
Universität des Saarlandes
Max-Planck-Institut für Informatik

Quality in Phrase Mining

Masterarbeit im Fach Informatik

Masters Thesis in Computer Science

von / by

Alekh Jindal

angefertigt unter der Leitung von / supervised by

Prof. Dr. Jens Dittrich

betreut von / advised by

Prof. Dr. Gerhard Weikum

begutachtet von / reviewers

Prof. Dr. Jens Dittrich

Prof. Dr. Gerhard Weikum

Saarbrücken, December 28, 2009

i

Non-plagiarism Statement

Hereby I confirm that this thesis is my own work and that I have documented all sources

used.

(Alekh Jindal)

Saarbrücken, December 28, 2009

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of the Com-

puter Science Department.

(Alekh Jindal)

Saarbrücken, December 28, 2009

ii

iii

Abstract

Phrase snippets of large text corpora like news articles or web search results offer great

insight and analytical value. While much of the prior work is focussed on efficient storage

and retrieval of all candidate phrases, little emphasis has been laid on the quality of

the result set. In this thesis, we define phrases of interest and propose a framework

for mining and post-processing interesting phrases. We focus on the quality of phrases

and develop techniques to mine minimal-length maximal-informative sequences of words.

The techniques developed are streamed into a post-processing pipeline and include exact

and approximate match-based merging, incomplete phrase detection with filtering, and

heuristics-based phrase classification. The strategies aim to prune the candidate set of

phrases down to the ones being meaningful and having rich content. We characterize

the phrases with heuristics- and NLP-based features. We use a supervised learning

based regression model to predict their interestingness. Further, we develop and analyze

ranking and grouping models for presenting the phrases to the user. Finally, we discuss

relevance and performance evaluation of our techniques. Our framework is evaluated

using a recently released real world corpus of New York Times news articles.

v

Acknowledgements

I would like to express my sincere gratitude to Prof. Jens Dittrich and Prof. Gerhard

Weikum for giving me an opportunity to work under their supervision. Regular discus-

sions with Prof. Jens Dittrich were helpful in keeping up the momentum and motivating

to further meander through the course of the work. I came to admire and aspire his

disruptive approach to research. Periodic reviews and soul searching with Prof. Gerhard

Weikum were greatly helpful in getting the big picture and deciding upon the further

course of action. It was a privilege to know and learn from his depth of experiences.

I am also thankful to Klaus Berberich for providing the initial support for the existing

system, Tobias Leidinger and Sven Obser for their wonderful coordination in phrases

analytics server and web interfaces development and to Jörg Schad for providing the

reliable hardware and cluster support.

Finally, I am grateful to my parents, relatives and friends for fusing in me the desire to

learn and the will to achieve.

vi

vii

Contents

Abstract iv

Acknowledgements vi

List of Figures xii

List of Tables xiv

List of Algorithms xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Need for Phrase Mining . 2
1.3 Need for Quality in Phrase Mining . 2
1.4 Contributions . 3
1.5 Outline of the Thesis . 3

2 Related Work 5
2.1 Term level analysis . 5
2.2 Term level multi-dimensional view . 6
2.3 Phrase level analysis . 6

2.3.1 KeyPhrases . 6
2.3.2 Auto-completion Systems . 7
2.3.3 Multidimensional Content eXploration (MCX) 7
2.3.4 Phrase Forward Index . 9

