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ABSTRACT

Database administrators of Online Transaction Processing (OLTP)
systems constantly face di�cult questions. For example, “What is
the maximum throughput I can sustain with my current hardware?”,
“How much disk I/O will my system perform if the requests per sec-
ond double?”, or “What will happen if the ratio of transactions in my
system changes?”. Resource prediction and performance analysis are
both vital and di�cult in this setting. Here the challenge is due to
high degrees of concurrency, competition for resources, and com-
plex interactions between transactions, all of whichnon-linearly im-
pact performance.

Although di�cult, such analysis is a key component in enabling
database administrators to understand which queries are eating up
the resources, and how their system would scale under load. In
this paper, we introduce our framework, called DBSeer, that ad-
dresses this problem by employing statistical models that provide
resource and performance analysis and prediction for highly con-
current OLTP workloads. Our models are built on a small amount
of training data from standard log information collected during
normal system operation. �ese models are capable of accurately
measuring several performance metrics, including resource con-
sumption on a per-transaction-type basis, resource bottlenecks, and
throughput at di�erent load levels. We have validated these models
on MySQL/Linux with numerous experiments on standard bench-
marks (TPC-C) and real workloads (Wikipedia), observing high ac-
curacy (within a few percent error) when predicting all of the above
metrics.

Categories and Subject Descriptors

H.2.4 [Systems]: Relational databases

Keywords

OLTP, Performance Predictions, Multi-tenancy

1. INTRODUCTION
Operating a large database management system (DBMS) or

a multi-tenant “database-as-a-service” [16] is a challenging and
stressful task for database administrators (DBA), especially as the
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DBMS starts experiencing heavy concurrent load. Although some
databases provide tools for measuring the run-time of an individ-
ual query, many performance problems are a result of interactions
between concurrent queries, which existing systems are not capa-
ble of modeling. Many transactions that run �ne in isolation be-
come much slower when run together, as they interact in complex
ways and contend for shared resources. Load that is added over
time may cause resources that were previously abundant to become
constrained, and query performance to plummet. Applications may
generate unpredictable, time-varying load that puts strain on di�er-
ent resources (e.g., RAM, disk, or CPU) at di�erent times. To handle
all these scenarios, we need a way to attribute system load, on a per-
resource basis to di�erent queries, transactions, or applications. �is
attribution enables a number of useful applications, including:
● Diagnosis / Performance Inspection: Why is a given query

running slow (in the presence of concurrency)? Which transaction
groups are causing the spike of lock wait times in the DBMS?
● Run-time Performance Isolation: In a database supporting

multiple applications, which application/transaction is using more
than its allocated share of resources? At what rate should transac-
tions of a given application be admitted/ dropped in order to avoid
any SLA (service-level agreement) violations?
● Billing: What is the actual contribution of each workload to

the overall resource consumption?
A second challenge for DBAs is to understand how database re-

source consumption and performance vary as load on the system
changes, e.g., when partitioning the database, or when a sudden in-
crease in popularity of a website imposes unexpected load on the
back-enddatabase To address the second challenge, we needwhat-if
analysis tools to allowDBAs to answer two other classes of questions:
● Performance Prediction: What will the performance (e.g. la-

tency or throughput) of a given query or application be if the rate of
‘new order’ transactions doubles?
● Provisioning: Which resource (e.g., disk, CPU, RAM)will bot-

tleneck �rst if the load on the system increases? What is the hard-
ware required to deliver a desired throughput?
To address these challenges, we introduce our approach, called

DBSeer, for statistical performance modeling and prediction. Our
techniques involve collecting a limited set of low-overhead statistics
from the DBMS and the operating system, measured during normal
systemoperation. We then use these statistics to build o�inemodels
for the given DBMS and the workload(s) running on it. �ese mod-
els allow us to perform attribution and what-if analysis by assessing
the resource (e.g., CPU, disk, RAM, cache, DB locks) requirements
of individual queries or applications and estimating how those re-
quirements change as the database grows in size, as queries in the
workloads change, or as allocated resources vary.
In DBSeer, we develop two classes of models and compare their

performance. First, we develop black-box models, that make min-



imal assumptions about the nature of the underlying system, and
train statistical regression models to predict future performance
based on past performance statistics. Second, we develop white-box
models that take the major components of the underlying database
system into account, to enable more accurate predictions. Specif-
ically, we develop white-box models for disk I/O, lock contention,
and memory utilization of MySQL. Although these models are fo-
cused on MySQL, we believe that even solving performance predic-
tion in the context of this one system represents an important step
forward, as MySQL alone is used by millions of users. Moreover, in
Section 8.5, we report preliminary (but promising) results in apply-
ing our models to another DBMS (PostgreSQL).

As we show in our experiments, the trade-o� between these two
classes of models is that black-box models are more general but are
also less e�ective in making predictions outside of the range of in-
puts on which they were trained. Unfortunately, many interesting
questions (including many what-if scenarios) require such “out of
range” predictions, e.g., predicting performance when dramatic and
heretofore unseen changes happen in the workload. �is is why de-
veloping white-box models is also necessary: they are less general
than black-box models (as they make assumptions about the nature
of the database) but they provide higher extrapolation power.

Our approach in DBSeer
1 is speci�cally designed for highly con-

current OLTP (transaction processing) applications . �ese applica-
tions run lightweight transactions that read or write a few records at
a time. We focus on this class of problems becauseOLTP settings are
most frustrating for DBAs, due to their high levels of concurrency
and the complex interactions between transactions (i.e., competition
for di�erent resources such as locks, cache, I/O). Such competitions
can lead to non-linear e�ects, where a small change in load can trig-
ger a large change in performance. �ough some prior work has
addressed performance prediction in the case of OLAP (a.k.a. ana-
lytical) databases [12, 3, 8], this problem has not been well studied in
OLTP.�us, a key contribution of our work is to develop non-linear
models that capture highly concurrent locking and logging opera-
tions of OLTP workloads.

In summary, we make several contributions towards modeling
transactional workload, including:
● Resource Models: we have developed white and black-box

models for predicting di�erent resources, includingCPU,RAM,net-
work, disk I/O, and lock contention. Our primary contribution here
is a set of novel white-box models for predicting disk I/O and lock
contention.
● Extracting transaction types: we have developed highly accu-

rate clustering techniques to automatically extract and summarize
“classes of similar transactions” from a query log that allow us to ac-
curately group similar transactions. We show that this clustering is
able, for example, to identify the 5 transaction classes in TPC-C, and
the major query types in Wikipedia.
● Evaluation: we evaluate our models on a real database sys-

tem, both using the well-known TPC-C benchmark and the real-
life traces of Wikipedia, showing that we can predict the maximum
throughput within 0-25 error. Additionally, we show that white-
box models can avoid over-provisioning by at least 9× and predict
disk I/O from 4× to 100× more accurately than simple black-box
models when predicting resource utilization over a wide range of
transaction rates.

2. SOLUTION OVERVIEW
In this paper, we focus on the problem of resource prediction.

Given a set of transaction types (we describe our method for deriv-

1Source code for DBSeer is available at http://dbseer.org.

ing these below) running at a certain rate (transactions per second,
or TPS), with a certain mixture (fraction of each transaction type in
the overall workload), the goal is to predict the CPU usage, disk I/O,
minimum amount of RAM, network consumption, and time spent
in lock contention. Such models are important for understanding
how close a DBMS is to saturation and which resource will satu-
rate �rst, as well as for diagnosis/investigation of performance prob-
lems (e.g., attributing utilization of particular resources to particular
transactions).

2.1 DBSeer Overview

SQL logs
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10:23:13.30, C1,BEGIN TRANSACTION
10:23:14.012, C2, BEGIN TRANSACTION
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Figure 1: Work�ow in DBSeer.

DBSeer consists of the following steps, shown in Figure 1:
1. Collecting Logs. We observe a DBMS during normal opera-

tion, i.e., running without modi�cation in its production state. We
collect standard SQL query logs, as well as various DBMS and OS
statistics (over periods of hours or days).
2. Preprocessing / Clustering. We align (by time) and join the

various logs, and extract a set of transaction types to categorize the
types/classes of transactions that the system runs. We automatically
cluster the transactions based on their SQL statements and the dif-
ferent tables that they have accessed. We also construct a concise
pro�le of each transaction type, summarizing its access pattern to
di�erent tables in the database. �ese summaries are used in our
lock contention model. Logging and clustering are described in
more detail in Section 3. Note that the transaction types only di�er
based on features relevant for performance and resource consump-
tion. �is allows us to bound the number of classes we consider,
while signi�cantly improving the accuracy of our models. �is also
allows users to query the system with what-if scenarios that include
changing themixture of transactions (ratios of each transaction type
in the workload).
3. Modeling. We build white- and black-box models to predict

the resource utilization (CPU, RAM, disk I/O, Locks, etc.) of the
system for di�erent mixes and rates of transaction types. Our mod-
els can accurately answer attribution and what-if questions (e.g., for
provisioning, diagnosis, etc) for any givenmix of transactions or tar-
get transaction rate. �is is shown in the �gure as theOutput/Insight
arrow. Even for white-box models we relied on general knowledge
of the functional component within the DBMS, without the need to
modify nor access the source code of the system. A DB administra-
tor (DBA) uses our system by providing as input a set of transaction
logs (we use [1] to collect logs), and querying the resulting models
to test a series of hypotheses. �e DBA or automated tools running
on his/her behalf can leverage our models to recon�gure or tune the
DBMS, or perform other operational actions (migration, provision-
ing, etc.). Details of our models for di�erent resources are presented
in Section 4–6. Finally, we combine all these models in Section 7
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to accurately predict the maximum throughput that the system can
deliver for a given mixture and rate.

