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Abstract— We describe the Lightweight Communications and
Marshalling (LCM) library for message passing and data
marshalling. The primary goal of LCM is to simplify the
development of low-latency message passing systems, especially
for real-time robotics research applications.

Messages can be transmitted between different processes
using LCM’s publish/subscribe message-passing system. A
platform- and language-independent type specification language
separates message description from implementation. Message
specifications are automatically compiled into language-specific
bindings, eliminating the need for users to implement mar-
shalling code while guaranteeing run-time type safety.

LCM is notable in providing a real-time deep traffic in-
spection tool that can decode and display message traffic
with minimal user effort and no impact on overall system
performance. This and other features emphasize LCM’s focus
on simplifying both the development and debugging of message
passing systems. In this paper, we explain the design of LCM,
evaluate its performance, and describe its application to a
number of autonomous land, underwater, and aerial robots.

I. INTRODUCTION

A fundamental software design principle is that of modu-
larity, which promotes maintainability, code re-use, and fault
isolation [1], [2]. A large robotic system, for example, can
be decomposed into specific tasks such as data acquisition,
state estimation, task planning, etc. To accomplish their tasks,
modules must exchange information with other modules.
With modern operating systems, it is convenient to map
individual modules onto software processes that can be on
the same or physically separate computational devices. This
then transforms the task of information exchange into the
well studied problem of interprocess communication.

In this paper, we describe a message passing system
for interprocess communication that is specifically targeted
for the development of real-time systems. Our approach
is motivated by lessons from modern software practices,
and places great emphasis on simplicity and usability from
the perspective of a system designer. We call our system
Lightweight Communications and Marshalling (LCM) to
signify its functionality and its simplicity in both usage and
implementation.

The single most notable attribute of mapping modules
onto separate processes is that every module receives a
separate memory address space. The introduction of this
barrier provides a number of benefits; modules can be run on
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the same or different host devices, started and stopped inde-
pendently, written in different programming languages and
for different operating systems, and catastrophic failure of
one module (e.g. a segmentation fault) does not necessarily
impact another.

With this independence also comes isolation – sharing
information between modules is no longer a trivial task.
Module designers must carefully consider what information
to share across modules, how to marshal (encode) that in-
formation into a message, how to communicate a marshalled
message from one module to another, and how to un-marshal
(decode) the message once received.

Although a message passing system introduces complexi-
ties that must be carefully managed, it also provides oppor-
tunities for analysis and introspection that may be invaluable
to a developer. In particular, messages may be captured and
analyzed by modules specifically designed to aid system
development. Such modules might log messages to disk,
provide statistics on bandwidth, message rate, etc. If the
messages are marshalled according to a formal type system,
then a traffic inspection module could automatically decode
messages in much the same way a program debugger can
automatically decode stack variables of a running applica-
tion.

LCM provide tools for marshalling, communication, and
analysis that are both simple to use and highly efficient.
Its overarching design philosophy is to make it easy to
accomplish the most common message passing tasks, and
possible to accomplish most others. LCM also detects many
run-time errors, such as invalidly formatted data and type
mismatches.

II. RELATED WORK

Interprocess communication is an extensively studied topic
broad applicability. We direct our attention specifically to-
wards its in the development of robotic systems, where the
idea of dividing large systems into modules has become
commonplace [3], [4].

There are several recurring themes in existing systems.
Publish/subscribe models are the most commonly used [5],
[3], [6], with TCP being the most common transport. Most
of these systems employ a centralized hub, whether it is
used for message routing or merely for “match making”.
Virtually all of these systems provide a reliable and ordered
transport system, though some of the systems provide a
UDP transport as a non-standard option. A separate technical
report describes a number of commonly used systems in
greater detail [7].



Service models provide a familiar programming model [8],
[9], but this has its drawbacks. For example, it is typically
more difficult to inject previously recorded data into a
service-based system. An ability like this is particularly
useful when developing perceptual and other data processing
algorithms, as the same code can be used to operate on
logged data and live data. In a publish/subscribe system,
this can be accomplished by simply retransmitting previous
messages to clients. Since communications are stateful in
a service-oriented system, event injection would require the
cooperation of the services themselves.