3 Domain Model and Interestingness 11
3.1 Domain Model . 11
3.2 Interesting Phrases . 12

4 System Architecture 15
4.1 System Overview . 15
4.2 Post Processing . 16

4.2.1 Merging . 17
4.2.2 Filtering . 18
4.2.3 Classification . 19

viii

Contents ix

4.2.4 Ranking . 19
4.2.5 Grouping . 20

4.3 User Interface . 21
4.4 Conclusion . 22

5 Merge Strategies 23
5.1 Exact Merge . 23

5.1.1 Prefix Merge . 24
5.1.2 Suffix Merge . 26
5.1.3 Prefix-Suffix Merge . 27

5.2 Approximate Merge . 30
5.2.1 Stop-Word Merge . 32
5.2.2 Synonym Merge . 33
5.2.3 Other Merges . 35

5.3 Conclusion . 35

6 Filter Strategies 37
6.1 Static Rule based filtering . 37

6.1.1 Custom filter . 37
6.1.2 Prefix/Suffix filter . 39
6.1.3 Parts-of-Speech (POS) filter . 40

6.2 Corpus-based filtering . 42
6.2.1 FussyTree filter . 42

6.3 Conclusion . 46

7 Phrase Classification 47
7.1 Feature Extraction . 47
7.2 Feature Selection . 52
7.3 Training Classifier . 53
7.4 Label Prediction (Classification) . 54
7.5 Classifier based filtering . 55

7.5.1 Threshold filter . 55
7.6 Conclusion . 56

8 Phrase Ranking 57
8.1 Ranking Within and Across Labels . 57
8.2 Ranking Parameters . 58

8.2.1 Local and Global Frequency . 58
8.2.2 Classification Distribution . 59
8.2.3 Document Relevance . 59
8.2.4 Size of document collection . 59
8.2.5 Document Rank . 59
8.2.6 Global Statistics . 60

8.3 Ranking Functions . 60
8.4 Conclusion . 61

9 Phrase Grouping 63
9.1 Group by Clustering . 63

Contents x

9.2 Similarity based Grouping . 64
9.2.1 Noun Similarity . 66
9.2.2 Cosine Similarity . 67

9.3 Conclusion . 67

10 Experimental Evaluation and Results 69
10.1 Experimental Setup . 69

10.1.1 System Configuration . 69
10.1.2 Data set . 70
10.1.3 Experiments . 70

10.2 Results . 71
10.2.1 Ranked Results . 71
10.2.2 Grouped Results . 72

10.3 Evaluation . 72
10.3.1 Precision . 72
10.3.2 Recall . 74
10.3.3 Precision/Recall Variation in Post-Processing 75
10.3.4 Filtering Effectiveness . 75
10.3.5 Processing Latencies . 77
10.3.6 Cross Validation . 78
10.3.7 Normalized Discounted Cumulative Gain (NDCG) 79

10.4 Discussion . 80
10.5 Conclusion . 81

11 Further Optimizations 83
11.1 Forward Index Translation . 83
11.2 Forward Index Pruning . 85

11.2.1 Pushing Merge down to Indexing 86
11.2.2 Pushing Filter down to Indexing 86

11.3 Conclusion . 87

12 Conclusion and Future Work 89
12.1 Future Work . 91

A Ranked Phrases 93

B Grouped Phrases 99

Bibliography 105

xi

List of Figures

4.1 System Overview . 16
4.2 Processing Pipeline . 17
4.3 Merge Post-Processing Stage . 17
4.4 Filter Post-Processing Stage . 18
4.5 Classify Post-Processing Stage . 19
4.6 Rank Post-Processing Stage . 20
4.7 Group Post-Processing Stage . 20
4.8 Phrase Mining Interface . 22

5.1 Merge Strategies . 24

6.1 Filter Strategies . 38

7.1 Classification Steps . 48
7.2 Phrase Classification . 55

8.1 Phrase Ranking . 58

10.1 Precision by Query . 73
10.2 Recall by Query . 74
10.3 Precision Variation . 75
10.4 Recall Variation . 76
10.5 Filtering Effectiveness . 76
10.6 Filtering Scalability . 77
10.7 Processing Latency . 78
10.8 Cross Validation . 79
10.9 NDCG . 80

11.1 Forward Index Translation . 84
11.2 Phrase Layout . 85
11.3 POS Tag Encoding . 85
11.4 Named Entity Tag Encoding . 86

xii

xiii

List of Tables

2.1 Phrase Inverted Index . 8
2.2 Phrase Forward Index . 9

5.1 Prefix Merge . 24
5.2 Suffix Merge . 26
5.3 Prefix-Suffix Merge . 28
5.4 Levenshtein Distance . 31
5.5 Stop-word merge . 33
5.6 Synonym merge . 34