All of our models accept a mixture ( f1 ,⋯. fJ) and a target TPS T,
where fi represents the fraction of the total transactions run from
type i and J is the total number of types. �e models are built from
a small selection of training data collected over a narrow range of
TPS and a speci�c mixture (such as the conditions of a system run-
ning in production), but can predict the expected resource utiliza-
tion over a wide range of TPS and mixtures. We validate this exper-
imentally in Section 8, showing that we can observe the system at a
�xed mixture, and answer what-if and attribution questions about
never-seen-beforemixtures and rates.

3. PREPROCESSING
In this section, we describe our approach to logging (Sec. 3.1),

transaction clustering (Sec. 3.2), and estimating page access distri-
bution (Sec. 3.3). �ese are used as input to the prediction models
described in the rest of the paper.

3.1 Gathering the Log and Statistics
We collected a number of aggregate statistics about the sys-

tem. �ese statistics are collected passively, without a�ecting per-
formance of the system or varying the rate or mix of transac-
tions that are run, using standard operating system and database
logging features. Speci�cally, we collected (i) resource consump-
tion statistics from the OS (Linux, in our case), (ii) load statis-
tics (e.g., number of dirty pages, number of logical reads, etc.)
from the DBMS (MySQL, in our case), and (iii) a query log,
containing start-time, duration, and the SQL for each statement
run by the system. Practically this consists of running dstat

(http://dag.wieers.com/home-made/dstat/), a python-based

tool to collect OS and MySQL statistics on the server, and leveraging
MySQL’s query logging functionalities. Also, note that most pro-
duction environments routinely monitor most of these statistics for
administration and auditing purposes, and refer to this as telemetry.

�e result of this logging is a number of features which we use in
our models. �ese include:

1. �e SQL statements and transactions executed by the system
(that will be clustered using our clustering mechanism).

2. �e run-time (latency) of each transaction.
3. Aggregate OS stats, including per-core CPU usage, number of

I/O reads andwrites, number of outstanding asynchronous I/Os, to-
tal network packets and bytes transferred, number of page faults,
number of context switches, CPU and I/O usage.

4. Global status variables from MySQL including the number of
SELECT, UPDATE, DELETE, and INSERT commands executed,
number of �ushed and dirty pages, and the total lock wait-time.

As we are focused on non-intrusive logging, we do not collect
any statistics that signi�cantly slow down performance, such as �ne-
grained locking information.

3.2 Transaction Clustering
We �rst use the logs to group transactions into a set of types or

classes. �e main goal of this step is to cluster transactions into
classes that exhibit a similar access pattern, i.e. they access the same
tables in the same order and perform similar operations on each ta-
ble. (Note that di�erent parts of a table might be accessed with dif-
ferent probabilities by each class of transactions.) Extracting trans-
action types allows us to model di�erent mixtures of transactions in
theworkload, where theworkload at any point in time is represented
by the total number of transactions per second as well as the fraction
of each transaction type in the mixture.

Extracting Transaction Summaries: Our clustering begins by
parsing the query logs and extracting a transaction summary from

each (successfully) committed transaction, de�ned as:

[t0(mode1 , tabl e1 , n1 , t1),⋯, (modek , tabl ek , nk , tk)] (1)

where k is the number of tables accessed by the transaction (e.g.,
if it accesses table a, then table b and then again table a, we have
k = 3), t0 is the time lag between the BEGIN and the �rst SQL state-
ment, and for 1 ≤ i ≤ k, tabl e i is the i’th table being accessed by this
transaction,mode i is eitherw when accessing tabl e i requires an ex-
clusive lock (e.g. DELETE,UPDATE,INSERT or SELECT...FOR
UPDATE), and is r if the access requires a read-only/shared lock (e.g.
general SELECT). We de�ne n i as the approximate number of rows
accessed from tabl e i . Finally, for 1 ≤ i < k, ti is de�ned as −1 when
both the i’th and the (i + 1)’th table accesses are caused by the same
SQL statement. Otherwise, ti is the time lag between the comple-
tion of the SQL statement causing the i’th access and the time that
the (i + 1)’th statement was issued. tk is de�ned as the time between
the last SQL statement and the �nal COMMIT. All of this informa-
tion can be obtained from the SQL logs except the number of rows
read or written from each table, which we estimate using the query
rewriting technique described in Section 3.3.
Learning Transaction Types: Given the transaction summaries,

we use the extracted features and apply the DBSCAN [9] clustering
algorithm to group individual transactions based on their accesses.
Note that DBSCAN is an unsupervised method (so it does not re-
quire labeled examples of each transaction type), and does not make
any a priori assumptions about the number of clusters (as does, for
example, k-means). As we show in Section 8.3, this clustering per-
forms very well. In fact, it gives 0 misclassi�cation compared to a
manual clustering of the transactions based on their semantics. �e
input data consists of one row per transaction. Each row contains a
set of transaction features. �e feature set consists of 2 attributes for
each table in the database, one for the number of rows read from and
one for the number of rows updated/inserted in each table (many of
these features will be zero as most transactions do not access all the
tables). �ese simple features proved su�cient for clustering TPC-C
andWikipedia (as well as several other workloads [1]).
�e output of this clustering is a workload summary that lists the

major transaction types (along with representative queries) and pro-
vides their frequencies in the base workload. We found that the ex-
tracted classes are easy to understand and manipulate by the users,
since we provide representative examples and allow the user to as-
sign a name/label to each transaction type (e.g., the New Order
transaction of TPC-C). �is is a powerful abstraction that enables
users to specify the rate at which each type of transaction will be ex-
ecuted (i.e.,mixture and overall rate) as input to the predictionmod-
els. �is allows us to explore hypothetical scenarios and understand
how performance would vary for di�erent mixtures of transactions.

3.3 Estimating Access Distributions
Our second use of the logs is to infer a rough probability distri-

bution over all the pages in the database by access (read or write)
and by transaction type—this is used in our locking and I/O pre-
diction models to estimate con�ict and update probabilities. We
do this by processing the raw MySQL logs to extract individual
queries/updates, and then rewriting queries to extract the primary
keys accessed in the tables (using rewriting techniques in [6]). We
then run our rewritten queries against the database to obtain sets of
primary keys read/written by each query/update (grouped by trans-
action type). �is analysis is done o�ine, imposing no overhead
on the operational database. In the case of MySQL/InnoDB, pri-
mary keys are always the clustered index of a table, therefore we
can assume that tuples with contiguous primary keys are stored
consecutively on disk and hence, we can infer which pages are ac-
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cessed. Here, we assume that all accesses to large tables are done via
indexes, rather than sequential scans, which is true of well-tuned
transactional applications. However, if needed, we could also use
the EXPLAIN command to determine the exact access method in
the query plan and hence, the exact set of pages that a given transac-
tion will access. We then further aggregate these accesses into prob-
ability distributions (per table and per transaction type) necessary
for our predictions.

4. MODELING DISK I/O AND RAM
In this section, we present our white-boxmodels for disk I/O and

RAMprovisioning. Ourmodels in this section are based onMySQL.
While some of MySQL features are shared among other traditional
DBMSs (e.g., LRU-based caching or 2-phase locking), some of the
other features are speci�c to MySQL (e.g., the bu�er pool �ushing
policy). Our main goal in this paper is to demonstrate that it is pos-
sible to build accurate models for a given DBMS. In particular, we
focus on MySQL due to its popularity (used by millions of users).
However, In Section 8.5, we also report preliminary results on ap-
plying our models to another DBMS (PostgreSQL).

Disk and memory are important aspects of performance in a
database system. In fact, in a transactional database, such asMySQL,
disk I/Os andRAMutilization are closely related to one another. �e
three main causes for disk I/Os are:

1. Log writes, needed to guarantee transactionality.
2. Dirty pages write backs, needed to bound recovery time, and

allow transactionally-consistent reclamation of log �les (all pages
dirtied by transactions logged in the current log �le need to be
�ushed to disk before the log �le can be recycled).

