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Abstract The most difficult—and often most essential— Keywords Bayesian nonparametric modeling/larkov

aspect of many interception and tracking tasks is constructlecision processinterception and tracking

ing motion models of the targets. Experts rarely can provide

complete information about a target’'s expected motion pat-

tern, and fitting parameters for complex motion patterns can |ntroduction

require large amounts of training data. Specifying how to

parameterize complex motion patterns is in itself a difficul The success of interception and tracking tasks often hinges
task. on the quality of the motion models our agent has for pre-

In contrast, Bayesian nonparametric models of target mélicting the target's future locations. These predictiors a
tion are very flexible and generalize well with relativelylé ~ ©SPecially important when our agent's sensor range is lim-
training data. We propose modeling target motion patterni€d- Unfortunately, motion patterns of targets are oftéén d
as a mixture of Gaussian processes (GP) with a Dirichleicult to specify from expert knowledge alone. For example,
process (DP) prior over mixture weights. The GP providesUPPOse that our agent is a_hehcopterthgt must mterceb_t an
an adaptive representation for each individual motion patl"ack a car or several cars in a large region such as a city. A
tern, while the DP prior allows us to represent an unknowrnodel of traffic patterns may be hard to specify. Even deter-
number of motion patterns. Both automatically adjust thdiNing what parameters are important to model the target's
complexity of the motion model based on the available datd2€havior—and how they should interact—can be a challeng-
Our approach outperforms several parametric models on 89 task.

helicopter-based car-tracking task on data collected fram A data-driven approach to learning the target's motion
greater Boston area. patterns avoids the need for an expert to fully specify the

model. Instead, the agent simply uses previously observed
trajectories of the target to predict the target’s futurealo
tions, where these predictions may depend on both the tar-

é-:noaﬁﬁ?:qjoseph@mit.edu get’s current position and past position history. Usingtada

F. Doshi-Velez driven approach also side-steps the need to understand the
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N. Roy model that assumes that optimizing travel time is the dsver
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While a data-driven approach reduces the need for ex-
pert knowledge, we still need to specify the class of models
to which we expect the target’s motion patterns to belong.
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For example, we may choose to model the target’s motio

as a series of straight-line segments, higher-order splore

even cylindrical trajectories. When considering real-aorl !

data, the correct class of motion models is not always obv

ous. One solution is to consider sophisticated model ctass

with parameters governing the forms of all the motion pa

terns we expect to occur. While such a flexible model cla

may be able to model any observable motion pattern, largg

amounts of data will be needed to train the many param§s

eters. Collecting sufficient data to train a large number ofg

parameters may be prohibitively expensive. : ; S
In our previous work (Joseph et al, 2010), reviewed inFig. 1 A small set of the raw GPS data points (red) and a single trajec-

section 3, we showed that Bayesian nonparametric apprsaéﬁ@( (green) used to learm our model.

to modeling motion patterns are well-suited for poorly un-

derstood environments because they let the data determipartially-observable scenarios. Sections 5 and 6 distiess t

the sophistication of the model—we no longer need to specscenarios in which we expect the DPGP model to perform

ify which parameters are important. Moreover, the Bayesiamvell and place it in the context of prior tracking and inter-

aspect helps the model generalize to unseen data and mateption literature.

inferences from noisy data. Specifically, we can model a tar-

get’'s motion patterns with a Dirichlet process mixture mode )

over Gaussian process target trajectories (DPGP). Usisg th? Motion Model

nonparametric model boosts learning rates by generalizin , . , )

quickly from small amounts of data but continuing to in- \%/e represent a targets trajectaryas a set ofry-locations

crease in sophistication as more trajectories are observe 3317?/1)7 (@Y )>- - @U’y”)}’ whereL 1S the length .
Wi : : . . . of trajectoryt’. Depending on how the trajectory data is
e applied this DPGP model to applications tracking a sin- ollected. these locations mav come at ireaular interval
gle target whose current position was always observed fima " trS1 y f' Sb tay me 'g guiar intervais
ine having a GPS tracker on the target but not knowing where rexample, the distance be W(_aeﬂ’ yi) and (x4, y§+1)
the target will go) may not be. the same as the distance between,,y; ., ;)

' nd(z;, 4, y;, ) Trajectories may also be of different lengths

. , a
In this paper we present two key extensions to that P"®oth because some trajectories may be physically longer

vious work. First, we no longer assume that the target’s POhan others and because some trajectories may have a larger

_sitio'n is ayailable to the agent. Instead, we consider N3, mber of observed locations along the route.
ios in which the agent can only observe the target if it is Throughout the paper we use time-stamped GPS coordi-

nearby; now the agen_ts goal is to first intercept a”f_’ t_herﬁates of greater-Boston taxis from the CarTel project as our
track the target. Adapting our approach to make predICtlonﬁmtivating dataset.Figure 1 plots some of the trajectories
about unseen targets using only partial information is onE

| 7Y
i )

red points) on a map of Bostdnemphasizing the discrete

of our main contributions. Second, we also consider scena ature of our observations. One sample trajectory is high-

los wh.ere mult_iple targets ”.‘“St be intercepted and traCkeﬂghted in green, showing how the discrete observations are
Moge:mdg multiple t argl;e tshf'LS searlﬁlesslé/ Into O.lIJ,r ZfGPirreguIarly spaced along the trajectory. Working with thes
model, demonstrating both the quality and versatility at ou types of trajectories is one of the challenges of this datase

approach. which we address by using Gaussian processes to learn a
The remainder of this article is organized as follows: SeCtrajectory model.
tion 2 has a detailed description our DPGP motion model. The technical details of our motion model are described
The algorithmic approach to solving the model given datgn sections 2.1 and 2.2, but we first outline the two key ele-
depends on the whether the target's position is fully observments of our motion model and describe how they are com-
able. Section 3 reviews the utility of using the DPGP ap+)ined. Specifically, each motion model isvaxture of mo-
proach for tracking a single agent whose current positioRion patterns A motion pattern represents a class of similar
is always known. We present both the algorithm for modetyajectories. A mixture model over different motion patier

inference (section 3.2) and results (section 3.3) for iis f  gefines the probability of each particular motion pattern.
mulation. We then demonstrate our extensions in applying - : _ _
our approach to multi-agent, partially-observable irggrc CarTel projectht t p: / / cartel .csail . mt.edu. The data

fi d tracki . tion 4. Similar t fi was down-sampled to a rate of 1 reading per minute and pre-pracesse
Ion and tracking scenarios In section 4. simiiar to section),, trajectories based on if the car had stayed in the same piafred