6.1 Custom Filter Rules . 38
6.2 Prefix/Suffix Filter Rules . 39
6.3 POS Filter Rules . 41
6.4 POS Filter Rules . 41

7.1 Phrase Labels . 53

10.1 Training and Testing Queries . 71
10.2 Top-10 Phrases . 71
10.3 Grouped Phrases . 72

xiv

xv

List of Algorithms

5.1 Prefix Merge . 25

5.2 Suffix Merge . 27

5.3 Prefix-Suffix Merge . 28

5.4 Approximate Merge . 32

6.1 FussyTree frequency table . 43

6.2 FussyTree construction . 44

6.3 FussyTree add phrase . 44

6.4 FussyTree frequency check . 45

9.1 Phrase Grouping . 64

9.2 Populating Phrase Groups . 65

9.3 Similar Phrase . 65

xvi

xvii

Chapter 1

Introduction

1.1 Motivation

The dramatic growth of digital information today offers opportunities as well as chal-

lenges for making use of it. The World Wide Web, for instance, is growing at a rapid

pace. According to recent studies Google contains more than 25 billion web pages in

its web search index. Fo a typical keyword query like “Barack Obama” Google fetches

several million results, making it impossible for a user to consider all of them. Support-

ing this claim, Alexa [1] reports google.com having 9.35 page views, on an average, per

user visit during September-November 2009. While the search engines rank documents

to place the relevant ones at the top, many application areas like business analytics,

product related events, user-interaction logs, legal documents and market research re-

quire a user to consider the entire result set. Additionally, the online presence of people

has increased and they have contributed to more textual content over the Internet. Ac-

cording to recent survey [10] the average size of a web page tripled from 2003 to 2008.

The increased content per web page makes sifting through and identifying the relevant

information even more challenging for a user.

Apart from the increase in the volume of data there is also a surge in potentially valu-

able text data on Web 2.0 such as blogs, community forums, publish-subscribe platforms

and social networks. Text analytics - the analysis of text with the help of algorithmic

techniques - therefore becomes important for business intelligence applications such as

market research, campaign planning, trend prediction and customer relationship man-

agement. As pointed out by Alkis et al. [31], document level analysis alone is not

sufficient for such analytical tasks.

1

Chapter 1. Introduction 2

1.2 Need for Phrase Mining

Text documents can be broken down into smaller pieces of relevant and interesting in-

formation. They are succinct (minimal length) and yet crucial (maximal informative).

These minimal length maximal informative pieces, called phrases, can offer outright yet

deep insight of the data under consideration. Phrases of interest could be names of

people (e.g. “Larry Page”), places (e.g. “Paris”) or organizations (e.g. “Stanford Uni-

versity”), marketing slogans (e.g. “I think therefore I Mac”), celebrity statements (e.g.

“Everyone is entitled to my opinion”), news (e.g. “Climate action urged amid contro-

versy”), facts (e.g. “Mass of one liter of water”) or trivia (e.g. “Delhi half marathon a

gold label road race”). For example, keyword query “Iraq War” could produce names of

places affected in iraq war like “Tikrit”; political statements during the war like “Disar-

mament through diplomacy”; facts about Saddam Hussian or George Bush like “Son of

a preceding president”; and trivia about chemical or other weapons of mass destruction

like “First use against kurdish civilians”. All of these phrases can help to understand

“Iraq War” better and get an overview of what is available on this topic.

1.3 Need for Quality in Phrase Mining

The ground breaking work on phrase mining, MCX [31], extracts frequent phrases from

a set of ad-hoc document collections. In this work the authors store the extracted

phrases in an inverted index. A posting list for a phrase contains the identifiers of the

documents containing it. The posting lists are merged at query time until identifiers

of all documents in the ad-hoc document collection are covered. This effectively means

that all posting lists need to be considered for merging. Due to the large number of

posting lists being merged, this method does not scale well to very large data sets.

The follow-up work by Srikanta et al. [16] uses a forward index instead of inverted

index to store the phrases. In this work a posting list for a document in the forward

index contains the phrases present in that document. With this approach, the number

of postings lists to be merged at query time comes down to the number of documents

in the ad-hoc document collection. However, this work does not addresses the quality

aspects of the phrases in the result set. The system simply returns the phrases ordered

by the ratio of their local frequency in the ad-hoc document collection and the global

frequency in the overall corpus.