3. I/Os due to cachemisses, needed to read pages from disk that
were not cached in the bu�er pool, and possibly trigger eviction of
dirty pages (which need to be written back to disk �rst).
�ese operations heavily depend on the size of the bu�er pool: a
smaller bu�er pool leads to more I/Os.

In Section 4.1, we provide a brief overview of the aforemen-
tioned factors. �en, in Section 4.2, we introduce our white-box
model for disk writes, which accounts for both log-related writes as
well as those related to log reclamation. Finally, in Section 4.3, we
present our models for disk reads and page writes caused by cache
misses/evictions.

4.1 Background on Disk I/O in a DBMS
Log writes, due to their nature, can be easily modeled with lin-

ear regression, as they are proportional to the rate of each transac-
tion type in the load (our linear models are discussed in Section 6).
�erefore, in the rest of this section we focus on writes that are due
to dirty page write-backs, or “�ushes”. Flushing happens for two
main reasons: 1) capacitymisses, when a newpage is brought into the
bu�er pool and there are no free bu�ers, forcing an existing record to
be �ushed and 2) log-triggered data �ushes, when the redo log �le(s)
is full and needs to be rotated or recycled. We handle capacity misses
together with reads in Section 4.3, while in this section we focus on
log-triggered data �ushes.

Log-triggered data �ushes exist because the dirty pages corre-
sponding to the recycled log records need to be �ushed to disk be-
fore recycling the log �le. In a typical implementation, multiple log
�les are used in a circular fashion. Before recycling an old log �le,
the DBMS guarantees that all bu�er pool pages dirtied by transac-
tions logged in that �le have been �ushed back to disk. �is means
that the DBMS may temporarily stop serving transactions to �ush
dirty pages (this is needed to guarantee transactionality). Since this
can cause a performance-hiccup for database users, modernDBMSs
try to avoid this visible disruption of performance/service. �is is

achieved by means of a combination of heuristics that strike a bal-
ance between avoiding stalls due to log recycling and amortizing
multiple writes to a page in the bu�er pool before writing it back
to disk, thus limiting the I/O pressure. In MySQL, this process is re-
ferred to as adaptive �ushing of the bu�er pool pages. Modeling the
net e�ect of all these complex heuristics is a challenging task, and is
one of our main contributions in this paper which is described next.

4.2 Disk Write Model
While di�erent DBMSs use di�erent heuristics for maintaining

the balance between eagerly writing pages or lazily �ushing them at
the log rotation time, in the following we provide a simple analysis
based on conservation of �ow that abstracts the internal details and
complicated heuristics of a particular DBMS (MySQL in our case)
while still providing a reasonable prediction of the overall I/O be-
havior. To achieve this goal, we leverage the probability of pages
being dirtied and evicted, as follows.

Probability of a page being dirtied. Let D be the number of pages
in the database. For any given mixture of transactions, say f̃ =
( f1 ,⋯, f l ), we build a probability distribution2 p̃wri te over all the
pages in the database, where every transaction drawn from this mix-
ture writes to the i’th page with probability pwri te , i . In other words,

∑D
i=1 pwri te , i = 1. Here, for simplicity, we assume that a transaction

only accesses one page. (similar analysis can be done when each
transaction accesses multiple pages).
Given p̃wri te , we would like to estimate the expected number of

unique dirty pages a�er executing n transactions, drawn at random
according to their corresponding weight in the mixture f̃ . Here,
we assume that di�erent transactions arrive independently of each
other. Let us denote this value with Tn , which can be written as

Tn =
D

∑
i=1

Tn , i (2)

where Tn , i is the probability of the i’th page being written to, at least
once (i.e. being dirtied), calculated as:

Tn , i = 1 − (1 − pwri te , i)n (3)

where (1 − pwri te , i)n is the probability of the i’th page staying clean
(i.e., never been written to) a�er n transactions.
Next, we need tomodel the log rotation process using these prob-

abilities. Note that, at any point in time, every page falls into exactly
one of these three categories : (C1) where a page is dirty and the �rst
transaction that made it dirty is logged in the old log, (C2) where a
page is dirty and its �rst dirtying transaction is logged in the current
(new) log, and �nally (C3) where a page is still clean (i.e. is identical
to its copy on the disk). Let P1, i , P2, i , and P3, i represent the probabil-
ity of the i’th page belonging to each of these categories, respectively.
Clearly, P1, i + P2, i + P3, i = 1 for i = 1,⋯,D. Let d1,t , d2,t and d3,t rep-
resent the number of pages in categories (C1), (C2) and (C3) at time
t, respectively. Also, let L be the maximum capacity of each log �le,
i.e., each log �le can log up to L transactions on average. Clearly, the
log needs to be rotated (i.e., the old log has to be deleted) at least as
o�en as every L transactions, i.e. when the new log is full. However,
the log rotation can only happen at time t if d1,t = 0, otherwise a sys-
tem crash could lead to data loss in any of the pages in category (C1),
i.e., a loss of durability. Moreover, if a log rotation happens at t, we
will have d2,t+1 = 0, i.e. the new log will be empty at the beginning
of time t + 1.
In the following, we show how P1, i , P2, i , and P3, i can be expressed

2We use the notation X̃ to denote �nite probability distributions,
where Xi denotes the probability of the i’th outcome.



in terms of Tn , i . First, however, we provide the intuition behind our
analysis.

Abstracting themain idea behindMySQL’s adaptive �ushing. �e
main idea behind MySQL’s I/O heuristics, such as adaptive �ushing
(http://bit.ly/bRN04A), is that the �ush rate (�ow of pages
out) should roughly match the rate at which pages are dirtied, such
that at the time a log rotation happens, there will be no dirty pages
waiting to be �ushed. Speci�cally, if the system is running n trans-
actions per second adaptive �ushing chooses a �ush rate of Ft(n),
where:

Ft(n) =
d1,t
lt
n

=
d1,t ⋅ n

lt
(4)

Here, lt denotes the current capacity of the new log (0 < lt ≤ L)

at time t, and thus, the new log is expected to get full in lt
n
seconds

given the current rate, over which d1,t pages need to be �ushed back

to disk. �us, adaptive �ushing attempts to write
d1,t ⋅n

lt
dirty pages

back to disk during each unit of time. Note that in reality MySQL
uses several other heuristics to decide when to �ush a page, but in
Section 8 we show that this simpli�ed model is a good enough pre-
dictor of the average �ush rate.

Estimating �ush rate (Monte-Carlo baseline). Given this basic
model of �ushing, the goal of the rest of this section is to predict
the expected �ush rate F(n) for a given TPS of n, where F(n) =
E[Ft(n)], without directly observing the d1,t and lt values. One ap-
proach to estimate F(n) is to simply perform a MC (Monte-Carlo)
simulation by randomly initializing l0 and d1,0 (to account for bias

caused by di�erent starting states), then for each t, selecting ( D
dt ,0
)

pages (as dirty ones), then selecting Ft(n) out of these d1,t pages to
�ush, and then repeating this process for many values of l0 and d1,0
until we converge to a value for F(n). �isMC simulation, however,
has several drawbacks. First, it provides little insight into the contri-
bution of di�erent characteristics of the workload or di�erent tun-
ing parameters towards the overall �ush-rate (e.g., there is no way to
attribute �ushes to a given transaction type). Secondly, the straight-
forward MC simulation is quite slow—for TPC-C, we found it to be
6 to 10 orders of magnitude slower than the solution that is proposed
in the rest of this section. �is is due to the large number of variables
and the numerous possible initial con�gurations. For instance, the
TPC-C workload with 32 warehouses has about 750, 000 di�erent
pages, and thus, in order to accurately estimate F(n), we need to re-
peat the simulation for a reasonable portion of all the 2750000 possible
sets of dirty pages, as starting states!