3, section 4 also presents the algorithm for inference (Segninutes to indicate the end of a trajectory.
tion 4.2) and then results (section 4.3) for the multi-agent 2 http:// maps. googl e. com
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Motion Pattern Many ways exist to describe a class of tra- >
jectories: for example, one could use a set of piecewise lin-=-% SR
ear segments or a spline. We definenation patternas a "*::,'
mapping from locations$z, y) to a distribution over trajec-

tory derivative %, %) indicating the agent’s future mo- " -
tion2 Thus, a motion pattern is a flow-field of trajectory
derivatives in x-y space. Modeling motion patterns as rovu-"
fields rather than single paths allows us to group target tre
jectories sharing key characteristics: for example, alsing
motion pattern can capture all the paths that a target migfr;;};‘*"'"" s
take from different starting points to a single ending Ioca-f:,:-"f' ah
tion. Using trajectory derivatives also makes the reprizsen -\(#{-:

tion blind to the lengths and discretizations of the traject ;
ries. ¢
We use a Gaussian process (GP) to model the mappir -

of positions to velocities. The GP allows us to learn a dis; Fig. 2 An example of two trajectories that share a road segment. The
tribution over trajectory derivatives (velocities) at Bd@ca-  red trajectory travels east and the green trajectory traweith. The
tion (details in section 2.1). Given the target’s currengipo Markov model cannot distinguish the two trajectories once thegs,
tion (2, ;) and a trajectory derlvat|ve%7 AAytt ), its pre- but the DP model classifies them as two different paths.

dicted next positionfz; 1, y:+1) is given by

Tip1 = Ty + %At, Yir1 = Y + AA At. wheref; contains the parameters for motion patteyn

) _At ) t ) The primary complication with a simple finite mixture
Th_us, the trajecterles are easily generated by integrétiag model is that) is not known in advance, and may need
trajectory derivatives. to grow as more data is observed. In section 2.2, we detalil
Mixtures of Motion Patternd\Ve expect to encounter trajec- NOW We use a Dirichlet process (DP) mixture model to create
tories with qualitatively different behaviors and usingjéctory-2n infinite mixture of motion patterns. An important prop-
derivative flow fields as motion patterns helps group togethe erty of the DP model is that it places a prior over an infinite
trajectories with certain characteristics. For exampiiéerd number of motion patterns such that the prior probabilities
ent trajectories may share some segments but then branch &#(01): P(b2), p(bs), .. .} still sum to one; the probability of

in different directions. Returning to the CarTel taxi datas atrajectory is
we see that scenarios with overlapping paths are common.

Figure 2 shows just one example of two routes that share

a common corridor, but the red trajectory travels east anB Zp
the green trajectory travels north. These motion patteras a

not well modeled by traditional techniques such as Markov

chain models that simply try to predict a target's future lo-These probabilitieg(b;), and the number of different mo-
cation based on its current position (and ignore its prevition patterns in a given dataset, are determined during the
ous history), nor can they be modeled by a single trajectoryinference process.

derivative flow field. We address this issue by using mixture

models over motion patterns.

Formally, a finite mixture model with\/ motion pat- Complete Motion ModelWe define themotion modeks a
terns {by, bs, ..., by} first assigns a prior probability for mixture of weighted motion patterns. Each motion pattern is
each pattern{p(by), p(b2), ..., p(bar)}. Given these prior weighted by its probability (section 2.1) and place a Dirich
probabilities, the probability of th&" observed trajectory let process prior over mixture weights (section 2.2).

p(t']0;). (2)

t* under the mixture modeéis Under our DPGP model, the prior probability of motion
patternb; is given by its DP mixture weighi(b;). The pos-
ZP p(t'6;) (1)  terior probability ofb; given a target trajectors is propor-

tional top(b;) - 1(b;; t*), wherel(b;; ) describes the likeli-

3 The choice ofAt determines the scales we can expect to predict

the target’s next position well, making the trajectory demx@more 5 This model is similar to models described by Rasmussen and
useful than instantaneous velocity. Ghahramani (2002) and Meeds and Osindero (2006); however, un-
4 Note that throughout the papert avith a superscript, such s, like these previous works, our goal is to cluster trajectorfesoying

refers to a trajectory andtawithout a superscript is a time value. lengths, not just partition single points.



4 Joshua Joseph et al.

hood of motion patterh; under trajectory’: function

2 N2
K, Py 2 _(‘T—x) _(y_y)
(,y,2',y") = oy exp T 20,2

i i k . . GP
it Ve {875 20 = ]},9%].) +028(a,y. 2, y) @)

; Al‘t
I(b;;t") = —_—
vty =11 (%
L A o whereé(x,y,2’,y') = 1if x = 2’ andy = ¢’ and zero oth-
TI» (Aytt oyt R = j},@if) (3) erwise. The exponential term above encodes that similar tra
t jectories should make similar predictions. The lengtHesca
o . . _ ~ parametersv, andw, normalize for the scale of the data.
yvhere;k mdmatez Iche motgog pattern to which trajectefy  The o,-term represents within-point variation (e.g., due to
Is assngneq, and;’; andd,’; are the hyperpar.ameters of noisy measurements); the ratio @f and o, weights the
the Gaussian process for motion patteynEquation 3may  relative effects of noise and influences from nearby points.
be .applled to trajef:torles with differing numk_Jers of obser4ye useﬂfj to refer to the set of hyperparameterts, o,,,
vations or even trajectories that are only partially cortggle w,, andw, associated with motion pattebn (each motion
which is particularly important when we wish to determine pattern has a separate set of hyperparamefers).
a target's motion pattern given only a few observations. For a GP over trajectory derivatives trained with tuples
(Tk, Yk, %), the predictive distribution over the trajectory

derivative%* for a new point(z*, y*) is given by

Li

2.1 Gaussian Process Motion Patterns

. | g = Kalaty XY KL (RYXY) ST ©)
Observations from a target's trajectory represent a contin = ¢ At
ous path through space. The Gaussian process places a dIsz% = K, (2" X Y) K, (XY, X,Y) 'K, (XY,2"y")
tribution over functions (Rasmussen and Williams, 2005),
serving as a non-parametric form of interpolation. GausWhere the expressiof, (X, Y, X,Y) is shorthand for the
sian process models are extremely robust to unalignedy noi§ovariance matrixX> with termsX;; = K (i, yi, 2, y;)-
measurements and are well-suited for modeling the contingFhe equations foFi% ™ are equivalent to those above, using
ous paths underlying our non-uniformly sampled time-seriethe covariancey’,,.
samples of the target’s locations.