Phrases retrieved as described above suggest only their relative occurrences without

indicating their interestingness. Phrases are extracted from a text corpus using a sliding

window over the documents. Hence, many phrases are not meaningful, non-distinctive

Chapter 1. Introduction 3

or uninformative. Such phrases are expected to be of little interest to a user. Phrase

interestingness, in this context, needs to be further explored and defined. Instead of

trying to rank all possible phrases, it would then be highly desirable to reduce the set

of phrases to the likely interesting ones. Moreover, the phrases which are candidates to

be interesting have recurring patterns based on heuristics. For instance, an interesting

phrase will not end abruptly with a conjunction (or, and etc.). It would be desirable

to learn such patterns and then predict the interestingness of the subsequent phrases.

Previous works focussed on efficient retrieval of phrases but the result set is still not

useful for a user. Clearly, there is need to fill the gap between efficient phrase retrieval

and effective result set for the end user.

1.4 Contributions

We make the following contributions in our work:

1. We discuss the domain model and define phrase interestingness in terms of the

desired textual attributes and measurable parameters.

2. We propose an extensible post-processing pipeline to process the dynamically re-

trieved phrases at query time.

3. We apply supervised machine learning technique to predict the interestingness

of phrases by leveraging the underlying attribute patterns of known interesting

phrases.

4. We propose several phrase ranking functions to fetch top-k interesting phrases

from an ad-hoc document collection.

5. We propose techniques for the grouping of similar phrases.

6. We present experimental results for relevance and performance evaluation on a

real world corpus of New York Times containing 1.8 million news articles.

7. Further, we propose strategies to prune the phrase index to a manageable size for

better maintenance and storage.

1.5 Outline of the Thesis

This thesis is organized as follows: Chapter 2 reviews the related work and discusses the

state-of-the-art system. We formalize the domain model and define several attributes of

Chapter 1. Introduction 4

interestingness in Chapter 3. In Chapter 4 we give a top level description of the phrase

mining system architecture and introduce the post-processing pipeline at the core of it.

We discuss several strategies to merge similar phrases in Chapter 5. Similarly, we discuss

strategies to filter out uninteresting phrases in Chapter 6. Chapter 7 illustrates how

supervised learning can be employed to predict interestingness of a phrase. In Chapter

8 and 9 we discuss the possible ranking functions and grouping strategies respectively.

We describe our experimental setup and present relevance and performance results in

Chapter 10. Chapter 11 discusses further optimizations to the phrase mining system

including pushing the processing stages down to the indexing level and phrase index

pruning. Finally, we conclude our work and propose directions for future work in Chapter

12.

Chapter 2

Related Work

Phrase mining is a special case of text analytics. Prior work on term level text analytics

has dealt with buzz-words and tag clouds on search engines, discussion forums and other

content management systems. Recent works include multi-dimensional view of data and

phrase level analysis. Typical application areas of text analytics are:

• Customer Feedback

• Market Intelligence

• Fraud Detection

• Sentiment Analysis

2.1 Term level analysis

Term level analysis in text discovers the terms which are bursty, frequent, temporal,

authoritative or sentimental. For instance, Micah et al. [19] visualize the evolution of

tags over time on Flickr. They define tag interestingness as the ratio of temporal and

overall frequencies of the tag. Jon Kleinberg [24] identifies the “burst” of activity over

text data streams. Similarly, the idea of buzz words is to extract popular terms, based

usually on frequency, from text data. Initially it was used by analysts to get better

insight into user activity and trends. But recently the extracted buzz words have been

visualized as tag clouds on blogs, discussion forums and social networks as starting points

for end users. BlogScope [15], for instance, provides keyword analysis over blog data.

Facebook Lexicon [2] includes unigram as well as bigram analysis of the user generated

content. It looks for the buzz on users’ Facebook wall, where collective conversations

take place, after excluding personal information. Likewise, Wordle [12] is a tool to

5

Chapter 2. Related Work 6

generate tag clouds over any arbitrary data for better visualization. Term level analysis,

however, is limited to single word terms. Many single term frequent words make sense

only in conjunction with the neighboring words. Therefore, our phrase mining system

relaxes single term constraint. It produces variable length phrases depending upon the

merit of their interestingness and not their length.