Existing systems are widely varied in terms of provided
support for data marshalling. Some systems do not pro-
vide automatic marshalling tools, instead allowing free-
form human-readable messages [5], or specifying a set
of standardized messages and binary formats [10]. Several
systems use an XDR-based marshalling system [11], [8],
[3], though some implementations provide only partially
automatic code generation. Language and platform support is
typically limited, and with some systems [3], the users must
manually keep a formatting string in sync with the message
layout.

Our system, Lightweight Communications and Mar-
shalling (LCM), provides a “push”-based publish/subscribe
model. It uses UDP multicast as a low-latency but unreliable
transport, thus avoiding the need for a centralized hub. LCM
provides tools for generating marshalling code based on a
formal type declaration language; this code can be generated
for a large number of platforms and operating systems and
provides run-time type safety.

Several of the other systems provide an operating “en-
vironment”, consisting of pre-defined data types, ready-to-
use modules, event loops, message-passing systems, visu-
alization and simulation tools, package management, and
more [3], [4], [5]. LCM is different in that it is intended
to be an “a la carte” message passing system, capable of
being integrated into a wide variety of systems.

Finally, the way in which LCM is perhaps most distinc-
tive from other systems is in its emphasis on debugging
and analysis. For example, while all systems provide some
mechanism for delivering a message from one module to
another, few provide a way to easily debug and inspect the
actual messages transmitted. Those that do typically do so
at the expense of efficiency and performance. LCM provides
a tool for deep inspection of all messages passed on the
network, requiring minimal developer effort and incurring no
performance penalty. This is made possible by design, and
allows a system developer to quickly and efficiently identify
many bugs and potential sources of failure that are otherwise
difficult to detect.

III. APPROACH

We divide our description of LCM into several sections:
type specification, marshalling, communications, and tools.
Type specification refers to the method and syntax for defin-
ing compound data types, the sole means of data interchange
between processes using LCM. Marshalling is the process of

encoding and decoding such a message into binary data for
the communications system which is responsible for actually
transmitting it.

A. Type Specification

Processes that wish to communicate using LCM must
agree in advance on the compound data types that will be
used to exchange data. LCM defines a formal type specifi-
cation language that describes the structure of these types.
LCM does not support defining Remote Procedure Calls
(RPC), but instead requires applications to communicate
by exchanging state in the form of these compound data
types. This restriction makes the LCM messages stateless,
simplifying other aspects of the system (particularly logging
and playback).

The marshalling system, described in Section III-B is
responsible for encoding this data after being defined by
the programmer. It includes a novel scheme for guaranteeing
that the applications agree exactly on the type specification
used for encoding and decoding. This type-checking system
can detect many common types of errors. Like other mes-
sage passing systems, LCM does not perform any semantic
checking on message contents.

LCM defines a type specification language that can be used
to create type definitions that are independent of platform
and programming language. Each type declaration defines
the structure of a message, thus implicitly defining how that
message is represented as a byte stream. A code generation
tool is then used to automatically generate language-specific
bindings that provide representations of the message in a data
structure native to the programming language, as well as the
marshalling routines. Fig. 1 shows an example of two LCM
message type definitions, and excerpts from the C bindings
for these types are given in Fig. 2.

struct waypoint_t {
string id ;
float position [ 2 ] ;

}

struct path_t {
int64_t timestamp ;
int32_t num_waypoints ;
waypoint_t waypoints [num_waypoints ] ;

}

Fig. 1. Two example LCM type definitions. The first contains two fields,
one of which is a fixed-length array. The second is a compound type, and
contains a variable length array of the former in addition to two core data
types.

Automatic generation of language-specific source code
from a single type definition yields some useful benefits.
The most tangible is that a software developer is freed
from writing the repetitive and tedious code that allows a
module to send and receive messages. The effort required
to define a new message and have it immediately ready to
use in an application is reduced to be no more than that
required to define a native data type or class definition for a
programming language.



typedef struct _waypoint_t waypoint_t ;
struct _waypoint_t {

char∗ id ;
float position [ 2 ] ;

} ;

int waypoint_t_encode (void ∗buf , int offset ,
int buflen , const waypoint_t ∗p ) ;

int waypoint_t_decode (const void ∗buf , int offset ,
int buflen , waypoint_t ∗p ) ;

typedef struct _path_t path_t ;
struct _path_t {

int64_t timestamp ;
int32_t num_waypoints ;
waypoint_t ∗waypoints ;

} ;

int path_t_encode (void ∗buf , int offset ,
int buflen , const path_t ∗p ) ;

int path_t_decode (const void ∗buf , int offset ,
int buflen , path_t ∗p ) ;

Fig. 2. Excerpts from automatically generated C-language bindings for
the types defined in Fig. 1. LCM also supports message type bindings for
Python, Java, and MATLAB.

