2. A road curvature prediction model, fit to MassGIS data on public
roads in the state of Massachusetts. 1-σ bounds are shown.

markov model to this data set to produce a generative model
of road curvature. Specifically, given the signed curvature
at one point on a lane boundary, this model predicts the
curvature of the lane boundary one meter farther down
the curve. Figure 2 illustrates this fit. Higher order models
can be expected to improve prediction accuracy and reduce
prediction variance.

Using this curve model, we can extend both our estimate f̂
of f and the observation z. If the original observation z was
reasonably close to the original curve estimate, but did not
actually have any longitudinal overlap, then the extensions
may have enough overlap to robustly determine if the two
correspond to the same underlying curve. This is illustrated
in Figure 3.

F. Update

Once an observation z has been associated with an existing
curve estimate f̂ , we would like to use z to update our
estimate. This corresponds to the update step of a standard
Kalman filter [13]. If the observation z does not span the
length of f̂ , then we first augment its lateral uncertainty co-
variance matrix R with entries corresponding to unobserved
parts of f̂ set to infinity. The control point matrix Z is also
extended. Similarly, if z extends beyond f̂ , then F̂ and Q
are augmented accordingly. Without loss of generality, we
assume that Z is an n× 2 matrix, where each row of Z lies
on the normal vector of f̂ at the same row in F.

The updated mean, which we denote as F̃, is then ex-
pressed as:

F̃ = F̂ + diag(Q(Q + R)−1e)F̆ (10)

The updated lateral uncertainty covariance matrix, which
we denote as Q̃, is expressed as:

Q̃ = (I−Q(Q + R)−1)Q (11)

Intuitively, this update allows our estimate of F to shift
a control point only along the normal vector to the curve

(a) Curve estimate (left) and a non-overlapping observation
(right)

(b) Predicted extensions of both curves

(c) Final curve estimate

Fig. 3. A curvature prediction model allows us to associate observations
with existing curve estimates when there is no overlap. Short line segments
perpendicular to the curves indicate the 1-σ lateral uncertainty.

at that control point. The amount by which a control point
is shifted is determined from the lateral uncertainties of the
original curve, and of the observation.

By shifting the control points of the curve, we have
also changed the curve normals. Since our uncertainty is
defined only along the direction of the curve normals,
the actual probability distribution over the curve changes
after re-computing the normal vectors. The amount of error
introduced by this change is directly related to the angle
change of the normal vector, and introduces approximation
errors similar to that of the linearization step of an extended
Kalman filter.

IV. IMPLEMENTATION

To assess its performance, we implemented our algorithm
on a Land Rover LR3 passenger vehicle equipped with
multiple cameras and laser range finders. As input to our
system, we used the road paint and curb detection algorithms
developed at MIT [7], [15]. Both algorithms output piecewise
linear curves in a local coordinate frame.

Curves corresponding to road paint and curbs were tracked
separately; road paint and curbs were never mixed to update
the same curve estimate. Polyline control points were spaced
at 1m intervals, and curves were re-sampled after each update
to maintain the control point spacing.

Our experiments yielded several useful thresholds. To re-
duce false matches, we required that a detection and a tracked
curve overlap by 4.0m. This threshold includes overlap of
predicted curve extensions. When extending curves based
on our prediction model, extensions were terminated after
the 1-σ lateral uncertainty at the end of the curve exceeded
1.5m. Additionally, we set a p-value threshold of 0.94 for
the χ2 error statistic y.

To prevent overconfidence as a result of not accounting
for correlations across observations, we applied a minimum
bound on the covariance. Finally, our implementation used
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Fig. 4. Lane boundary tracking results, with curve estimates longer than 20m depicted. The first column shows a camera image, with tracked road paint
(yellow) and curb (cyan) estimates superimposed on the image in the second column. The third column shows a simulated overhead view with three camera
images inverse-perspective mapped onto an assumed ground plane, and the curves superimposed accordingly. The final column shows a second simulated
viewpoint, with the lidar point cloud shown in grey.

diagonal covariance matrices for simplicity. This performed
well in practice.