2.2 Term level multi-dimensional view

Several works have presented text analytics in a multi-dimensional Online Analytical

Processing (OLAP) style view. Their aim is to answer complex but precise analytical

queries and produce exact results as a pivot table. Examples include Multi-Structure

Databases [20], user-driven tools to interface with a warehouse-of-words [23] as well as

the systems analyzing textual documents with their underlying semantic information

[22]. Likewise, Google Search Options [3] on Google web search lets users slice and dice

their results and sort by time. Though OLAP style presentation aids text analysis, these

systems provide the results items either as documents or as words. Documents are too

coarse-granular while words are too fine-granular for text analysis. Our phase mining

system takes the middle ground by presenting phrases as results.

2.3 Phrase level analysis

As compared to single term analysis, phrase level analysis becomes complicated because

of variable sized word sequences. Helena Ahonen [14] proposes a method for extracting

maximal frequent sequence of words in a set of documents. The author suggests to use

the frequent phrases as content descriptors and similarity mappings between documents.

Longer word sequences may also act as concise summary. On similar lines PatentMiner

[26] collects phrases based on frequencies and later allows users to execute trend queries.

But these works consider the document collection as a whole, are not scaled to large-

scale text collections, and have processing time of the order of minutes as opposed to a

few seconds typically required. Our phrase mining system has a processing time of the

order of seconds.

2.3.1 KeyPhrases

A keyphrase, similar to keywords, is a popular or the central phrase of a given document.

In this direction, KEA [32] uses the Näıve Bayes machine learning algorithm for training

and extracting keyphrases from a document. The goal of this work is to provide metadata

Chapter 2. Related Work 7

for documents. However, the phrases extracted are from within a single document rather

than from an ad-hoc document collection. Also, the machine learning strategy aims to

capture the author’s style and identify similar phrases when presented with another

document from the same author. In contrast, our phrase mining system tries to capture

interesting phrases in general, irrespective of the document similaritis.

2.3.2 Auto-completion Systems

Auto-completion systems such as Reactive Keyboard [18] assist the users by suggesting

possible text completions in an unobtrusive manner. Examples scenarios are email

address fields, URL address bars, query suggestions on search engines and assistance for

people with writing disabilities. Typically, as a user starts typing characters, the system

provides possible single word completions. To do so, the system maintains a suffix tree

containing all words in its vocabulary. Each node in the tree stores a character and the

system traverses the tree from top to bottom as a user types in more characters. Arnab

et al. [29] extend the idea of single word autocompletion to multi-word autocompletion.

Their work modifies the suffix tree such that each node stores a word. Their system

defines a significance criteria and stores only the phrases satisfying it in the suffix tree.

With every additional word entered by a user, the system traverses the suffix tree from

top to bottom and provides possible phrase completions. Suggesting phrase completions

in this manner is akin to finding the most meaningful and frequent phrases given a

prefix of few words. This can be looked upon as a hint of an interesting phrase. But

the key difference is that this work focusses only on co-occurring terms. Given a prefix

of few words, the system finds the most likely co-occurring sequence of words. This

sequence of words may not necessarily be interesting. Moreover, there may exist many

other interesting phrases related to the given keyword prefixes which may start with

completely different prefix words.

2.3.3 Multidimensional Content eXploration (MCX)

Multidimensional Content eXploration (MCX) [31] is the first step towards scalable

phrase-level analysis. This work considers frequent phrases as a core dynamic dimension

in a multidimensional data representation. Basically, MCX poses and addresses the

problem when a user tries to understand the entire hit list from a retrieval system.

Hence, MCX treats extracting the frequent phrases as a core operation for more complex

text analysis.

As a preprocessing step, MCX uses a sliding window over the document content to

generate phrases and stores them in an inverted index. A phrase posting list contains the

Chapter 2. Related Work 8

identifiers of the documents having that phrase. At query time the hit list is intersected

with each of the phrase posting list to get the top-k phrases. For instance, Table 2.1(a)

shows the posting lists for ten phrases (p1 to p10) present in ten documents (d1 to d10).