The Gaussian process for a motion pattern that modelsstimating Future TrajectoriesAs summarized in equation 5,
trajectory’s derivative is specified by a set of mean and coeur Gaussian process motion model places a Gaussian dis-
variance functions. Specifically, given an ingut y) loca-  tribution over trajectory derivativeS%, %) for every lo-
tion, the GP model for the motion pattern predicts the trajeccation (z, y). If the target's location is always known, we
tory derivatives(ﬁ—i, %) at that location. We describe the only need to predict the target’s position one-step into the
mean trajectory-derivative functions gg%} = pa(z,y) future_ to track it: even if it goes in an unexpected direction
and E[%’] = (2, y), and implicitly set both of them to we will know that a rare event has occurred and can plan

initially be zero everywhere (for alt andy) by our choice accordingly. However, if the target’s position is not alway

of parameterization of the covariance function. This elsod Known—for example, if it can only be observed within the
the prior bias that, without any additional knowledge, we ex 29€nt's camera radius—then the agent must be able to infer
pect the target to stay in the same place. Zero-mean GP pM\(here tr_}e target might be multiple steps into the future to in
ors also simplify computations. The model assumes that tr4€/C€Pt it again from knowledge about where the target was
jectory derivatives in the x-direction and y-direction &me ~ l0cated in the past. _
dependent; while a more sophisticated model could be used !N our prior work (Joseph et al, 2010), we used a sim-

to model these trajectory derivatives jointly (Boyle andda, P! approach to sample a target's possible trajectory pieiti

2005), we found that our simple approach had good empiri?teps into the future: starting with the target’s currewtlo

. . A A1
cal performance and scaled well to larger datasets. tion (1, 1), we sampled a trajectory derivatiyey:, 37*)

' Aty
We denote the covariance function in thalirection as

to get a next locatiofjzs, y2). Then starting fron{z, y2),
K. (z,y,2',y"), which describes the correlations betweenV® sampled a trajectory derivativey?, 772) to get a next
trajectory derivatives at two poinfs;, y) and(z’,y’). Given

Ats 7 At
location(z3, y3). We repeated this précess2 until we had sam-
locations(1, .., 4, 1, -, 4 ), the corresponding trajectory Pled a trajectory offlengtI:J. The en'ilre sampling prlqce-
derivatives(£2t, .., 22&) are jointly distributed according dlure_ was repeated r(I)m t fehcurrent ,ocfat(a:m, y1) multi-
0 a Gaussian with meafys, (z1, 91, .. ta(r, yx)} and  PI€ times to get samples of the target's future trajectories

covarianceX’, where theX;; = K(z;,yi,x;,y;). In this 6 We described the kernel for two dimensions, but it can be easily
work, we use the standard squared exponential covariangeneralized to more.
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Fig. 3 Velocity fields learned by a GP and a Markov model from threjettaries of an approximately linear motion pattern. The Giregalizes
quickly from the irregularly observed trajectories, wherdsdiscretization in the Markov model slows down generalirati

While samples drawn from this procedure are an accuduced by its discretization. These gaps could be filled by a
rate representation of the posterior over trajectoriesy-sa coarser discretization; however, the modeling would akso b
pling N trajectories of where the target may besteps in  coarser. The GP automatically adjusts the generalizagon a
the future requiresV L queries to the Gaussian process. Itmore data arrive.
also does not take advantage of the unimodal, Gaussian dis-
tributions being used to model the trajectory derivativesy,
to efficiently predicting future trajectories in this wokap- 2.2 Dirichlet Process Mixture Weights
plying an approximation of Girard et al (2003) and Deisen-
roth et al (2009) that provides a fast, analytic approach of\lthough a single Gaussian process can robustly model the
approximating the Output of a Gaussian process given a diyﬁriation within many Closely related trajectories, it istn
tribution over the input distribution. In our case, our Gaus able to capture differences resulting from targets with dif
sian process motion model over trajectory derivativesgyiveferent destinations or different preferred routes. To rhode
us a Gaussian distribution over possible target nextimeat  qualitatively different motion patterns, we can represhat
at each time step. The approximation of Girard et al (2003§listribution over behaviors as a mixture of Gaussian pro-
and Deisenroth et al (2009) allows us to string these districesses. However, we do not know ahead of time how many
butions together: we input a distribution of where the targebehaViorS are sufficient for the model. We use a Dirichlet
may be at time and a distribution of trajectory derivatives to Process to allow for new behaviors to be added as they are
get a distribution of where the target may be at timel. By ~ observed.
being able to estimate the target’s future traiectoriewna The Dirichlet process is a distribution over discrete dis-
Ca”y’ we reduce the Computations required_miqueries tributions in which the number of motion patterns is pOten-
to the Gaussian process are needed to predict the targettally unbounded, but with the expectation that there are a

location L steps into the future—and avoid the variance in-few patterns the target tends to follow most of the tifrie.
troduced by sampling future trajectories. z; indicates the motion pattern to which trajectahyis as-

signed, the prior probability that target trajectefypelongs

Comparison with a Markov chain modéhstead of using a to an existing motion pattery is

Gaussian process—which defines a distribution over veloci-
ties in a continuous state space—we could imagine a mod&
that discretizes the state and velocity space into bins and

learns a transition model between state-velocity bins. W\eNhereZ*i refers to the motion pattern assignments for the

call this alternative the “Markov model” because predietio remaining trajectoriesy is the concentration parameter of

about the target’s next position depend only on the target’gTean'fhlrent pt)ironcesstiljﬂ;s thre] dr;tfjr?bteri OI E[raijidr?qu')es; a:-
current position and velocity, not its past history. sighed fo motion patterty;, a s the total humber o
. . : observed trajectories. The probability that trajecttrgx-
A key question when trying to train such a Markov model ..~ : '
. . . o hibits a new motion pattern is
is the appropriate level of discretization for the statecspa
In figure 3, we consider modeling a motion pattern that con- . o )

. . . . . . Zi:M—i—lZ_i,Oé— .
sists of approximately linear trajectories observed agir o | ) N -1+«

lar intervals. By mod_elmg the vel_ocny field over the contin _where) is the number of observed motion patterns.
uous space, the GP is able to quickly generalize the velocity
field over region, whereas the Markov model has gaps in- 7 See Teh (2007) for an overview of Dirichlet processes.

nj

N-ita’ ©
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Fig. 4 As expected, the number of motion patterns in the taxi dataset

20 30 40
. . . Number of Mobility Patterns
increases as more trajectories are added.

Fig. 5 Performance on 15 held-out test trajectories vs. model size for
. . . . a variety of finite models (black) and the DPGP (blue) traine®00
Equation 7 implies that the number of motion patternsyajectories. The error bars represent the standard deviatitire re-

can grow as more data is obtained. This property is keward from five runs. Note the inferred DPGP model has model size
to realistically modeling targets: the more interceptionl a error bars also due to variation in the estimated model size fdr eac
tracking tasks we perform, the more varieties of target mo™"™

tion patterns we expect to encounter. Figure 4 shows how

the number of motion patterns grows (under our model) as 18900

new trajectories are observed for the actual dataset ofgrea 16000} | =~ ~Adaptive EM 0
Boston taxi routes (described in section 3). We show in sec- 14000} —DPGP o
tion 3 that we can efficiently plan even when the number __ ;,q00! ’
of actively observed motion patterns is unknown; moreover, 5 10000k
this flexibility yields significantly improved results in eh £ 2000
performance of the planner. é /"