Estimating �ush rate (Iterative approach). Instead, we develop a
simple iterative algorithm that converges much more quickly and
provides very accurate predictions as well as insight into how di�er-
ent transactions contribute to the overall I/O. Before presenting the
details of our algorithm, we �rst simplify equation (4). Assuming
that there is no log rotation at t and t + 1, in expectation we have:

d1,t+1 = d1,t − Ft(n)

�us, the number of outstanding dirty pages can only decrease, since
the old log is no longer being appended to. We also have lt+1 = lt −
n, since n log records are written to the new log at each time step.
Substituting these two values into equation (4) for Ft+1(n) we get:

Ft+1(n) =
(d1,t − Ft(n)) ⋅ n

lt − n
=
(d1,t − d1,t ⋅n

lt
) ⋅ n

lt − n
=
d1,t ⋅ n

lt

�us, in the absence of log rotations, Ft+1(n) = Ft(n). By induction:

Ft(n) =
d1,t0 ⋅ n

L
(5)

where t0 is the time step immediately a�er any log rotation (i.e. log
was rotated at t0 − 1) and t is any time before the next log rotation.
In other words, t0 ≤ t < t0 + L

n
. �is holds because lt0 = L, i.e., the

new log is empty right a�er a log rotation.
Equation (5) is more desirable for estimating the expected �ush

rate, i.e. E[Ft(n)], since n and L are time-independent. �us, we
only need to estimate E[d1,t ]. Due to the linearity of expectation,
we have:

E[d1,t ] =
D

∑
j=1

P1, j (6)

Similarly, E[d2,t ] =
D

∑
j=1

P2, j (7)

and E[d3,t ] =
D

∑
j=1

P3, j (8)

�is equation, gives us a direct formula for estimating the average
disk I/O (or �ush rate), if we can accurately estimate P1, i , P2, i , and
P3, i . However, these variables are inter-dependent, since as pages
are dirtied and �ushed to disk, the probabilities change. To han-
dle this, we de�ne three time-series {P1, j ,t}, {P2, j ,t}, and {P3, j ,t},
where Pi , j ,t is the probability of the j’th page belonging to category
Ci (where i = 1, 2, 3) at time t (where t = 0, 1, 2,⋯). �e �nal step
of our modeling is to �nd the relationship between {P1, j ,t}, {P2, j ,t},
and {P3, j ,t}. Here, we omit several derivations (which are presented
in detail in our technical report [15]), and present the �nal result,
showing that for m ≥ 1:

P1, i ,t+m = P1, i ,t(1 −
n

L
)m

P2, i ,t+m = 1 − P1, i ,t+m − P3, i ,t+m

P3, i ,t+m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P3, i ,t ⋅ (1 − n
L
)m + P1, i ,t ⋅ nL ⋅m⋅

(1− n
L
)m

1− n
L

if Tn , i = n
L
,

P3, i ,t ⋅ (1 − Tn , i)m + P1, i ,t ⋅ nL ⋅
(1−Tn , i)

m−(1− n
L
)m

n
L
−Tn , i

if Tn , i ≠ n
L
.

Our algorithm uses these equations by iteratively incrementing t,
until they converge, thus estimating the values of P1, i , P2, i , and P3, i .
Having these values, we can use equation (6) and eventually (5) to
estimate the �ush rate.

4.2.1 Algorithm

Figure 2 shows the pseudo code for estimating the �ush rate. �e
main idea behind this algorithm is to use equations above (line 2.4
to 2.6), to estimate F(n) (line 2.3), and repeat this process until our
estimator for F(n) (i.e., avgF in Figure 2) converges, i.e. it does not
change more than a small value є. �e main di�erence between the
algorithm and the aforementioned equations is that here, for e�-
ciency, we pre-calculate the common expressions that remain con-
stant throughout the iterations (e.g., T ,Tp, cachedCoe f and sum).
In each iteration, the algorithm predicts the �ush rate in two stages.
First, the algorithm choosesm = ⌊L/n⌋− 1 which is the longest time
interval without a log rotation, in order to estimate all the variables
right before the next log rotation using the values of those variables
from the last log rotation (lines 2.4–2.6). �e second step is to ap-
ply the log rotation (lines 2.7–2.9) step, which simply involves swap-
ping the P(1, i) pages dirtied in the previous iteration into the old
log, and discarding the previous P(2, i) old pages. To compute the
actual pages �ushed during each iteration (F), we compute d1 us-
ing P1 (line 2.2) and then compute F from d1 using adaptive �ush-
ing (line 2.3), equation (4), ensuring that this value never exceeds

http://bit.ly/bRN04A


Algorithm I/O-predictor( f̃ , n)

1: avgF ← inf , iter ← 0, F ← 0,
P1, i ← 0, P2, i ← 0, P3, i ← 1.

period = ⌊ L
n
⌋ time period between subsequent log rotations

m = period − 1 longest interval without a log rotation
For i = 1,⋯,D:
T(i) = 1 − (1 − pwri te , i)

n

Tp(i) = (1 − T(i))m ,
cachedCoe f (i) = (1 − n/L)m ,
If T(i) = n

L
,

sum(i) = m ∗ Tp(i)/(1 − T(i)),
Else,

sum(i) =
(1−T(i))m−(1− n

L
)m

n
L
−T(i)

;

2: While ∣avgF − F∣ > є,
2.1: avgF = (iter ∗ avgF + F)/(iter + 1),
2.2: d1 = ∑D

i=1 P1, i ,

2.3: F = min( d1
per iod

,MaxFlushRate),

For the time step right before the log rotation, we have:
2.4: P(3, i) = P(3, i) ∗ Tp(i) + (n/L) ∗ P(1, i) ∗ sum,
2.5: P(1, i) = P(1, i) ∗ cachedCoe f ,
2.6: P(2, i) = 1 − P(1, i) − P(3, i),

Now �ush the rest of the old log and rotate the logs
2.7: P(3, i) = P(3, i) + P(1, i),
2.8: P(1, i) = P(2, i),
2.9: P(2, i) = 0

Return avgF

Figure 2: Expected I/O (�ush rate) prediction algorithm (without
page clustering).

MaxFlushRate, themaximumnumber of physical pages that a par-
ticular machine can perform.

Optimization, clustering similar pages: One of the major sources
of time and space complexity in the pseudo code of Figure 2 is the
total number of pages, i.e. D. However, a�er careful examination, it
is apparent that one can cluster the pages based on the pwri te , i val-
ues. �us, in the optimized version of this algorithm, we �rst cluster
the D into K(D, є) partitions (non-overlapping clusters) such that
the i’th and j’th pages fall within the same partition if and only if
∣pwri te , i − pwri te , j ∣ ≤ є, where є is a small enough constant. �is is
equivalent to running a K-means clustering over the pwri te , i values
for the smallest K whose inter-cluster distance is no larger than є.
Choosing a proper value for є is fairly straightforward, as one can
use the algorithm’s equations to �nd the largest value of є for which
the �nal error of the algorithm is less than user’s tolerance thresh-
old (We omit the math due to lack of space. However, note that our
algorithm still works even without using this optimization).

�is simple optimization further reduces the space and time com-
plexity. For instance in TPC-C with 32 warehouses, we have D ≈
750, 000 but there are only 8 unique values in the pwri te , i ’s, i.e.
KTPC−C(D, 0) = 8.
Once the pages are clustered based on their pwri te , i values, the

algorithm in Figure 2 remains the same except:
1. �e algorithm takes an extra input parameter, i.e. є.
2. Before the �rst line, run the clustering algorithm with є, �nd

K(D, є). �en, replace D with K(D, є), and for i = 1,⋯,K(D, є)
use the mean of the i’th cluster for pwri te , i .

3. Replace line 2.2 in Figure 2 with a weighted sum, namely d1 =
∑D

i=1 P1, i ⋅ K i where K i is the number of pages in the i’th cluster.

4.3 Disk Reads and RAM Provisioning
As noted above, RAM and disk I/O are tightly coupled, as more

RAM can reduce the number of capacity misses in the bu�er pool,
reducing the number of page reads anddirty pagewrites. Simply cre-
ating a bu�er pool that is as large as possible, however, doesn’t guar-
antee any particular level of capacity-relatedmisses, so some model

is needed to predict the rate at which capacity misses will occur for
a given bu�er pool size, transaction mixture, and per-transaction-
type TPS target. �is will then allow us to predict the maximum
TPS that can be sustained given the available RAM and disk band-
width, and also the measure the contribution of any one transaction
to the overall load of the system.
To do this we built a Monte-Carlo simulation of the bu�er pool.

To estimate the miss rate for a database with N pages of RAM, we
allocate an N element list bp. Using the page access distributions for
each transaction type (derived as described in Sec. 3.3), we derive a
combined access distribution that represents the probability of each of
the D pages in the database being touched by the input mixture. We
then simulate accesses to theseD pages of the database by randomly
selecting pages according to this combined distribution. When a
page is accessed, it is added to the head of bp if it is not already
present, other wise it is moved to the head of the list. When a page
is added a counter Cread of the number of misses is incremented. If
the access is a write, a bit on the page is set to mark it as dirty. If bp
already containsN elements, the last element (tail) of bp is removed,
and if the dirty bit is set, a counter Cwri te of the number of �ushes is
incremented. �is simulates the behavior of an LRU cache eviction
policy. We can then compute the number of page reads and �ushes
per second by dividing Cread and Cwri te by the TPS.
We further re�ne our simulation model to use LRU2 (which is

used by MySQL), where when a page is �rst accessed it is added to
somewhere in themiddle of the list, and thenmoved to the head on a
subsequent access. �is prevents sequential scan operations of large
tables from evicting all of the pages in the bu�er pool. In Section 8.4
we show that this simple approach is able to estimate the number of
bu�er pool misses for a given mixture and RAM size.
In summary, combining our cache and log rotation models, our

I/O model predicts that if we are running n TPS for a time period t,
we will read Cread ⋅ t ⋅n data pages and write backCwri te ⋅ t ⋅n+Ft (n)
data pages, in addition to any sequential log I/O.