The LCM type specification was strongly influenced by
the External Data Representation (XDR) [11], which is used
by Sun Remote Procedure Calls (Sun/RPC) and perhaps most
notably, the Network File System (NFS) [12]. Some XDR
features are not supported by LCM due to the fact that
they are rarely used, have portability issues, or invite user
error, such as optional data (e.g., support for pointer chasing)
and unions. LCM retains XDR’s minimal computational
requirements, allowing automatically-generated code to run
on resource-constrained devices like microcontrollers.

LCM also provides features and other usability improve-
ments over XDR. For example, LCM provides a simple
method for declaring the length of a variable-length array;
in contrast, the XDR specification does not specify how the
length of arrays should be specified, which has led to a
variety of incompatible approaches. A second example is
LCM’s support for namespaces, which make it easier to avoid
naming conflicts when sharing code with others.

In the following sections, we present more details of
the LCM type-specification language. This description is
intended to convey the basic structure and feature set of
LCM, but is not meant to be comprehensive. The LCM
documentation contains a detailed and rigorous treatment.

1) Data structure syntax: Each LCM data type is placed
in a text file by itself and named to match the type. For
example, struct waypoint t would be defined in a
file waypoint t.lcm. Each struct contains a sequence of
fields, where a field has a name and a type. The syntax
(Fig. 1) is similar to that of a C struct.

The supported primitive data types are: byte, int8 t,
int16 t, int32 t, int64 t, float, double,
string, and boolean. LCM has adopted the C99
naming convention for integer types, which explicitly names
the size of the data type in bits [13]. Making these sizes
explicit (rather than defining an integer in terms of the host’s

word size, for example), is necessary for cross-platform
compatibility, and encourages a deliberate choice of data
range.

Strings take on the native representation for each lan-
guage binding. In C, for example, strings are represented
by a null-terminated array of char; in Java, the native
java.lang.String class is used. Floating point numbers
are encoded using the bit format specified by the IEEE 754
standard.

Like XDR, LCM encodes multi-byte values in network
(big-endian) byte order. This ensures that messages trans-
mitted between clients running on different architectures can
be correctly decoded.

A member variable of an LCM type can also be another
LCM type. Appropriate language-specific idioms are used to
embed data from the second type in the first when the type
is compiled to a language binding. For example, in C, the
member is a pointer; in Java and Python, an object reference
is used.

2) Arrays: LCM supports both fixed and variable length
arrays. Fixed length arrays are specified with a numerical
value in square brackets after the field name, as in int
array[10]. In this case, 10 elements will always be
encoded.

Variable length arrays are specified by giving the name
of another field in square brackets after the field name as in
int array[num elements]. The same struct must then
contain an integer field with that name (num elements in
our example). While LCM and XDR are similar in many
respects, they differ in this regard. In fact, the XDR specifi-
cation does not specify how the length of a variable-length
array should be represented, with the result that different and
incompatible methods have arisen across implementations. In
comparison, LCM’s method is both intuitive and flexible.

3) Packages: Some languages such as Java and Python
support the concept of namespaces in order to prevent type
names from clashing globally. LCM supports this concept
via package names, which can be specified at the beginning
of an LCM file. For example:
package robot ;

struct waypoint_t {
string id ;
float position [ 2 ] ;

}

In this case, the type waypoint t now exists in names-
pace robot. In Java, Python, and MATLAB, it would be
referenced as robot.waypoint t while in C it would be
accessed as robot waypoint t.

B. Marshalling

Marshalling refers to the encoding and decoding of struc-
tured data into an opaque binary stream that can be transmit-
ted over a network. LCM automatically generates functions
for marshalling and unmarshalling of each user-defined data
type in each supported language.

The marshalling code generated by LCM automatically
ensures that the sender and receiver agree on the format of



the message. This mechanism, described in the next section
guarantees that the type declarations were identical when
the sender and receiver were compiled. When a system is
in active development, the data types themselves can be in
flux: this run-time check detects these sorts of issues.