6000 R4
DP Trajectory Classifying Exampléust as the Gaussian 4000 ,x"
process in section 2.1 allows us to model motion patterns ~ ?*| [Pt
without specifying a discretization, the Dirichlet prosesix- % o 50 30 100

ture model allows us to model mixtures of motion patterns Number of Paths

without specifying the number of motion patterns. One cpuldrig. 6 Run time vs. number of paths for adaptive EM and our DPGP
of course, simply search over the number of motion patterngnodel.
we could train models with different numbers of patterns,

examine how well each mixture model explains the data, a”ﬂequire more computation but also because the search re-
finally choose the best one. However, as we see below, thigires us to choose a regularization criterion to avoid-over
search requires much more computation time than using fiting. Standard criteria, such as the Bayesian infornmatio
Dirichlet process to automatically determine the number ofyiterion (Raftery, 1986) cannot be applied in this context
patterns, with similar performance. because the GP contains an unbounded number of param-
We compare the DPGP to a set of finite mixture modelsters: thus we must choose from various cross-validation
that also use Gaussian processes to model motion pattergshootstrap procedures. The DPGP provides a principled,

(that is, the finite mixture model first described in equa-gimple-to-use regularization criterion within its model.
tion 2). We consider the helicopter-based tracking scenari

for a data set of taxi trajectories. Each model was trained on

abatch of 200 trajectories using five different initialivats. 3 Application of Tracking with Full Information

We tested tracking performance on a set of 15 held-out test

trajectories. None of the models were updated during th&earching in the space of finite models is especially com-

testing phase. putationally expensive when the data arrives online and the
The results in figure 5 show that while the finite GP-number of clusters are expected to grow with time. (The DP

based models perform well overall, our DPGP model hagan update the number of clusters incrementally.) To gain

nearly the best performanagithout having to perform a insight into the extra computation cost of this search pro-

search over the finite model spackhis last point is im- cess we implemented EM where every 10 paths we search

portant, not only because a search over finite models wouldver models sizes that are within five clusters of the current
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model. Figure 6 shows run time as the number of trainingAlgorithm 1 Motion Model Inference

paths increase for our DPGP model and this adaptive EM1: forfsweep; 1 to # of sweemkzj

technique. The running time grows exponentially longer for 2 for_each motion patter; do

EM with model search compared to the DPGP. i endeﬁW the GP hyperparametéi§ 7, 6,7
We first consider the case in which our agent has access:  praw the DP hyperparameter

to the target’s current position but needs to be able to pre6: for each trajectory’ do

dict its future position to track it effectively. We call thihe 7 Drawz; using equations 8 and 9

“full information” case because this scenario implies that 9 eng?g rfor

agent has access to sensors covering the environment such

that the target’s current state is always known (up to time

discretization). For example, we may be given location in-3.2.1 Training the Model

formation from a dense sensor network. In this section, we

formalize the tracking problem and describe the process dPur model contains two sets of parameters—the DP mixture

training a motion model for this full-information tracking Weightsp(b;), the motion pattern assignments and the

task. We next provide results for our tracking problem apDP hyperparameter—the GP hyperparametef§’”’, 67"

plied to two targets with completely different motion mod- and the trajectories assigned to each motion pattern cluste

els, one synthetic and one built from a real-world dataset. | Following the work of Rasmussen and Ghahramani (2002)

Section 4, we will relax the assumption of a dense sensd@nd Rasmussen (2000), learning the model involves Gibbs

network, and show how to extend our approach to target ins@mpling the parameters (see algorithm 1).

terception given information from a sparse sensor network. \We first resample each; in turn, using the exchange-
ability properties of the DP and GP to model the target tra-

jectory ' as the most recently observed target. The proba-
3.1 Tracking Problem Formulation bility that the trajectory’ will be assigned to an instantiated

motion pattern is
Since the target’s current position is known at every time

step, we can formalize the scenario as a Markov decisiop(z; = j[t', o, 05" 67 oc 1(b;:t7) (nj> (8)
process (MDP), a common tool for autonomous decision N-lta
making. An MDP is defined by a set of states, a set of acwherel(b;; ") is the likelihood of motion patterh; from
tions, a transition function, and a reward function. Hereequation 3 and,; is the number of trajectories currently as-
the state is the joint position of our agent and the targesigned to motion patterh;. The probability that the trajec-
(29, y®, ztaroet qtarget)  Given an action and our agent's tory t* belongs to a new motion pattern is given by
curr_e_nt position(z¢, y_;?), we assume that our agent’s nextp(zi — M+ 1|t a)
position (zf, ,,y¢, ) is deterministic and known. In con-
trast, the target’s transitions are s_toc_has_t|c over théimmen ' / I(bars1; tl)d9§ﬁ+1d9%{+1 (N—OI> . (9)
ous space; we can only place a distribution over the target’s ta
next position(z5' 7", y,+*") based on our motion model. and we use Monte Carlo integration (Bishop, 2006) to ap-
At each step, our agent incurs some small cost for movingeroximate the integral. The likelihood from equation 8 also
and receives a large positive reward each time it sharesla gnmust be approximated for popular motion patterns, as the
cell with the target. For this type of interception and tiagk  computations in equation 5 are cubic in the cluster size
scenario the policy is fairly insensitive to the reward wsu  Similar to Rasmussen and Williams (2005), we approximate
Given an MDP, we can find the optimal policy using stan-the likelihood for these larger clusters using tNg, ... tra-
dard forward search techniques (Puterman, 1994). jectories that are closest to the trajectdry

The DP concentration hyperparameteiis resampled
using standard Gibbs sampling techniques (Rasmussen).2000
The GP length-scale and variance hyperparameters are more
r_r)iif'ficult to resample, so we leverage the fact that their pos-

Given a set of target trajectories, we can train the DPGP_ . .
) ) . teriors are extremely peaked and instead always set them
model from section 2 and use it to make predictions about

. ) . ) to their maximum likelihood values (using gradient ascent)
future trajectories. Since exact inference over the spéce Qn applications where the posteriors are less peaked. dwbri
DPs and GPs is intractable, we describe a process for dra bp P P Y

. . . fonte Carlo techniques may be used (Duane et al, 1987).
ing samples from the posterior over motion models. These

samples are then used by our agent for planﬁing, 9 We tested the validity of this approximation by comparing agpro
imations in which only the nearest points to the true likelithazere

8 The inference approach described here is taken from ourquevi used and found no practical difference when discarding 75%aj&d-
work (Joseph et al, 2010). tories for large clusters.