Table 2.1(b) shows the phrases with non-zero intersection size for the hit list [d1, d5, d7,

d10].

(a) Posting Lists

Phrase Documents
p1 d8, d9, d10

p2 d1, d4, d5

p3 d6, d7, d8, d9

p4 d1, d10

p5 d2, d4

p6 d3, d5, d7, d10

p7 d6, d9, d10

p8 d4, d8

p9 d5, d7, d9

p10 d1, d6, d7, d10

(b) Intersected Lists

Phrase Intersection Size
p6 3
p10 3
p2 2
p4 2
p9 2
p1 1
p3 1
p7 1

Table 2.1: Example of phrase retrieval from phrase inverted index

The above idea is simple but does not scale to millions of documents in posting and hit

lists. To reduce the posting list intersection costs, MCX proposes the following pruning

methods:

• Early-out: MCX processes posting lists in descending order of their length. It

maintains a priority queue of the top-k phrases. A posting list with a length less

than the current minimum intersection size cannot make it into the queue and is

hence ignored.

• Approximate intersection: MCX needs to intersect the hit list with each of the

posting list. MCX computes the intersection using the following two optimizations:

1. Skipping uniformly the items in the posting and the hit list during intersec-

tion.

2. Stopping after M comparisons between posting and the hit list items, or after

finding I common items between them.

With the above two optimizations, MCX’s performance improves by orders of magnitude.

However, the phrase results thus produced are approximate and not exact. Additionally,

due to approximate intersection, the phrases produced do not have a track of their parent

documents. Finally, the use of inverted index to store phrases creates far more posting

lists than documents. This does not scale very well for large scale document collections.

Chapter 2. Related Work 9

2.3.4 Phrase Forward Index

Srikanta et al. [16] propose a forward index to store phrases to overcome the problems

of approximate results and scalability in MCX. In their work a document posting list

contains the phrases present in that document. Their work merges the posting lists

corresponding to each document in the hit list at query time. An immediate advantage

of this is the smaller number of posting lists to be merged. Since each document has its

own posting list, the number of posting lists to be merged becomes restricted only to

the size of the hit list. For instance, Table 2.1(a) shows the posting lists for the same set

phrases and documents as before. For the hit list [d1, d5, d7, d10], Table 2.2(b) shows

the selected posting lists to be merged. Table 2.2(c) shows the phrases with the number

of posting lists containing them, called local frequency.

(a) Posting Lists

Document Phrases
d1 p2, p4, p10

d2 p5

d3 p6

d4 p2, p5, p8

d5 p2, p6, p9

d6 p3, p7, p10

d7 p3, p6, p9, p10

d8 p1, p3, p8

d9 p1, p3, p7, p9

d10 p1, p4, p6, p7, p10

(b) Selected Lists

Document Phrases
d1 p2, p4, p10

d5 p2, p6, p9

d7 p3, p6, p9, p10

d10 p1, p4, p6, p7, p10

(c) Merged Result

Phrase Local Frequency
p6 3
p10 3
p2 2
p4 2
p9 2
p1 1
p3 1
p7 1

Table 2.2: Example of phrase retrieval from phrase forward index

Further, to fetch the top-k results Srikanta et al. [16] define the notion of interesting-

ness. For a given phrase p and an ad-hoc subcollection D′ of a document corpus D,

interestingness is defined as:

Interestingness(p,D′) =
frequency of p in D′

frequency of p in D

Chapter 2. Related Work 10

The above work enables to efficiently retrieve accurate results. However, it pays little

attention to the quality of the phrases in the result set. Interestingness as defined by

them is too generic and over simplistic. Many frequent phrases provide little informa-

tion to the end user. Conversely, phrases not relatively frequent in ad-hoc document

collection may still be of interest. Our work methodically investigates these aspects of

phrase interestingness in depth.