5. LOCK CONTENTION MODEL
In this section we develop a model of two-phase locking (2PL)

that, given a mixture of concurrent transaction, allows us to predict
the expected delay that a transaction will incur. �e non-linearity of
lock-contentionmakes this a challenging problem.
Ourmodel for lockwaits is based on an adaptation of�omasian’s

model of two-phase locking (2PL) [21] (there have been a number of
other lockingmodels, as described in Sec. 9, but�omasian’s appears
to be the most realistic).
In order to make�omasian’s model work for real workloads, we

made several extensions and modi�cations to it. We �rst provide
a high-level description of �omasian’s approach and then brie�y
describe our own modi�cations to the original model.

5.1 A Summary of Thomasian’s 2PL Analysis
Input parameters. �omasian’s model assumes that the incom-

ing transactions belong to a �xed number of transaction classes,
C1,⋯,C J , and the database consists of a �xed number of non-
overlapping regions (e.g., rows, tables, etc), D1 ,⋯,DI . All transac-
tions in a class have the same access pattern to the database, consist-
ing of a probability of accessing di�erent regions. �omasian’smodel
also assumes that all transactions of class C j always access the same
(�xed) number of locks, say K j , and therefore consist of K j + 1 steps:
an initialization step followed by K j steps each preceded by a lock
request. �e processing times of transaction steps are assumed to
be exponentially distributed and the mean processing times for the
n’th step of a transaction of C j is denoted by S j ,n . Transactions in



C j access objects in the i’th region in their n’th step with probability

g j ,n , i , and hence∑I
i=1 g j ,n , i = 1.

General Idea. Here we provide a high level overview of
�omasian’s work; see [21] for details. �e approach assumes a non-
homogeneousmodel where di�erent transaction classes have di�er-
ent access patterns to the database regions. �e approximate analysis
is based on mean values of parameters to derive expressions for the
probability of lock con�ict (usually leading to transaction blocking)
and the mean blocking time. �e latter requires estimating the dis-
tribution of the e�ective wait-trees encountered by blocked transac-
tions and the mean waiting time associated with di�erent blocking
levels. �is is done is an iterative manner, as follows.

Let U j ,n be the mean delay incurred by transaction from C j due
to encountering a lock con�ict at its n’th step. At each step, U j ,n is
estimated based on (i) the probability of a con�ict per transaction
type and per each database region, (ii) the mean number of in-�ight
transactions that access the same region, and (iii) their currentmean
latencies (i.e., sum of their S j ,n andU j ,n values). �is is done by cal-
culating themean depth of the wait-tree for each con�ict. OnceU j ,n

values are updated, new estimates for (i), (ii) and (iii) are calculated,
because an increase in U j ,n values will increase the aforementioned
parameters as well. �is iterative process continues until the esti-
mates converge. �e �nal lock delay for transactions of class j is

∑i∈1.. .n U j , i .

5.2 Our Extensions to the Original Model
Despite several advantages over other theoretical work on 2PL

modeling, some of the assumptions in �omasian’s original pro-
posal [21] limit its applicability to real-life workloads and database
systems, which we have addressed. �emain di�erence between his
model and our approach is that rather than assuming a particular
set of transaction classes and database regions and distribution of
page accesses, we learn these values from our test data. Moreover,
instead of assuming a �xed processing time, we update transaction
times during the analysis.

1. To decide on the database regions, we use the access distri-
bution derived from the log (see Sec 3.2) and the same є-page-
clustering technique as in Section 4.2.1 to de�ne each region as a
cluster of pages in the database where each page is equally likely to
be accessed.

2. To estimate g j ,n , i values, we average the numbers extracted in
the summaries of transactions of the same type (See Sec 3.2).

3. Measuring S j ,n values is not as easy as computing regions and g
values. �e S j ,n mean values are not constant and change depending
on the number of active in-�ight transactions. We address this prob-
lem by performing a linear regression (LR) to estimate S j ,n ,m which
is the value of S j ,n with m outstanding transactions. Our regression
model is built using the transaction latencies of di�erent transaction
classes recorded in our log �les.

4. �emodel also assumes “in�nite resources”, such that once the
S j ,n values are provided in the input, they do not change based on
the number of active transactions in the system, as if each transac-
tion is executing on its virtual processor with a processing rate in-
dependent of the number of active transactions in the system. We
dynamically re-adjust these values at each iteration of the algorithm
as follows. Based on Little’s law from queuing theory we know that
the average number of in-�ight transactions at any point in time is
M = R ∗ T where R is the average latency of a transaction and T is
the system’s throughput. Since our goal is to estimate the expected
value of the lock waits in a steady state, without loss of generality,
we can assume that T remains constant. At each iteration of the al-
gorithm our estimation of R and M are re�ned. �erefore, at each
iteration, instead of the original S j ,n values, we use the adjusted val-
ues S j ,n ∗ c/M where c is the number of physical cores on the target

machine. Although this linear approximation is not entirely accu-
rate, it reasonably compensates for the decoupling assumption of the
original model, as validated in our experiments.
5. �e originalmodel assumes that all the locks are exclusive.�is

is not true as in most workloads a considerable portion of the locks
are read-only (i.e., shared). We solve this problem by using a �eo-
rem from [20] stating that a database region with cardinality D i in
which locks are requested uniformly, in exclusive-mode with prob-
ability b and inclusive-mode with probability 1−b, is approximately
equivalent to a region with cardinality D′i in which all the locks are
uniformly requested in exclusive-mode, where

D
′
i =

D i

1 − (1 − b)2

�us, we adjust the original region cardinalities to compensate for
the lack of inclusive locks in �omasian’s analysis.
6. �e original model assumes that the transactions in each class

always request the same number of locks, i.e. K j is �xed for C j. �is
assumption is again un-realistic. For instance, the ‘delivery’ transac-
tion in TPC-C can request anywhere from 10 to 140 locks. �erefore,
in our implementation we �rst cluster the transactions into di�er-
ent types, and then further re-partition the transactions of the same
type into several transaction classes based on the number of locks
that they acquire. �is requires that we re-adjust the original mix-
ture, i.e., substitute the f j ’s with new probabilities for each class. We
obtain these probabilities using the normalized frequencies in the
training data per each transaction type. We also ignore very rare
transaction classes (i.e., when f j < є).
�e accuracy of this improved model is evaluated in Section 8.

6. BLACK-BOX MODELS
In Sections 4 and 5, we introduced our white-box models (for

RAM, disk I/O and lock contention)which are somewhat speci�c to
MySQL, but as we will show in our experiments, enable us to make
accurate predictions, well outside of the range of our training data.
In this section, we present several choices of black-box models us-
ing o�-the-shelf machine learning techniques for regression, which
makeminimal assumptions about the underlying system, andhence,
are less speci�c toMySQL. In Section 8, we study the accuracy trade-
o� of these two types of models under di�erent scenarios. Below,
we divide the resources into linear and non-linear and discuss our
models separately.

Linear Resources: Out of the resources that play a major role in the
performance of a database, the following ones tend to grow gener-
ally linearly with the counts of each transaction type: CPU, network
utilization and the number of log writes.
For example, for CPU, if a given transaction requires a certain

number of CPU cycles to �nish, it is likely that its execution involves
almost the same instructions, regardless of others transactions that
are running concurrently. �us, for a given mixture ( f1 ,⋯, fJ ), and
a given TPS T, the CPU usage can be approximated as:

CPU = a0 + a1 ⋅ f1 ⋅ T +⋯+ aJ ⋅ fJ ⋅ T

where a i coe�cients can be learned from training data (e.g. bymin-
imizing squared error). Network I/O can be modeled similarly, as
the number of messages sent for a transaction does not depend sig-
ni�cantly on the concurrent transactions with which it is executing.
Finally, the number of log writes and the number of logical records
updated per second are also linearly related to the number of trans-
actions of each type that are executed per second. Hence, these met-
rics can be predicted accurately across a wide range of mixtures and
TPSs given a modest amount of training data.

Non-linear Resources:Wehave experimentedwithmany statistical



regression models to predict the lock contention and disk I/O, in-
cluding (but not limited to) all regression algorithms that come with
Weka (www.cs.waikato.ac.nz/ml/weka/) library. How-
ever, in this paper, we only mention a few models that either yield
better accuracy or represent major approaches to regression.