1) Type Safety: In order for two modules to successfully
communicate, they must agree exactly on how the binary
contents of a message are to be interpreted. If the interpreta-
tions are different, then the resulting system behavior is typ-
ically undefined, and usually unwanted. In some cases, these
problems can be obvious and catastrophic: a disagreement
in the signedness of a motor control message, for example,
could cause the robot to suddenly jump to maximum reverse
power when the value transitions from 0x7f to 0x80. In other
cases, problems can be more subtle and difficult to diagnose;
if two implementations do not agree on the alignment of data
fields, the problem may be masked until the value of the data
field (or that of an unrelated variable) becomes sufficiently
large.

Additionally, as a system evolves, the messages may
also change as new information is required and obsolete
information is removed. Thus, message interpretation must
be synchronized across modules as messages are updated.

2) Fingerprint: The type checking of LCM types is
accomplished by prepending each LCM message with a
fingerprint derived from the type definition. The fingerprint
is a hash of the member variable names and types. If the
LCM type contains member variables that are themselves
LCM types, the hash recursively considers those member
variables. For example, the fingerprint for path t (Fig. 1)
is a function of the fingerprint of waypoint t.

The fingerprints are prepended to each LCM message,
and consume 8 bytes during transmission for each message.
Importantly, member variables contained within an LCM
declaration do not increase the number of bytes of fingerprint
data. This is an important refinement: otherwise, the over-
head for a path t would be 8 bytes for each waypoint t
in the list.

The details of computing a hash function are straight-
forward and thoroughly documented within the LCM source
code distribution, so we omit a detailed description. How-
ever, we note that the hash function is not a cryptographic
function. The reason is that the hash function for a particular
LCM type must be computed at run time: LCM types can be
dynamically loaded at run-time (e.g., a dynamically linked
library) and it is critical that the hash reflect the type actually
being used at run time, and not merely the type that was
available at compile time. While these hash values only
need to be computed once for each LCM type (and thus
do not present a computational burden), requiring an LCM
implementation to have access to a cryptographic library is
an onerous burden for small embedded platforms.

In the common case, an LCM client knows what type
of message is expected on a particular messaging channel.
When a message is received by an LCM client, it first reads
the fingerprint of the message. If the fingerprint does not
match the LCM client’s expected fingerprint, a type error is

reported.
LCM clients can also build a fingerprint database, allowing

them to identify the type of message. This database is par-
ticularly easy to construct in Java; using the Java reflection
facility, all LCM types in the classpath can be automatically
discovered in order to populate this database. This is the
technique used by our tool lcm-spy, which allows real-time
inspection of LCM traffic.

C. Communications

The communications aspect of LCM can be summarized
as a publish-subscribe messaging system that uses UDP
multicast as its underlying transport layer. Under the publish-
subscribe model, each message is transmitted on a named
channel, and modules subscribe to the channels required
to complete their designated tasks. It is typically the case
(though not enforced by LCM) that all the messages on a
particular channel are of a single pre-specified type.

1) UDP Multicast: In typical publish-subscribe systems,
a mediator process is used to maintain a central registry of
all publishers, channels, and subscribers. Messages are then
either routed through the mediator directly, or the mediator
is used to broker point-to-point connections between a pub-
lisher and each of its subscribers. In both cases, the number
of times a message is actually transmitted scales linearly with
the number of subscribers. When a message has multiple
subscribers, this overhead can become substantial.

The approach taken by LCM, in contrast, is simply to
broadcast all messages to all clients. A client discards those
messages to which it is not subscribed. Communication
networks such as Ethernet and the 802.11 wireless standards
make this an efficient operation, where transmitted packets
are received by all devices regardless of destination.

UDP multicast provides a standardized way to leverage
this feature, and its implementations are generally highly
optimized and efficient as a direct result of being tightly
coupled with the operating system’s IP network stack. For
these reasons, LCM bases its communications directly on
UDP multicast. Consequently, it does not require a central-
ized hub for either relaying messages or for “match making”.
A maximum LCM message size of 4 GB is achieved via a
simple fragmentation and reassembly protocol.

The time-to-live parameter of multicast packets is used to
control the scope of a network, and is most commonly set to
0 (all software modules hosted on the same computational
device) or 1 (modules spread across devices on the same
physical network).