3.2 Model Inference
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Fig. 8 Sliding window average of per-episode rewards achievedfby di
ferent models on the @RRIDOR scenario. Error bars show the 95%

0 0:2 0:4 o:e 0:8 1 confidence interval of the mean from five repeated runs.
X Position
Fig. 7 Several trajectory samples from th@RRIDORScenario, where We compare our DPGP motion model to a Markov model

targets roughly following a straight line that projects positions and velocities to a discretized gnid

uses the trajectory data to learn target transition prditiabi
3.2.2 Classification and Prediction with New Trajectories between grid cells. The Markov model predicts a target's
next grid cell using the transition probabilities storedtes
The motion model from algorithm 1 can now be used togrid cell closest to the target's current position and veloc
predict a target’s future locations, given a partial tregeg  ity. In contrast to the Markov model, which ignores trajec-
t'. We first apply equations 8 and 9 to compute the relatory history, the DPGP model considers the entire observed
tive probability of it belonging to each motion pattebp ~ portion of the trajectory when predicting both the target's
Equation 3 is used to compute the likelihoods. Just as in se¢rotion pattern and future trajectory.
tion 3.2.1 where we trained the model using complete target
trajectories, the partial trajectory may contain any nunatbe
points. We can use the same equations 8 and 9 to determife3.1 Results on a Simple Synthetic Example
the most likely motion patterns for the partial trajectory.
For each likely pattern;, we first compute the expected We first apply our approach to a simple example involving
trajectory derivativeg4z Ay)j conditioned on GP parame- @ target following a straight line with occasional deviaso

At At

tive is a weighted average over all the conditional deriva2gent receives a reward of -10 for every time step until it in-

tives " p(b)(Az, %)j.lo We apply this expected trajec- tercepts the target, whereupon it receives a reward of +100.

tory derivative to the target's most recent location to oed The agent’s task involved intercepting and tracking 50 tar-
where it will be in the future. gets one after the other. We call this th@@RIDOR sce-

nario. Figure 7 shows several trajectories from this exampl
Figure 8 shows the results for five repetitions of this set
3.3 Results of tasks. For comparison, we plot the results of both the
Markov model and a naive pursuit approach that moves the
In this section we describe our results on two example sceagent to the target’s most recent position. Overall, we see
narios. The firstis a synthetic single-trajectory scenatiere that while the agent planning with the Markov models with
the agent must intercept and track 50 targets, one after therious initializations eventually reaches the same lefel
other. The second scenario is a (simulated) helicoptezebas performance as the agent using the Gaussian process, the
tracking scenario in which the targets are cars whose patf{saussian process motion model learns faster from the data.
are collected from a real dataset. In both cases, we testédgure 9 shows an example planning sequence derived us-
our models in an online fashion: initially our agent had noing the Gaussian process motion model in which the agent
experience with the target; after each episode, the targetintercepts the target.
full trajectory was incorporated into the motion model. While this is a simple and easy example, we note that the
10 In practice, we found that the motion pattern likelihoods aver DPGP still outperfprms the other models. The DPGP learns
highly peaked.’ln this situation, it was sufficient to only calesithe the model almost instantaneously, but the Markov model re-

maximum likelihood motion pattern when predicting the futwea-  duires approximately 50 trials before matching the perfor-
tions in partial trajectories. mance of the DPGP.
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Fig. 9 A planning episode for a single path in th@ @rRIDORScenario. Agent positions are shown in blue and untagged faogéions are shown
in dashed red (before they are tagged) and dashed green [(efyeare tagged). The small blue circle around the agent sigtlietmgging range.

3.3.2 Results on a Helicopter-based Tracking Scenario initially clustered with their most likely motion patterwkiich
could have been a new pattern) using equations 8 and 9.
Next, we tested our approach on a helicopter-based target- Every 10 new trajectories, a complete set of 5 Gibbs
tracking scenarié® To model the helicopter and its rewards, sweeps (algorithm 1) were run to update the model parame-
we place &0 x 20 grid over a city (an area of approximately ters and trajectory assignments (we found that samples gen-
10 square miles) and represent the helicopter’s state héth t erally stopped changing after the first 2 sweeps). The noise
closest grid cell. At each time step, the helicopter canistay parametew,, in equation 4 was fit from the current trajec-
place, move one cell, or move two cells. These actions resufpry set. While the DPGP model required more computation
in rewards of 0, -1, and -2, respectively. The helicopteo als than the Markov model (about 10 times slower), it could still
receives a reward of 10 for each time step it shares a grid celicorporate a new set of samples in minutes, an update rate
with the target car. While a real “chase” scenario would haveast enough for a real scenario where the model may be up-
many more complexities, this simplified tracking task abow dated several times a day. The planning time was nearly in-
us to show empirically that our model, initially trained on stantaneous for both the DPGP and the Markov driver mod-
likelihood-based criteria, also performs well on a plagnin g|s.
problem based on real data. We first carried out a series of experiments to evalu-
We tested both our DPGP and the Markov model on 50@te the quality of our models. Example predictions of the
trajectories taken from the CarTel dataset of time-stampepGp and Markov models are seen in figure 10. The solid
GPS coordinates of greater Boston area taxis. Training trasircles show a partial trajectory; the open circles show the
jectories were randomly drawn from this set of 500 withouttrye continuation of the trajectory. The cyan, red, and blue
replacement until all 500 trajectories were incorporalé®  cyrves show the continuations predicted by the DPGP model
Markov model was initialized with a uniform prior, and its and two Markov models. With only 100 training trajecto-
transition probabilities were updated as new trajectares ries none of the models predict the full path, but the DPGP
rived. To assess the effect of discretization granulantih@ s ciose while the other models are completely lost. As more
Markov model, we evaluated Markov models with differ- training data is added, the DPGP and the finer-grained Markov
ent position and velocity resolutions. The@ndy-positions  model match the true trajectory, while the simpler Markov
were discretized on 20 x 20, 40 x 40, or a60 x 60 grid  model is not flexible enough to fit the data.
(the helicopter’s discretization never changed). Velogias As the goal of our model is to predict the motion of mo-
either discretized into four or eight states. The model& wit ;| agents within a planner, we compared the performance
finer discretizations were more expressive but require morgg planners using the DPGP and Markov models, as well as
data to train effectively. a naive pursuit approach that simply assumed the vehicle’s
After each trajectory was completed, our DPGP driversosition at time-—+1 would be the same as its location at time
model was updated using algorithm 1. Each update was inf- \ve also evaluated a simple k-nearest neighbor technique
tialized with the most recently sampled model. Since a fu"that, given an(z, y) point, simply searched the training set
update required significant computation, new trajeCtome®  of trajectories for nearbyz, ) points and interpolated the
11 Results in this section are also described in our previoust!’auecmry denvatlv,e% a”q% fr,om the trajectory deriva-
work (Joseph et al, 2010). tives of nearby training points’ Finally, we evaluated a GP
12 | ikelihood-based methods try to explain the data well, wHile t

goal of the planning problem is to maximize rewards. A modelteatb 3 For reasonably dense data, Gaussian process and nearest neighbor
explains the data is not guaranteed to be the best model famipn approximations are very close; thus, the k-nearest neighblonitgoe
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Fig. 10 Predictions given a partial path for the DPGP and two Markowdet® for various amounts of training data. Trajectories wisavn
randomly from the full dataset without replacement.