Polynomial �tting. By specifying the degree of a polynomial,
one can use the training data to learn the coe�cients of the poly-
nomial that minimize the squared error of the �t. In particular,
theoretically it has been shown that lock wait times, in a perfect
2PL scheme, asymptotically converge to a quadratic function of the
multi-programming level [11]. �us, a reasonable block-box model
of lock wait times can be:

LockWaitTime = a0 +∑
i

a i ⋅ fi ⋅ T +∑
i , j

a i , j ⋅ fi ⋅ f j

where a i and a i , j coe�cients need to be learned.
Kernel Canonical Correlation Analysis (KCCA). KCCA [4] is a

powerful kernel-based technique that considers a pair of multi-
variate datasets and �nds dimensions along which the two datasets
aremaximally correlated, whereby kernel functions are used asmet-
rics of similarity. In our context, transaction counts are the �rst
dataset, while performancemetrics (lock, or I/O) constitute the sec-
ond. SinceKCCAhas been successfully used in performance predic-
tion for analytical workloads [10], we wanted to see if it could also
be applied to transactional workloads.

Decision Trees. Decision trees are a well-known technique for
both clustering and regression. For regression, the target value of
a given test data is predicted as the average target value of the cor-
responding leaf node in the tree. We used Matlab’s implementation
of decision tree regression with default parameters, speci�cally with
leaf-merging, no pruning and minimum of 1 item for forming a leaf
node (all for maximizing the extrapolation power).

Neural Networks. Feed forward neural networks are another im-
portant class of regression techniques, used to �t an input-output
relationship. Again, we used Matlab’s implementation (called �tnet)
with 10 hidden layers and Levenberg-Marquardt back-propagation
algorithm as the training procedure.

7. THROUGHPUT PREDICTION
Now that we have described our white- and black-boxmodels for

individual resources, we brie�y describe how we predict the over-
all throughput of the system and identify the bottleneck resource.
Each model produces an estimate of resource utilization at a given
TPS rate. To determine maximum system throughput, we need to
identify the TPS at which each model predicts the resource will be
saturated (e.g., the point where the disk I/O model predicts the disk
will be saturated). For disk and CPU, we determined per-resource
saturation points using the methodology for measuring the maxi-
mum resource capacity of a machine described in Curino et al. [5].
For disk, the maximum number of page �ushes we could generate
on our test machine was about 600 pages per second; for CPU, the
maximumCPU loadwe could generate was about 90.We use these
to predict TPS maximums Tdi sk and Tc pu , based on the maximum
TPS at which our diskmodel predicts an I/O rate of 600 page �ushes
per second, or our CPU model predicts a 90 usage.

For lock contention, our model produces an estimate of the la-
tency for each transaction class, at a speci�ed TPS. Using Little’s
Law (which says that the number of in-�ight transactions is equal
to the arrival rate, or TPS, times the mean transaction latency), we
can compute the number of in-�ight transactions. Since almost
all production databases or websites use admission control to limit
the number of outstanding clients, the maximum TPS Tl ock we can
achieve (based on our lock contention model) is the one at which
this client limit is reached. Alternatively, users can specify a max-

imum per-transaction latency L, which we can use to select a TPS
that keeps the latency below L. To estimate the overall maximum
throughput of the system, we compute T = min (Tdi sk ,Tc pu ,Tl ock ).
�e bottleneck is the resource that dictates this minimum through-
put.

8. EXPERIMENTS & EVALUATION
�e goal of our experiments is to understand the accuracy of our

previously presented white- and black-box models at predicting re-
source utilization across a range of TPS and mixtures on real work-
loads, and to look at the end-to-end performance of our models on
several “what if ” and “attribution” scenarios, including:
● Finding bottlenecks: we show that we can identify the maxi-

mum throughput and the bottleneck resource for a given workload,
TPS, and mixture, and that our bottleneck estimates are accurate
enough to allow low-overhead provisioning of a system.
● Attribution: we show that we can predict the contribution of

a given transaction type to the overall resource consumption of a
system, given a workload, TPS, and mixture.
Overall, our results are promising, showing that we can o�en

achieve low errors on individual models – e.g., within 20 relative
error for CPU, 20 error for Disk writes and 0.5GB for RAM – and
that we can identify bottleneck resources accurately in almost all
cases and predict maximum throughput with a mean error of un-
der 25 across a range of benchmarks.
Experimental Setup. Our experimental testbed is composed of

two identical Dell PowerEdge R710 servers (one to generate load and
the other one dedicated to MySQL) interconnected via a single gi-
gabit Ethernet switch. Each server has two quad core Intel Xeon
E5530 2.4 GHz processors, 24GB of RAM, and 6 disks (2TB 7200
RPM SAS) con�gured as a single RAID 5 volume. We used MySQL
5.5.7 running on Ubuntu 10.10 with kernel 2.6.35.
Datasets. We produced several datasets with di�erent mix-

tures and di�erent TPS, using both TPC-C benchmark and real-life
Wikipedia transactions, all replayed using [1]. For each of these data
sets we divided the workload into transaction types using our trans-
action clustering technique (wemeasure the accuracy of this cluster-
ing versus manual labeling in Section 8.3) and collected transaction
summaries and access distributions as described in Section 3. Our
main dataset consists of runs of TPC-C and Wikipedia at the fol-
lowing TPSs: 100, 200, 300, 400, 500, 600, 700, 800, 900. To further
challenge our system we generated workloads sweeping very di�er-
ent mixtures of transaction types. For instance, in TPC-C, we grad-
ually increased the fraction of the ‘New Order’ transactions from
0 to 88, while decreasing the fraction of ‘Payment’ transactions
from 88 to 0, while keeping ‘Order Status’, ‘Delivery’, and ‘Stock
Level’ at their original rate, namely 4 each. �is is because most of
the updates come from the �rst two types, allowing for better eval-
uation of our performance models. For Wikipedia, as with TPC-C,
we varied the mixture of the two most frequent transactions, while
keeping the other three at a �xed frequency.
Training Time. Across all of our experiments (some containing

30, 000 training samples), training time of our white-boxmodels for
RAM, disk I/O and lock contention were all below 15 minutes. �e
black-box models exhibited a wider range of training times (from
seconds for linear regression and curve �tting) to a few minutes for
others. KCCA did not easily scale to large datasets (over 100 sam-
ples) and hence, we �rst clustered the training samples into at most
100 clusters before invoking KCCA. Since all our models are meant
to be trained o�ine, we believe that these times are reasonable.

8.1 Verifying Throughput Prediction
In this section, we show that by using our resource models we
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can accurately predict the saturation point of each resource, which
in turn can be used to predict the bottleneck resource and the overall
maximum throughput, as described in Sec 7.

We compared our combined models (“Our combined WB
model”), which consist of our white-box models for lock and disk
I/O plus linear regression (LR) for CPU to simple linear regression
on the CPU vs transaction counts (“LR for CPU”), and a simple lin-
ear regression on the number of page �ushes vs transaction counts
(“LR for #PF”). We chose linear regression since it seems the most
natural choice for DBA, e.g. when the load is twice, expect twice the
resources. Also, linear regression has been proposed by the previ-
ous work [2] as a more e�ective model for predicting the disk I/O
compared to other types of regression such as Gaussian processes.
We also present results of decision tree regression for predicting the
maximum throughput via projecting the disk’s �ush rate (“Dec. Tree
for #PF”). We omit other black-box models, as they all performed
very poorly at predicting maximum throughput.

To compute the actual maximum throughput (i.e., “ground
truth”), we warmed the bu�er pool and then gradually increased
the o�ered TPS until the performance leveled o� at some maximum
rate. We randomly generated 20 mixtures of TPC-C with di�erent
ratios of transaction types. We ran these mixtures on MySQL at a
low to moderate throughput and collected test data which we used
to train both our models as well the two LRmodels and the decision
tree regressionmodel. We used eachmodel to predict themaximum
expected throughput, and compared to ground truth.

�e results of our experiments are shown in Figure 3, showing
the average relative errors of each model at estimating the maxi-
mum throughput on di�erent subsets of the mixtures. Speci�cally,
we grouped the 20 mixtures into three sets, one for I/O bound mix-
tures, one for lock-bound mixtures, and one for CPU-bound mix-
tures, and computed the average performance of eachmodel on each
subset (only a few of our mixtures were I/O bound, and approx-
imately equal numbers were CPU and lock bound). Our model’s
average error ranges between 0-25, with its worst error on lock-
bound mixtures. Our I/O model produces error that is less than 1
on average (mostly because our models for sequential logging and
log rotation are quite accurate, as we show later in this section). Note
that the LR-based CPUmodel performsmuch better on CPUbound
workloads, and that the LR-based page �ush model does better on
the I/O boundworkloads, but in all cases ourmodel does better. De-
cision tree regression performed poorly across di�erent workloads.
�is is expected, as decision trees are not capable of much extrapola-
tion beyond the range of their training data, which is a requirement
for accurate estimation of maximum throughput.
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Figure 3: Max throughput prediction.
We also looked at the ability of our system to predict the bottle-

neck resource. On 19 out of 20 test data sets, we correctly predicted
the true bottleneck. In the one case where we mispredicted, our
model said the workload would be CPU bound, with a maximum
throughput of 1578 TPS, while in reality the system was lock-bound

and was able to run 1740 TPS (our locking model estimated the sys-
tem would be able to run 1759 TPS). Hence, we underestimated the
actual maximum TPS of the system by about 10.
Although this is not a comprehensive study of system provision-

ing, the results of these experiments can also be used to look at our
e�ectiveness at estimating whether a system is provisioned to han-
dle a certain level of peak load. On these 20 data sets, our worst max
throughput error is an overestimate of 44, with mean error of 12.
In comparison, the worst case performance of the regression based
models is 180 (49 mean) for the CPU model and 762 (200
mean) for the page �ush model. Analyzing the detailed under and
over-estimation of the maximum throughout by the other models,
this results suggests that an administrator trying to estimate the re-
source requirements of a database system by linearly extrapolating
CPU or I/O will over-provision the true resource needs of the sys-
tem anywhere between 9× to two orders of magnitude more than
if he used our models for provisioning. Similarly, he might under-
provision the system between 8× to 10× using these models than if
he used our combined models.