2) Delivery Semantics: LCM provides a best-effort packet
delivery mechanism and gives strong preference to the ex-
pedient delivery of recent messages, with the notion that
the additional latency and complexity introduced by retrans-
mission of lost packets does not justify delaying newly
transmitted messages. This is similar to JAUS (which uses
UDP), and TCP-based systems such as MOOS and Player.
MOOS and Player both use a reliable transport (TCP), but
allow messages to be dropped in order to manage situations
in which the subscriber cannot keep up with a publisher.



Fig. 3. LCM-spy screenshot. lcm-spy is a traffic inspection tool that is able to automatically decode and display LCM messages in real-time. It requires
only that the automatically generated Java code for the LCM types be accessible in the class path; no additional developer effort is required.

In general, a system that has significant real-time con-
straints, such as a robot, may in many cases prefer that a lost
packet (e.g., a wheel encoder reading) simply be dropped so
that it does not delay future messages. LCM reflects this in
its default mode of operation; higher level semantics may
still be implemented on top of the LCM message passing
service.

D. Tools

To assist development of modular software systems, LCM
provides several tools useful for logging, replaying, and
inspecting traffic. Together, they allow a developer to rapidly
and efficiently analyze the behavior and performance of an
LCM system.

The logging tools are similar to those found in many
interprocess communications systems, and allow LCM traffic
to be recorded to a file for playback or analysis at a later point
in time. We note that the logging and playback programs are
not attributed special status in LCM; one simply subscribes
to all channels, and the other publishes messages from a data
file.

1) Spy: Although the primary purpose of an LCM type
fingerprint is to detect runtime type mismatches, it also
serves another useful purpose. If a database of every LCM
type used on a system is assembled, then an arbitrary
fingerprint also serves as a type identifier with very high
probability1 The lcm-spy tool is designed to leverage this
attribute, and is able to analyze, decode, and display live

1The fingerprints of each LCM type are represented as 64 bit integers,
providing theoretical collision resistance for 232 different types. While
LCM’s non-cryptographic hash function degrades this figure, the probability
of collisions is vanishingly small for the few hundred message types that a
large system might employ.

traffic automatically with virtually no programmer effort.
Fig. 3 shows a screenshot of lcm-spy inspecting traffic.

lcm-spy is implemented in Java, and requires only that the
classpath contain the automatically generated Java versions
of each type. Using the reflection features of Java, it searches
the classpath for classes representing LCM types, building
a mapping of fingerprints to LCM types. Because each field
of an LCM message is strongly typed, lcm-spy is able to
automatically determine a suitable way to decode and display
each field of a message as it is received.

User-provided data rendering “plugins” are also supported
for custom display of individual message types. Commonly
used plugins include a graphical display for laser data and
an image renderer for camera data.

In addition to its message decoding capabilities, lcm-
spy also provides a summary of messages transmitted on
all channels along with basic statistics such as message
rate, number of messages counted, and bandwidth utilized.
Together, these features provide a unique and critically useful
view into the state of messages on an LCM network.

When used in practice, lcm-spy allows developers to
quickly identify many of the most common failures. During
module development, it can help verify that a module is
producing messages on the correct channels at the expected
rate and bandwidth. It can also be used to inspect arbitrary
messages to check the values of any field, useful for tracking
down bugs and validating the correct operation of a module.

In our experience, lcm-spy is a critically important tool,
on par with program debuggers and profilers. Whereas a
debugger is useful for inspecting the internal state of a
module, lcm-spy has become invaluable for inspecting the
state of the messages passed between modules. Because it
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Fig. 4. Bandwidth results from an echo test with 1, 2, and 4 clients. Each client echoes messages transmitted by a single sender, and the bandwidth
of successful echoes as detected by the original sender are shown. Message loss rates (messages with no received echo) are shown in parentheses when
nonzero.
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Fig. 5. Mean message round-trip times for the echo test in Fig. 4 with 1, 2, and 4 clients. Average round-trip times are shown on a log scale; these times
do not reflect lost packets (which essentially have an infinite round-trip time). Both LCM implementations offer low latency. While IPC (using central -c)
also appears to provide low latency, it is critical to notice that IPC’s achieved bandwidth fell short of the target bandwidth (see Fig. 4).

passively observes and analyzes traffic, lcm-spy can provide
this insight with absolutely no impact on the system perfor-
mance.

IV. PERFORMANCE

One way to measure the interprocess communication per-
formance of LCM is by examining its bandwidth, latency,
and message loss rate under various conditions. Figs. 4 and
5 show the results of a messaging test comparing the C and
Java implementations of LCM with IPC and Player.