4

model that was fit to only the current trajectory and ignorec | 5X10

all past training data. This single GP model ensured that th _
previous trajectories were important for making predicsio 7 1}
about the current trajectory, that is, the current trajgcto E
could not be well-predicted based on its own velocities. g 05

Figure 11 shows the cumulativaifferenceof total re- E 0 —Pursuit
ward between all the approaches and naive pursuit metho 3 \ — MM 20x20x4
The k-nearest neighbor and simple GP rarely out-perforn & -05 41 mm igiigii
pursuit. The Markov models initially do worse than pursuit § MM 40x40x8
because they have many parameters (making them vulne S % mm ggxggxg
able to over-fitting) and often make incorrect predictions % s | | —KNN K)il §
when the agent observes a trajectory in a sparse region = - - =KNN K=25
their state space. In contrast, the DPGP starts out sinoilar 1§ -2t ] _é’;‘N K=50
pursuit, since the zero-mean prior on trajectory deriestiv — DPGP

naturally encodes the bias that, in the absence of other dai 2% 100 200 300 400 500

the car will likely stay still. The DPGP model quickly gener- Number of Training Paths
alizes from a few trajectories and thus attains the highest ¢ Fig. 11 Cumulative difference in reward from the pursuit approach for
mulative rewards of the other methods. The Markov model&® DPGP model, various Markov models (MM), k-nearest neighbor
eventually also exhibit similar performance, but they meve EKNN))’ and a GP fit to the current trajectory (GP) (higher eaiare

! etter).
make up for the initial lost reward.

longer has full trajectories to cluster into motion patgern
Thus, a key additional step in the partially observable case
is that the agent must now infer where the target when it was
We now consider the case in which the agent does not aRot being observed. This information is needed both to de-
ways have access to the target's current location. Insteatgrmine which motion pattern the target was exhibiting and
we assume that the agent has a sensor that will provide tg update the characteristics of a motion pattern clusen fr
perfect measurement of the target’s location if the target ipartial trajectories.
within some observation radius of the agent, and no mea- We first formalize the model and detail the inference
surement otherwise. The agent's task is to first intercept thProcedure; we next show how our motion model helps the
target — maneuver to within some small interception radiuggent intercept and track targets in a synthetic domain (sec
of the target for “inspection” — and then to keep the targetion 4.3.1) and a helicopter-based search and tracking sce-
within its |arge|’ observation radius. nario using the real-world taxi data (SeCtiOﬂ 44)

In many senses, this problem formulation is a more re-
alistic scenario in that we do not assume a sensor netwo%1 | . d K bl lati
will always provide the target’s location. However, becaus ™ hterception and Tracking Problem Formulation

the agent can only observe the target when it is near it, it NQince the target's current position is now potentially un-

also served as a close approximation of a solution trained on asingkNOWN at every time step, we formalize the interception and
GP for the entire dataset. tracking scenario as a partially observable Markov degisio

4 Interception and Tracking with Partial Information
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Algorithm 2 Partially Observable Motion Model Inference 4.2 Model Inference

1: for sweep = 1 to # of sweem®
2:  for each trajectory’ do Since our agent sees a target’s location only when the tar-
‘31: fOfift?;{‘;,'g‘g S;‘ffi.ggt) TR get is within a given observation radius, the target trajec-
5: D;aw(xf“’fg‘”, yL@79¢ty using equation 5 tory that the agent observes will often be disjoint sectimins
6 if (zier9et ylem9ety was withinr.p,, of (z%,y2)  the target’s full trajectory. Fortunately, the Gaussiancpsss
then does not require continuous trajectories to be trained, and
; o dRi?‘e‘:t sample, goto 5 the Dirichlet process mixture model can be used to classify
9: end if partial paths that contain gaps during which the vehicle was
10: end for not in sight. In this sense, the inference approach for tthe fu
11: end for . information case (section 3.2) also applies to the pantial i
ig for D?Z@ht?eog?ﬁyﬁgigr;moet #S” 95T formation case. However, using only the observed locations
14:  end for e ignores a key piece of information: whenever the agent does
15:  Draw the DP hyperparameter not see the target, it knows that the target is not nearby. In
16:  for each trajectory’ do this way, the lack of observations actually provides (nega-
% o derO"’:WZi using equations 8 and 9 tive) information about the target’s location.
19: end for To leverage this information, we use Gibbs sampling to

sample the unobserved target locations as well as thetrajec
tory clusterings. Once the partially observed trajectoaiee
completed, inference proceeds exactly as in the full infor-
process (POMDP). In addition to the states, actions, tranmation case. Specifically, we alternate resampling the clus
sition function, and reward function present in an MDP, ater parameters (section 3.2) with resampling the unobgerve
POMDRP also includes a set of observations and an observparts of each target’s trajectory. Given all of the other tra
tion function. jectories in an incomplete trajectory’s cluster, we can-sam
ple the missing sections using the prediction approach in
section 3.2.2; this approach also ensures that the filled in
trajectories connect to observed segments smoothly. If the
sampled trajectory crosses a region where the agent could
have observed it—but did not—then that sample is rejected,
and we sample a new trajectory completion. This rejection-

served. Instead, our agent receives an (accurate) oh'servatsamp“ng approach ensures Fhat we draw _mot|on patterns
consistent with all of the available information (see algo-

of the target’s position if the target is within an obsereati

radiusr,,s of our agent. Otherwise our agent receives norlthm 2). . .
information about the target's position. Essentially, we a 10 Predict future target positions, several of the sam-
relaxing the assumption of the previous section that the taP€d trajectory completions are retained and averagedto pr

get is tracked by a dense sensor network duce a final prediction. Each trajectory completion suggest
a different Gaussian process motion model, and is weighted

Our agent gets target information at irregular intervalsysing Bayesian model-averaging. Using the final velocity
from a sparse sensor network, and must model the targefsrediction, computed as the weighted average of individ-
behavior and plan trajectories to intercept the targetrgive yal model predictions, we can then apply the prediction and

imperfect information about the current target's locatids  classification approach in section 3.2.2 for intercepting a
before, the target's transitions are stochastic over thérco  tracking new targets.

uous space; we can place a distribution over the targetis nex

position (57", y,*') based on our motion model. The

agent receives a large one-time reward for being within 6}1 3 Results

small interception radius of the target (which is signifitgn ™
smaller than the observation radius and a small tracking r

ward for every target within its observation radius.