Chapter 3

Domain Model and

Interestingness

3.1 Domain Model

Basic Types :

Document (D), Document Identifier (DID), Phrase (Phrase),

Global frequency (G), Local frequency (L), Query (Q).

Composite Types :

Document corpus (C) = {DID ×D}-set

Dynamically retrieved documents (C ′) = {DID ×D}-set

such that: C ′ ⊂ C

Set of all phrases(P) = {Phrase×G}-set

Set of candidate phrases(P ′) = {Phrase×G× L}-set

such that: p ∈ Phrases(P), ∀ p ∈ P ′∣∣P ′∣∣ < |P |
Forward Index (FWDI) = {DID × {Phrase×G}-set}-set

Operations :

retrieve documents : C ×Q→ C ′

retrieve phrases : FWDI ×DID-set→ P ′

11

Chapter 3. Domain Model and Interestingness 12

3.2 Interesting Phrases

Srikanta et al. [16] define interestingness of a phrase as the ratio of its local and global

frequency. Though frequency based measures work well in information retrieval systems,

still this definition of interestingness is not sufficient. First, the local frequency, in most

cases, tends to be very close to the global frequency. This produces lots of phrases having

interestingness equal to or very close to 1. This makes it difficult to distinguish between

the interestingness of phrases. Second, frequency measures provide no indication about

the structural or linguistic meaningfulness of the phrase.

The phrase mining system generates phrases using a sliding window over the document

content. Due to this brute force approach, forward index contains a whole bag of similar,

broken and ill-constructed phrases. Hence, we believe that an interestingness measure

based on relative occurrences, as proposed by Srikanta et al. [16], is not sufficient for

a real world text corpora. Instead, we define a set of properties for a set of phrases to

be interesting. The system considers phrases having none of these properties as unin-

teresting and filters them out in the first step. Next, it ranks the phrases having more

properties of interest higher than others. Below we discuss the properties of interesting

phrases and formalize each of them as observable values.

1. Non-noise: A noise phrase is a phrase produced by the sliding window from

unintended text in the corpus. An interesting phrase should not be a noise phrase.

Real world text documents contain many pieces of noise for e.g. advertisements,

obituaries and spoiler alerts. Phrases constructed from such text strings are likely

to be uninteresting to a user. For instance, “notice memorials of sarah parks”

and “till now. starting from” are examples of corpus and phrase extraction noises

respectively. The idea is to incorporate prior knowledge. We, therefore, define such

phrases as uninteresting. This is a trivial but an essential property for straight

away ignoring the uninteresting phrases. We formalize noise in a phrase set as an

observable value as follows:

Value obs noise : P ′ → VNoise

2. Uniqueness: Interesting phrases should be unique. By uniqueness we mean in-

formation and structural uniqueness. A set of interestingness phrases must be

distinctive and individually informative. The sliding window algorithm produces

many subsuming phrases. For instance, “presidential elections” is subsumed in“the

new presidential elections”. Similarly, many meaningful phrases might get broken

down into partially overlapping phrases. Such phrases contain essentially the same

Chapter 3. Domain Model and Interestingness 13

information and must be merged into the single most representative phrase. We

model uniqueness in a phrase set as an observable value as follows:

Value obs uniqueness : P ′ → VUniqueness

3. Completeness: The phrases which are incomplete in structure and meaning con-

vey little or no information. A phrase should be complete for it to be interesting

i.e. it should make partial or full sense. While a phrase may not be a grammati-

cally complete sentence, it must be a sequence of words rendering comprehensible

information. Again, the sliding window algorithm to produce the phrase generates

many half-broken or ill-constructed phrases. For instance, “the agony of a” is a

broken phrase. The idea is to ignore such phrases which anyways will not make

any sense to a user. We formalize completeness as an observable value as follows:

Value obs completeness : P ′ → VCompleteness

4. Artifacts: A phrase should have some interesting attributes like facts, news,

trivia, names of people, places or organizations or any other artifact which differ-

entiates it from plain ordinary sentences and gives a hint of something interesting.