In this test, a source node transmits fixed-size messages
at various rates. One, two, or four client nodes subscribe to
these messages and immediately retransmit (echo) them once
received. The source node measures how many messages
are successfully echoed, the round-trip time for each echoed
message, and the bandwidth consumed by the original trans-
mission and the echoes. For this test, IPC is run in two
modes, one in which the central dispatching server relays
all data (the IPC default), and another in which the central
server acts merely as a “match maker” facilitating peer-to-
peer connections (central -c). To improve performance,
operating system send and receive windows were increased
to 2MB, and TCP buffers were increased to 4MB. These
settings also affect the performance of Player and LCM.

The Player test is implemented by using the “relay” driver
to transmit messages between multiple processes connected
to the player server. This is not a typical configuration,

as Player is more conducive to monolithic process design.
However, we believe it to be a reasonable choice if one were
to use the Player framework for message passing between
arbitrary client processes.

To collect each data point, the sender transmits 100MB of
data split into 800 byte messages at a fixed rate determined
by a target transmission bandwidth. Figs. 4 and 5 show
the results for tests conducted on a quad-core workstation
running Ubuntu 8.04. Hosting each process on separate
identical workstations connected via 1000Base-T Ethernet
yielded similar results. In some cases, the actual message
transmission rate does not match the target transmission rate
due to transport and software limitations. In a real system,
these limitations could result in degraded performance.

From these figures, we can see that LCM scales with
both the amount of traffic to be sent and the number
of subscribers. As ideal network capacities are reached,
LCM minimizes latency and maintains high bandwidth by
dropping messages. The LCM Java implementation performs
comparably to the C implementation, and responds to com-
putational limits of the virtual machine by dropping more
messages.

IPC also performs well in the case of one subscriber.
However, it does not scale as well to multiple subscribers
due to its need to transmit multiple copies of a message.
Using the match-making service of IPC (central -c)



improves bandwidth and reduces latency, but ultimately has
the same difficulties. We note that although IPC with peer-
to-peer connections maintains low latency as the attempted
transmission rate is increased, the actual bandwidth achieved
does not increase due to link saturation from duplicated
messages. For example, with four clients echoing messages,
IPC is unable to transmit faster than 11 MB/s, as the
bandwidth consumed by the quadruplicate transmission and
the echoes saturates the link capacity.

Our initial experiments with IPC, using the distribution in
Carmen 0.7.4-beta, produced much worse results. We deter-
mined that this was due to coarse-grained timing functions
that degraded performance when packet rates exceed approx-
imately 1 kHz. We were able to improve this performance
by exporting higher-resolution versions of those functions;
this improved data is used in this paper.

Player does not perform as well, largely because it has
not been optimized for client-client communication. For low
transmission rates, it scales well, but its performance drops
off precipitously as bandwidth is increased.

A. Marshalling Performance
In addition to performance of the communications system,

we are also interested in the computational efficiency of
the LCM marshalling and unmarshalling implementations.
Performance of a marshalling system is a function of the
complexity and nature of the message, and the presence of
arrays, nested types, strings, and other fields are all factors.
We have chosen to compare the performance of LCM, IPC,
and Player2 on a commonly used message – one containing
data from a single scan of a planar laser range finder with
180 range measurements and no intensity measurements. The
LCM type definition used is:
struct laser_t {
int64_t utime ;
int32_t nranges ;
float ranges [nranges ] ;
int32_t nintensitiese ;
float intensitiese [nintensitiese ] ;
float rad0 ;
float radstep ;

}

Similar message types were defined for IPC and Player.
In this test, we estimate the amount of time each imple-
mentation spends encoding and decoding a single message
by measuring the time taken to encode and decode 106

messages, and averaging the result. Estimates were taken 10
times and then averaged (warm-up periods for Java were
excluded from this average). Timings are shown in Figure 6.
The LCM C implementation was the fastest, averaging 0.38
µs per encode, and 0.40 µs per decode. Player/XDR was
the second fastest, with the LCM Java implementation and
Carmen/IPC close behind.

V. CASE STUDIES

Since its development, LCM has been used as the primary
communications system for a number of robotics research

2Since Player uses XDR internally, this can also be treated as a compar-
ison against XDR.
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Fig. 6. Marshalling performance. Performance (in microseconds per
iteration) is shown for four different marshalling implementations. The LCM
implementation in C is more than four times faster than the next fastest
marshaller. Notably, the LCM Java implementation, despite being written
in pure Java, is comparable to the Carmen and Player implementations.