As in the fully observable MDP case (section 3), the
state consists of the joint position of our agent and theetarg
(2@, y?, xtarset ytargety - Given an action and our agent’s
current position(z¢, y§), we assume that our agent’s next
position(xf, |, y¢, ;) is deterministic and known. However,
the target's positiorfze"9¢t yy*er9¢*) may no longer be ob-

Gih this section, we apply our DPGP model to two partially
observable interception and tracking problems. The firat is
The inference procedure for learning the target motiorsynthetic example designed to show the basic qualitieseof th
models (algorithm 2) is described next in section 4.2; giverDPGP in the partially observable case. In the second prob-
this model and the remaining problem parameters, the aget@m, we return to a more challenging, partially observable
chooses actions using a standard forward search (Ross etatrsion of the taxi tracking scenario from section 3. As in
2008). the fully observable case, we tested each model in an online
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Fig. 12 Search and tracking task in the syntheticd&Ks scenario.

tashion: initially th had , ith th ceives a reward of -10 for every time step until it intercepts
ashion: initially the agent had no experience with the tary, . target, whereupon it receives a reward of +100. Addi-

get, after ez_ach episode, any informat_ion itreceived ati_ wl t tionally, it receives a reward of +1 for every target withig i
target was incorporated into the motion model. Specn‘lcallyobservation radius. We call this the. Bcks scenario.
if the agent only observed the target at certain times, only

those locations were used to update the motion model. Thf?ve
agent does not receive any additional information about th

Figure 13 shows the performance of each approach over

runs, where each run consists of 100 episodes. The er-

missed observations of a target's trajectory after an eiso For bgrs show the 95% confidence interval of the mean from
the five runs. In the figure, not only are the means of the

) hln all of the §cfenar|o§, we crc])mlp)argcri] our DdPG'; all(go'DPGP approach higher than the other approaches, but in
rithm to a pursuit forward search algorithm and a Mar 0Vpractice it scores significantly better on each individwal.r

model. The pursuit algorithm goes to the target' last 0b=I'he Markov models, despite requiring a fair amount of data

served location but uses forward search to plan about how) start making relatively good predictions, do outperform

bestto intercgpt and_ traclf aII_three targets. The Markoy—moqhe simpler strategy. Figure 14 shows parts of a single plan-
els use a position discretization equal to the intercepten ning episode, where the helicopter initially intercepts on

_?_'r?n with r andy v<_a|o_mt_y_ga|gh 3'9’?‘3“29‘1 |n|t|o tWS b|_?s. target going below the obstacle before pursuing the last two
e transition matrix is initialized with a small probabjli above the obstacle.

mass on self transitions to encode the bias that in the absenc . . .
Since this is a synthetic example, we can also compare

of data the target will tend to stay in the same location. With . . )
out this bias the model performs extremelv poorly initiall the motion patterns found to the true underlying patterns in
b y poorly Y the model. The model has six patterns: the target can go ei-

and would be an unfair comparison to our model which has fher above or below the obstacle to reach one of the three

similar prior bias (section 2.1). The'Markov quel also US€Sinal locations on the left wall. The number of clusters found
forward search to plan for the helicopter. While we couldby our DPGP approach as a function of training paths is

have used other Markov models with more bins, the resultghown in fiqure 15. In the beainnina. when the agent has
from section 3.3 show us that these Markov models ma 9 ' g 9 9

; P . Yeen relatively little data, it maintains a smaller numbfer o

perform better in the limit of infinite data but with the small . h At observes more traiectori@s. w
data set here a Markov model with a small number of binsmOtIon patiems. As the age . J '

. see that the number of motion patterns settles around the
will perform the best. true number (the error bars show 95% confidence intervals
of the mean). By the end of the 100 trials, if two trajecto-
ries belonged to the same true cluster, then our DPGP model
placed them in different clusters with probability 0.26#5;
We first illustrate our approach on a synthetic interceptioriwo trajectories actually belonged to separate clustbes) t
and tracking problem based on Roy and Earnest (2006). lour DPGP model placed them in the same cluster with prob-
this problem, illustrated in figure 12, the agent starts tlear ability 0.1567. Some of this clustering error is due to our
opening on the far right and must track three targets whiclagent being out of range of the target resulting in some tra-
start from the right side of the region and simultaneouslhjectories not containing the full location history. In faap-
move to three different target locations on the left walk-Ta proximately 20% of the data points were not observed dur-
gets have 0.75 probability of going above the central obing the trails. These statistics, consistent over five riitiseo
stacle and 0.25 probability of going below it. The agent re-100 episodes, strongly suggest that our DPGP model was

4.3.1 Results on a Synthetic Multi-Target Scenario
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Fig. 15 Number of discovered target motion patterns in theoBks

scenario.

learning key clustering characteristics of the target oroti

patterns.

The results comparing our DPGP approach to the same

control strategies from section 4.3.1 are shown in figure 16
4.4 Results on a Helicopter-based Multi-Target Scenario and figure 17, with the error bars showing the 95% confi-

dence interval of the mean for the five runs of 150 tasks.
We next applied our approach to a helicopter-based seardlsing our DPGP approach for modeling the targets results
and tracking scenario that used the same taxi dataset d& much better interception and tracking performance from
scribed in section 3.3. We assume that the agent was givehe start. Unlike the simpler IB>CKS scenario, the Markov
the targets’ true initial locations and velocities from agmd- models do no better than simple pursuit after 150 episodes.
based alert network. After being given this initial piece of Figure 18 shows the number of clusters found by the DPGP
information about the targets, the target states are n@longapproach as a function of training paths. As expected from
directly accessible, and the helicopter receives infoionat a real-world dataset, the number of motion patterns grows
about a target’s location only if the target is within abot® 1 with the number of episodes as new motion patterns ob-
miles (a quarter the map area) of the helicopter. The interserved in new trajectories. Finally, figure 19 shows an ex-
ception radius is 0.25 miles (a twenty-fifth the map area)ample episode where the helicopter first intercepts eaeh tar
The reward function is identical to the one described in secget and then finds a location where it can observe multiple
tion 4.3.1. targets to keep them localized.
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x10° ‘ ‘ cretization. The DPGP can be viewed as an HMM model in

[ Pursut | a continuous space with an unknown number of trajectory

16f |——DPGP I types.

While we focused on the motion patterns of taxis in the
Boston area, as seen in our synthetic example, the DPGP
approach is not limited to modeling motion patterns of cars.
Itis meant as a far more general mobile agent model, which
models a wide variety of trajectories over a continuousspac
s o o o as long as the targets motions obey local smoothness and

Number of Episodes continuity constraints—as seen in section 4.4, paths and tra
Fig. 17 Results from the taxi multi-target interception and tracking Jectory types can be inferred from even sparsely observed
task showing cumulative reward achieved by different modelshen t targets if the smoothness assumptions imposed by the GP
BLOCKS sce_nario. Error bars show the 95% confidence interval of thqnode| are true. We would expect the DPGP model to have
mean from five repeated runs. difficulty modeling trajectories where smoothness assump-
tions about the trajectory derivatives could not be charac-
terized by the single distance parameter in the GP covari-
ance kernel: for example, if trajectories tended to have tig
curves or kinks. Nonstationary GPs could be used in these
situations (Meiring et al, 1997; Paciorek and Schervisb020
In environments where movement in x and y directions is
tightly coupled, GP models with multiple outputs may be
more appropriate (Boyle and Frean, 2005).
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=
o
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= o - The stationary, single-valued aspects of the GP motion
Number of Episodes model also make it in appropriate for modeling trajectories
Fig. 18 Number of discovered motion patterns for the taxi datasetthat loop onto themselves—that is, do different things at the
search and tracking task. same location based on some other context—and for adver-
sarial situations. In these cases, additional informagach

as the agent’s location relative to the target, would need to
be incorporated into the GP inputs. Thus, the DPGP model
(iﬁ best suited for situations where complex, non-overiagpi
dynamics and clusterings must be learned from relatively li

pcl

5 Discussion

Using our Bayesian nonparametric DPGP approach for mo
eling target motion patterns improved our agent’s ability t . .
g targ P P g Y tle data—as we saw in the results sections, the Markov mod-

predict a target's future locations from relatively few sxa els do catch up in performance once sufficient data is avail
ples. A key advantage of the DPGP model is that it provides pinp

a way of scaling the sophistication of its predictions givenable; however, the DPGP makes significantly better predic-