8.2 Attribution and Multi-tenancy Scenarios
In addition to estimating maximum throughput, our models al-

low us to answer questions about howmuch a given transaction type
or tenant (e.g. in a database-as-a-service [16]) contributes to the
overall load of a system. �is is important for an administrator, e.g.
to understand the impact on performance ofmigrating a database to
a server. In this section, we present a few preliminary experiments
showing the e�ectiveness of our models in two such scenarios.
In the �rst scenario, we consider two TPC-C workloads, W1 and

W2, each running a single transaction together on a single ma-
chine.W1 runs the “neworder” transaction at 275 TPS andW2 runs
the “stock level” transaction at 225 TPS. Together, they result in 2.3
MB/sec of writes. Suppose the administrator wants to estimate how
much the disk usage will be reduced ifW1 is moved to another ma-
chine. We predict W1 alone will write 1.7 MB/sec, and in reality it
writes 1.5 MB/sec, representing a 13.3 overestimation on our part.
Note that a simple linear estimate would be unlikely to accurately
answer such types of question, because as shown in Section 8.4 disk
I/Os are highly nonlinear.
In the second scenario, we consider a full TPC-C workload run-

ning concurrentlywith a fullWikipedia workload, together on a sin-
gle machine. �is is meant to be representative of a multi-tenant
database-as-a-service. We run Wikipedia at 200 TPS, and TPC-C
at 100 TPS, each in isolation, and then predict the combined load
when they are run together on the same machine. In this case, we
are able to predict the CPU utilization of the combined workload to
within 13 relative error (our pred = 4.6 CPU, actual = 4.0), the
disk write throughput to within 3 (our pred = 2.97 MB/s, actual =
3.01 MB/s), and the combined read throughput to within 97 (our
pred = 330 KB/s, actual = 160 KB/sec). Although the relative error
of our cache model is high (for reasons explained in Section 8.4 be-
low), the absolute error is quite small; our later experiments show
that our read model does quite well when the bu�er pool is more
heavily utilized.
�ese results show that our models are useful in several practical

scenarios of great importance to database administrators. We now
turn to detailed evaluations of our individual models.

8.3 Verifying Transaction Type Clustering
To test our transaction clustering, we ran our clustering al-

gorithm described in Section 3.2 on a small log of SQL queries
from Wikipedia and TPC-C. For TPC-C, we used the log of
7, 361 transactions and for each we estimated the number of rows



read and written (i.e., sum of rows updated, inserted or deleted)
from each of the tables. Since the TPC-C benchmark has 9 ta-
bles, our dataset consisted of 18 numerical features. Applying
Weka’s (www.cs.waikato.ac.nz/ml/weka/) implementa-
tion of the DBSCAN clustering algorithm (with density parameters
of є = 0.9 and minimum number of points 6) on this dataset, we
obtained 5 clusters, precisely matching TPC-C transaction types.

For Wikipedia we used a log of 1, 000 transactions and gener-
ated features corresponding to Wikipedia’s 12 tables. We achieved
the same accuracy using the same parameters to DBSCAN. �e
extracted clusters again matched the semantic notion of di�erent
transactions in Wikipedia workload, namely ‘Add to Watch List’
(type 1), ‘Remove from Watch List’ (type 2), ‘Update Page’ (type 3),
‘Get Page Anonymous’ (type 4), and �nally ‘Get Page Authenticated’
(type 5). In both cases, we tried a range of parameters to DBSCAN
and found that it was relatively insensitive to their values.

8.4 Verifying Resource Models
Wenow look at the performance of our individual resource mod-

els and their ability to predict resource utilization over a range of
inputs. As with maximum throughput, we compared to two base-
lines: 1) linear regression and 2) linear regression with clustering.
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Figure 5: Cache-miss rate for memory provisioning and physical
read prediction using the original TPC-C benchmark.

DiskWrite Prediction. We used the datasets described at the be-
ginning of Sec 8 to compare the accuracy of our model for predict-
ing the data �ush rate (described in Section 4.1). Figure 6 shows the
results. Here, we used a limited range of training data from TPC-
C where the average TPS was 900 and the fraction of ‘New Order’
transactions was less than 0.2 and predicted the number of page
�ushes on 9 di�erent mixtures. �ese mixtures had an average TPS
of 100 and varied the fraction of ‘New Order’ transactions roughly
from 0 to 90 (‘Payment’ transactions were added to compensate,
falling from roughly 90 to 0 of the load). In this experiment, the
mean relative error of our white-box page �ush model over the en-
tire range was only 16, while the errors for other black-box mod-
els ranged from 180 for LR without our transaction clustering to
3346 for decision tree regression. �is dramatic di�erence con-
�rms our theory that the mixture and TPS of training and test data
are di�erent (e.g. in what-if scenarios), our white-box models are
signi�cantly superior. LR-based methods are more accurate com-
pared to others, due to their extrapolation capabilities, whichmeth-
ods like decision trees do not have.

We repeated similar experiments over many other ranges of data,
both for TPC-C and Wikipedia. Due to lack of space, we have only
summarized a few of them in Figure 4. In Figure 4, we use the
notation ‘D n1 − n2 ’ to denote the workload D (either TPC-C or
Wikipedia), with a narrow range of di�erent mixtures in the train-
ing set at the average TPS of n1 , and a complete range of di�erent
mixtures in the test data with an average TPS of n2 . In this �gure,
for each workload, we show di�erent scenarios. In the le� sub�gure,
the training TPS is close to the testing TPS (e.g.,wiki 460−450 and

t pcc 500 − 400): here the gap between the accuracy of our white-
box model and that of the black-box models is considerably smaller
(especially for LR with classi�cation and decision trees), con�rming
our theory that we can rely on these black-model models when we
have observed similar training data to the test range that we want
to predict. In the right sub�gure, the training TPS is either much
lower than the test TPS or vise versa (e.g., wiki 100 − 900 and
wiki 900−100). In these cases, the gap between our white and black
boxmodels widens dramatically: DBSeer out performs other meth-
ods by at least a factor of 4 in all cases, and up to 100× ormore versus
Neural Nets on Wikipedia. �is gap is larger for Wikipedia mainly
due to its higher degree of non-linearity in load (e.g. articles ac-
cessed/ edited almost follow a power law) compared to TPC-C.�is
experiment con�rms our theory that white-box models can much
more accurately model disk I/O when test data is far from training
data.
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Figure 6: Predicting average page �ush rate.

Disk Read/Memory Requirement Prediction. To validate our
model of cache misses (which is used to relate bu�er pool size to
I/O), we used the original TPC-C mixture running at random TPS
rates, and ran experiments for awide range of bu�er pool sizes. Dur-
ing each experiment, a�er the warm-up period of the database, we
recorded the average cache-miss rate as well as the average number
of physical reads per second and compared these actual numbers to
the numbers predicted by ourmodel. Figure 5 summarizes the result
of this experiment, wherewe report the actual cachemiss rate as well
as that predicted by our model. As shown in this picture, our model
slightly overestimates the cachemiss rate. �e error inmemory pro-
visioning for any cache miss rate (or equivalently, any number of
physical reads) is the horizontal distance between the actual curve
and our prediction curve, as illustrated with red horizontal lines in
Figure 5. For instance, in order to ensure a cache miss rate of less or
equal to 0.07, we need 224MB of bu�er pool while our model’s sug-
gestion for the bu�er pool size is 442MB, i.e. an over-provisioning.
Our model follows the actual curvemore closely at higher rates (i.e.,
above 0.06) and also at lower cache-miss rates (i.e., closer to zero)
which is the ideal case where enough RAM could be allocated to
dramatically reduce the amount of physical reads (and is where one
would expect most OLTP databases to operate). Finally, the num-
bers with arrows show average disk reads in MB per second for each
bu�er pool size, showing a prediction of physical readswith less than
4.6MB average error.
PredictingCPUand other LinearMetrics. Asmentioned in Sec-

tion 6, CPU can be easily predicted using linear regression over the
number of transactions from each type. We have validated the lin-
earity of CPUacrossmany di�erentmixtures andTPS rates, both for
TPC-C andWikipedia. Here, due to space constraints, we only sum-
marize a few experiments which are representative of the accuracy
of linear regression for CPU prediction.
FixedMixtures. In Figure 7, we show the results of an experiments

where we train on a Wikipedia workload of 1K articles, with a TPS

www.cs.waikato.ac.nz/ml/weka/
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Figure 7: Predicting CPU,
when varying the TPS for the
Wikipedia database.
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Figure 8: Predicting CPU, when varying both mix-
ture and TPS.
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Figure 9: Predicting total lock wait times.

of 100 to 300, and then test it by predicting the CPU when increas-
ing the TPS from 100 to 800. Our mean absolute error was 0.5 (in
absolute CPUpercentage) andmean relative error was 10.5. A sim-
ilar experiment for Wikipedia with 100K articles (training on a TPS
between 100 to 300 and testing for CPU ranging between 400 to
800) leads to a mean absolute error of 1.5 and a mean relative error
of 14.5. For each TPS, we have shown the average CPU usage for
more readability.