Module Category Total msg/s Total kB/s
SICK LIDAR 887.1 668.0
Velodyne LIDAR 2.562.2 3,141.2
GPS/INS 774.5 123.5
Radar 443.9 310.7
Camera 163.3 10,082.3
State Estimation 288.0 1,372.8
Planning and Control 175.6 500.6
Debugging 1.146.7 358.2
Other 333.6 25.4
Total 6,774.9 16,582.7

TABLE I
LCM TRAFFIC SUMMARY ON MIT URBAN CHALLENGE VEHICLE

platforms operating in real environments. Here, we describe
some examples of how LCM was used to assist the devel-
opment of a robotics research system.

A. Urban Challenge

The 2007 DARPA Urban Challenge was an autonomous
vehicle race designed to stimulate research and public in-
terest in autonomous land vehicle technology. Vehicles were
required to safely navigate a 90 km race course through a
suburban environment in the presence of both robotic- and
human-driven vehicles. LCM served as the communications
backbone for both the Ford/IVS vehicle and the MIT vehi-
cle [14].

At any given point in time on the MIT vehicle, 70
separate modules were in active operation, spread across
10 networked workstations. The average bandwidth used by
the entire LCM network was 16.6 MB/s, with an average
transmission rate of 6,775 messages/s. Table I provides a
detailed breakdown of messaging rates and the bandwidth
used by various modules on the vehicle.

Messages ranged from very small updates to camera
images and obstacle maps up to several megabytes in size.



Some, such as the pose estimates, were subscribed to by
virtually every module on the network, while others had only
one or two subscribers.

Throughout the development process, almost 100 different
message types were used, many of which changed frequently
as the capabilities and requirements of each module evolved.
Software development was distributed across many people
working from different locations, and the LCM type defini-
tions became a convenient place for developers to agree on
how modules would interface.

Because language-specific bindings could be generated au-
tomatically from LCM type definitions, modifying messages
and the modules that used them to add or remove fields could
often be accomplished in the span of minutes. Additionally,
the runtime type checking of LCM fingerprints provided a
fast and reliable way to detect modules that had not been
recompiled to use the newly modified form of a message.

B. Land, Underwater, and Aerial Robots

Since the Urban Challenge, LCM has been applied to
a number of other robot research platforms such as small
indoor wheeled robots, arm manipulators, quadrotor heli-
copters [15], and an autonomous forklift [16]. In many cases,
modules used in one system were easily transitioned to others
by ensuring that the LCM messages they needed for correct
operation were present on the target robot.

In one underwater multi-vehicle research project [17],
each vehicle contains on-board sensors, thrusters, and a
computer for data processing and vehicle control. Despite
a significantly different application domain from the Urban
Challenge, the software engineering principles remain iden-
tical, and LCM has proved just as useful. New message
types are easily defined as needed, and software modules
are adapted to operate in different domains.

VI. CONCLUSION

In this paper, we have presented LCM and its design
principles. LCM is driven by an emphasis on simplicity and a
focus on the entire development process of a robotic software
system. In addition to achieving high performance, LCM also
provides tools for traffic inspection and analysis that give a
developer powerful and convenient insight into the state of
the robotic system.

The LCM type specification language is designed to allow
flexible and intuitive descriptions of a wide class of data
structures. Type fingerprints allow for runtime type check-
ing and identification, and automatically generated language
bindings result in a simple and consistent API for manipu-
lating messages and the data they represent. Native support
for multiple programming languages allows developers to
choose the environment most suitable for the task at hand.

To date, LCM has been successfully deployed as the core
communications infrastructure on a number of demanding
robotic systems on land, water, and air. These include the
MIT Urban Challenge vehicle, a quadrotor helicopter, several
autonomous underwater vehicles, and a robotic forklift. In
each of these scenarios, the simplicity and versatility of

LCM allowed for rapid development of complex software
systems. The modular nature of these systems has allowed
for significant code re-usability and application of modules
developed on one system to another.

LCM is distributed at http://lcm.googlecode.
com. It is supported on Microsoft Windows XP/Vista/7 and
all POSIX.1-2001 compliant platforms (GNU/Linux, OS/X,
FreeBSD, etc.)
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