. . . tions from only a few trajectories. In situations where the
the complexity of the observed target trajectories: we @oul , .
. . . . number of trajectory types is known and large batches of
model motion patterns directly over a continuous space-with . A . -
. e o data exist, the DPGP will likely add little over a finite HMM-
out needing to specify discretization levels or expectedeasi

In contrast, the Markov models suffered because even at%ased model trained on the same large dataset. The Bayesian

“reasonable” discretization, these models needed tottnain nature of our approach does allow available expert knowl-

. . . . .__edge about target motion patterns to be given in the form of
motion model for every grid cell—which required observing g . . . .
. . additional example trajectories without any need to adjust
many more trajectories.

One way to think about the DPGP is as a type of hidder%he rest of the inference process.
Markov model (HMM), where the future trajectories of the
agent are Markov conditioned on some hidden (instead of Finally, itis well-known that standard GPs requi’éN3)
observed) state. Indeed, introducing a hidden variableto d computation to perform inference, wheleis the number
scribe a trajectory type or movement mode is a standard wegf data points. In our work, we were still able to process
to avoid issues such as the Markov model’s confusion oveall of the data using the approximations described in sec-
crossing paths (figure 2). However, standard HMM-basedion 3.2.1; for larger datasets, there are fairly standard a
approaches would still typically need to define the numbeproximation algorithms witlO (V) running times (Csat and
of trajectory typesa priori and commit to a level of dis- Opper, 2001; Snelson and Ghahramani, 2006).
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Fig. 19 A planning episode from the taxi data set. Helicopter posit@msshown in blue. Car positions are shown in red before inteocep
and green after. The small blue circle and the large cyan arcend the helicopter signify the tagging and observatiogearespectively. Car
locations are marked with & symbol when observed by the helicopter, andsymbol when beyond the helicopter’s sensor range.

6 Related Work and the amount of “wasted time” a driver was willing to ac-
cept. Dia (2002) used a survey to classify drivers into diffe

Much of the past work in modeling mobile agents has fo-ent profiles to enable better prediction. Both of these works

cused on two problems: expert systems (which require spélote that it is difficult tg specify a.model for human motion
cialized data) and modeling a single agent (requiring datRatterns based on logical reasoning. For example, Letchner

generated by the single agent). Letchner et al (2006) built gt al (2006) note only 34.5% of drivers choose the fastest

model that predicted trajectories based on the optimal patfPute between two locations.

between two locations (given factors such as the time of day)
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Whether these statistics are a result of driver ignoranc&acking domain by rapidly exploring the reachable and high
or another factord.g, avoiding a stressful route) is highly value regions of the belief space.
debatable and difficult to incorporate into expert models of Despite these advances, point-based POMDP methods
human motion patterns. Without access to similar data fostill have limited utility in this domain. These methods typ
the greater Boston area or having similar time-stamped GPigally discretize the agent and target state spaces torpbtai
data for their models, we were unable to compare them ta finite-dimensional belief space, and are unable to adapt to
our approach; however, it would be interesting to see if inchanging motion patterns due to substantial offline regquire
corporating expert features related to human psycholdgy in ments.
the priors of our model could improve predictions. One approach to avoiding state space discretization is to

Another body of literature has trained Markov modelsrepresent beliefs using Gaussian distributions, as appire
(generally using data from only one person) in which eactMiller et al (2009) to target tracking, or by He et al (2010)
road segment is a state and transition probabilities encodeith Gaussian mixture models. An advantage of these rep-
the probabilities of moving from one segment to another. Foresentations is the ability to analytically and exactly ipan
example, Patterson et al (2003) treated the true drives statilate the belief state. However, these approaches focus on
as hidden by GPS sensor noise and a hidden driver modgelanning with accurate models, and do not address model
Ashbrook and Starner (2003) model the end position antearning or acquisition.
transition probabilities explicitly, but doing so preverihe
method from updating the probabilities based on a partially
observed trajectory. Using a hierarchy of Markov models;; conclusion
Liao et al (2007) were able to make both local and destina-
tion predictions but still had difficulty in regions of spars Accurate agent modeling in large domains often breaks down
training data. Taking a machine learning approach, Ziebaftom over-fitting or under-fitting the training data. We used
et al (2008) used inverse reinforcement learning with googy Bayesian nonparametric approach to motion-pattern mod-
results when the target's destination is known in advance. eling to circumvent these issues. This approach allows us

Recently, Gaussian processes have been successfully ap-build flexible models that generalize sensibly with spars
plied to modeling and prediction in robotics tasks. Tay anddata and add structure as more data is added. The reward
Laugier (2007) used a finite mixture of Gaussian processasiodels, the dynamics model of the agent, and the form of
to model multiple moving targets in a small simulation en-the agent's planner can all be adapted to the task at hand
vironment. In the context of controlling a single vehicle K with few adjustments to the DPGP model or inference pro-
and Fox (2009) demonstrated that Gaussian processes imedure.
proved the model of a vehicle’s dynamics. We demonstrated our motion model on a set of helicopter-

Fox et al (2007) took a related approach to ours andbased interception and tracking tasks trained and tested on
modeled the number of motion patterns with a Dirichlet pro-a real dataset of complex car trajectories. The results sug-
cess prior, with each motion pattern governed by a lineargest that our approach will be useful in a variety of agent-
Gaussian state space model. Unlike our approach, agent®deling situations. Since the underlying structure of our
could switch between motion patterns using an underlyingnodel is based on a Gaussian process framework, our ap-
hidden Markov model. In our specific dataset and applicaproach could easily be applied to beyond car domains to
tion, the agents usually know their start and end destinageneric metric spaces. Finally, although we focused our ap-
tions from the very beginning; not allowing motion pattern proach on a set of interception and tracking tasks, we note
changes helped predict a car’s path on roadways that wetbat the DPGP motion model can be applied to any task
common to many motion patterns. However, our frameworkvhere predictions about a target’s future location are egéed
could certainly be extended to allow agents to change mo-
tion patterns. Future work could also incorporate add#ion
information—such as inputs of the road network—to furtherreferences
constrain the trajectories.
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based solver to a small target-tracking problem, and more ing (Information Science and Statistics). Springer
recent approximate point-based techniques, for example oyle P, Frean M (2005) Dependent gaussian processes. In:
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