Varying both Mixture and TPS. In Figure 8, we report a set of ex-
periments where we train on a very limited range of di�erent mix-
tures at around TPS=300 (shown in green) and predict the average
CPU usage through a much wider range of di�erent mixtures and
at a di�erent TPS, namely at TPS=900. �e mean absolute error
(MAE) across these di�erent mixtures is 6.3 andmean relative error
(MRE) is 16.7. In the same �gure, we have also reported a simi-
lar set of experiments but using a training data at TPS=600. In this
case, the error is lower (MAE=1.5 and MRE=5.8). �is is because
the training data at 600 TPS is more similar to the test data at 900
TPS, compared to a training data of 300 TPS.

We have run similar experiments validating the linearity of net-
work I/O for OLTP workloads, the number of logical reads and the
amount of log I/O. Due to space limitations, we omit these results.

Verifying the Contention Model. �e e�ectiveness of our lock
contentionmodel was demonstrated in Section 8.1 wherewe showed
that it could predict the maximum throughput of lock-boundwork-
loads, where the CPU and I/O were far from saturation However,
we have also measured the accuracy of our lock model’s prediction
in isolation. We ran several experiments with TPC-C in which we
increased the TPS by increasing the number of ‘New Order’ trans-
actions (which typically cause a lot of contention due to their write-
intensive nature). Figure 9 reports the error of our white-boxmodel
as well as a few other black-box models, where we use the same
‘D n1 − n2 ’ notation as above. �e same trend can be seen here
where the accuracy of the white-box dominates black-box models
as the ranges of training and testing data widen. Interestingly, when
the training data is similar enough to the testing data, the LR and
quadratic curves are more accurate than our white-box model. �is
is expected, as the white-box model makes a number of simplify-

ing assumptions, and therefore only learns a few parameters from
the data. �is is why the accuracy of the white-box model does
not improve, even when presented with more similar training data.
�e overall conclusion here is the same as before, however: when
answering what-if questions or predicting performance regimes far
from previously seen settings, use the white-box model. In other
cases, quadratic �tting or LR seem are viable choices.

8.5 Generality to Other DBMSs
�e focus of our paper is to show that, for a chosenDBMS, we can

build very accuratemodels—hence our focus on MySQL. However,
an interesting question is if and to what degree our MySQL-speci�c
models apply to other DBMSs. In this section, we present some pre-
liminary results on evaluating our models for predicting disk writes
on another popular open-source DBMS: PostgreSQL. We apply the
samemodels that we introduced in this paper (which targetMySQL)
to training and testing data collected from a PostgreSQL installation
(on similar hardware). �e white-box model of disk writes that we
introduced in Section 4.2 was based on some general characteris-
tics of traditional DBMSs as well as the speci�c �ushing policy of
MySQL. �us, by using the same model for PostgreSQL we study
the e�ect of di�erent �ushing policies in these two DBMSs on the
accuracy of our predictions for disk writes in PostgreSQL.
We ran several experiments with the TPC-C workload, where we

varied both the TPS range and the transaction mixtures. We col-
lected similar combinations of training and testing data for Post-
greSQL to those used for the MySQL experiment of Figure 6. In
this experiment, our predictions for disk �ush rate in Postures had
an average relative error of 19.6. Recall, from Section 8.4, that our
error in predicting the same metric for MySQL in a similar setting
(i.e., Figure 6) was 16. �us, the error of our �ush rate predictions
for Postures are comparable to that of our predictions for MySQL.
Although our experiments for PostgreSQL are not as comprehen-

sive as those for MySQL, given that our models were originally de-
signed for MySQL, even these preliminary results are quite promis-
ing, suggesting that with modest amount of additional modeling,
accurate results might be achievable for other DBMSs as well.



9. RELATED WORK
Lock Contention. �ere have been numerous theoretical at-

tempts at analyzing the performance of di�erent variations of 2-
phase locking. �e pioneering paper by�omasian [21] is the theo-
retical basis of our lock contention model which we have modi�ed
in a number of ways as described in Section 5.

Most of this literature uses either analytical modeling or random
number-driven simulations [17] (see [22] for a survey). Because of
the di�culty of collecting suitable measurements, there have been
only a few studies which use trace-driven simulations. Also, to
our knowledge no other work besides ours has implemented or
evaluated an analytical model for predicting a real-world, deployed
database system. Perhaps the closest to ours is an early work [19]
where they have examined the degree to which three real workloads
in IBM DB2 conformed to the assumptions commonly made in the
literature, i.e. without predicting the contention degree of those
workloads. In [7] the authors validated their model using an ab-
straction of TPC-C but on their own database simulator.

Performance and IO Prediction. �ere has been prior research
on performance modeling for a database system, but mostly for
OLAP workloads [12, 3, 8] and their optimal scheduling [14]. OLAP
workloads are fundamentally di�erent than OLTP. In OLAP, queries
are mostly long-running and read-only with signi�cantly lower de-
grees of concurrency. �erefore, the lock contention is typically not
a problem in OLAP, e.g., the maximum concurrency level in [8] is
5, compared to thousands in an OLTP workload. Also, performance
requirements in OLTP tend to be more stringent (e.g., a few mil-
liseconds). Similarly, the authors in [10] only address scenarios with
no concurrency, i.e. queries running one at a time. To the best of
our knowledge, no prior work has tackled this problem for highly
concurrent OLTP databases. �e only exception is [2] where some
preliminary results on CPU and IO prediction have been reported,
where linear regression (LR) is shown to outperform Gaussian re-
gression. �e IO models presented in this paper improve on LR
predictions by up to 71× in terms of accuracy. Moreover, lock con-
tention, RAM, or other resources have not been addressed in [2].

Progress Indicators [13] also consider performance prediction but
they need to continuously monitor the system to re�ne their previ-
ous estimates and thus, are more suitable to long-running queries.
Finally, an early work has proposed models for bu�er pool and bot-
tleneck analysis [18], but they depend on many detailed speci�ca-
tions of the hardware and have been validated only in simulation.

In [16], we discussed our overall vision in the DBSeer project
and enumerated important problems that arise in the context of
a database-as-a-service and that require performance prediction,
whereas in this paper we present our solution for performance pre-
diction in a transactional database. In [5] we studied OLTP models
for CPU, I/O, and RAM but in a very di�erent setting, where the
focus was consolidating existing workloads (without changing their
rates or mixtures), rather than predicting the performance of each
workload across variations in transaction rate and mixture. In the
current paper, we do not consider consolidation but focus on more
sophisticated resource models that relax several assumptions of our
previous work: 1) we do not need to observe each workload in iso-
lation, 2) our models in this paper are designed to make predictions
even when the mixtures and rates that we predict for were never ob-
served during the training/data collection phase.

10. CONCLUSION
In this paper, we presented a series of predictive models for re-

source utilization inOLTPdatabases aswell as an experimental eval-
uation of those models on MySQL. For some resources, like CPU,
Network, and log writes, we found that black-box models based on

regression work quite well, yielding relative errors of just a few per-
cent even when predicting resource utilization at very di�erent rates
or on di�erent transaction mixtures than where they were trained.
For other resources, e.g., RAM utilization, page �ushes due to log
recycling and bu�er pool evictions, and database locks, white-box
models that model the database are needed when making predic-
tions about system performance over a wide range of transaction
rates di�erent than those observed at training. Our white-boxmod-
els consist of a iterative model for log recycling, as well as a number
of optimizations to an existing lock-contentionmodel. Overall, our
results evaluating thesemodels are encouraging, yielding relative er-
rors at predicting maximum throughput of a system ranging from
0–25 on a TPC-C like workload, with improvements of up to two
orders of magnitude versus black box models in some cases.
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