V. RESULTS

We tested our method on the MIT Urban Challenge
dataset [15], which contains synchronized camera, lidar, and
navigational data for 87km of travel through a simulated
urban environment. This dataset also contains the output of
the road paint and curb detection algorithms used as input
to our method.

Figure 4 shows a number of areas where our method
performed well. Each row contains four images depicting the
same scene. Vision-detected curves (road paint) are drawn
in yellow, with lateral uncertainties represented by short
perpendicular line segments. Lidar-detected curves (curbs)
are similarly drawn in cyan. In both cases, only curves
longer than 20m are depicted. Our system tracks curves of
all lengths; we use the 20m threshold as an example of how
one might further distinguish curves corresponding to lane
boundaries.

In Figures 4a-4c, our method is able to successfully track a

painted lane boundary in the presence of strong shadows. The
road paint detection algorithms produce many false alarms
in these cases, but only the detections that are highly likely
to correspond to the tracked curve are used to update the
painted boundary estimate. Figure 4c illustrates our method’s
ability to track lane boundaries perpendicular to the vehicle’s
direction of travel, such as would be encountered when
exiting a parking lot or at an intersection. In Figures 4e and
4f, our method is able to track closely spaced curves.

A. Limitations

An immediately apparent limitation of our algorithm is
that it does not account for error correlations between indi-
vidual detections. Thus, if a series of detections are used to
update a tracked curve, and each of the detections has highly
correlated error, then our system will produce overconfident
results. We are not aware of any other lane estimation system
that is able to robustly address this issue.

It is possible to employ heuristics to reduce, but not
eliminate, this effect. For example, we enforced a lower
bound on the lateral uncertainties to prevent overconfidence.



(a) Forward camera view

(b) Leftward camera view

(c) Simulated overhead view

Fig. 5. Our method can fail when a detection is erroneously associated
with a tracked curve. In this case, the road paint is detected correctly, but
the wrong detection is used to update a curve estimate.

In addition, we may be able to estimate and account for
certain inter-detection error correlations by computing the
distance between vehicle poses at detection time. A simple
rule could be to ignore the second of two consecutive and
identical detections made while the vehicle is halted.

A second limitation of our algorithm is that if a detec-
tion is incorrectly associated with a tracked curve, and is
also used to extend the curve estimate by an amount that
deviates significantly from the true curve, then our method
is unlikely to recover. An example of this is shown in
Figure 5. To reduce the chances of this occurring, we could
employ several methods. First, a more accurate model of road
curvature could be used to reduce the overall matching score
errors in some cases. Second, the order in which updates are
applied could be determined by a ranking procedure, instead
of simply applying updates in the order that the matchings
are generated. Thirdly, we could apply a limit on how far
a tracked curve can be extended by a single observation,
as a means to filter spurious matches. Finally, semantic
reasoning incorporating information such as marking type
and appearance could be used to guide the matches.

VI. CONCLUSION

Road and lane estimation can often be divided into several
sub-problems: detecting features such as road paint and

curbs; finding and tracking boundary curves; and finding
and tracking the actual road and travel lanes. We have
described an approach to the boundary curve estimation and
tracking sub-problem that uses lateral uncertainty to describe
probability distributions over piecewise linear curves.

Our method matches curves with an empirically deter-
mined probabilistic model of curvature, and is able to match
curves that do not overlap longitudinally. Our method is
robust to noise, successfully suppresses a wide range of
falsely detected features (e.g. those caused by shadows), and
is able to track an arbitrary number of curves independently
of their position and orientation with respect to the vehicle.

Finally, we have shown results when our method is ap-
plied to a variety of realistic driving scenarios, discussed
its strengths and limitations, and described several possible
improvements.
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