For instance, “born in london in 1912” has place and time artifacts. Common sense

suggests that interestingness is highly subjective but still the idea is to uncover

patterns of phrase features like phrase length, term frequencies, parts of speech

etc and prioritize the ones that are most likely to be interesting. We can model

these interesting attributes or artifacts as an observable value as follows:

Value obs artifacts : P ′ → VArtifacts

5. Order: A set of phrases should be arrangeable in the descending order of inter-

estingness. Given a query, each phrase must numerical measure which quantifies

the interestingness in the form of a score. This helps us to compare phrases while

producing a interestingness sorted phrase list for a user. For instance, “the net-

work led by osama bin laden” is more interesting than “a terrorist conspiracy that

led”. This is important for a user to prioritize and order the phrases. Also, the

interestingness sorted phrase list helps to observe the variation of interestingness

and determine the cut-off point depending on the user requirements. Additionally,

the interestingness score also helps to gauge the quality of phrases and compare

two different phrase result sets. A phrase set with higher scores indicates more

interesting phrases and hence may draw the first attention. We model the quality

Chapter 3. Domain Model and Interestingness 14

of ranking or the ordering of phrases as follows:

Value obs order : P ′ → VRanking

6. Diversity: A set of phrases for a given query should be from diverse domains.

This is to give a user a well rounded overview and a better feel of the underly-

ing documents. For instance, “the wedding planner” is a Jennifer Lopez movie

while “the sweetface fashion” is her company. Diversity may be confused with the

uniqueness property. But note that two phrases within the same domain may still

be unique. Uniqueness is more in structural sense whereas diversity fringes on the

semantic sense. We model the diversity of phrases as follows:

Value obs diversity : P ′ → VDiversity

Chapter 4

System Architecture

This chapter describes the architecture of our phrase mining system. We present a big

picture of our system and elaborate the phrase post-processing pipeline, which is the

core contribution of this work. We also show a snapshot of our user interface.

4.1 System Overview

Figure 4.1 depicts the system architecture of our phrase mining system. Given a docu-

ment corpus, our phrase mining system builds a document inverted index and a phrase

forward index. This is a one time and offline process. At query time, the system first

retrieves the document results from the document inverted index. It then uses the iden-

tifiers of the documents in the retrieved document results to retrieve relevant phrases,

called candidate phrases, from the phrase forward index. The post-processing pipeline

processes the candidate phrases in real-time to produce quality phrase. Finally, the sys-

tem presents a reduced set of quality phrases to the end user in an interactive interface.

The phrase mining system does not obviate the document search results. Instead, it

complements them with interesting phrases. The major goals of post-processing are:

• Merge the similar candidate phrases into unique ones.

• Prune the candidate set of phrases to meaningful ones.

• Classify the phrases as per their interestingness levels.

• Rank the phrases in the result by their interestingness.

• Group the phrases for better user navigation.

15

Chapter 4. System Architecture 16

Corpus

Document
Inverted Index

Phrase
Forward Index

Query

Documents

Documents Ids

Search Engine
Query

Documents

Post Processing Pipeline

Phrases

Figure 4.1: Phrase mining system overview

Our system uses the standard document inverted index and the phrase forward index

as proposed by Srikanta et al. [16]. The post-processing pipeline and the user interface

are new additions. We describe these two in the following sections.

4.2 Post Processing

A post-processing pipeline processes the candidate phrases retrieved from the forward

index before presenting them to the user. The pipeline emits quality phrases which

are much more likely to be interesting. The pipeline processes the phrases at query

time. It consists of a number of processing stages streamed one after the other. The

processing stages are configurable i.e the pipeline can rearrange, remove or add new

stages depending on the quality requirements and response time guarantees. Since the

processing is done at the query time, processing time should be of the order of seconds.

Additionally, the pipeline can push the intermediate phrase results produced at any

stage of the pipeline to the user. The post-processing can continue while the user can

start seeing intermediate results. This is, however, constrained by the quality of phrases

at the intermediate stages and the processing latency overhead. Figure 4.2 illustrates

the various stages in post-procesing pipeline.

The candidate phrases are input to the post-processing pipeline. The pipeline consists

of merging(!), filtering(σ), classification(γ), ranking(µ) and grouping(Γ) stages. We

Chapter 4. System Architecture 17

MergeCandidate
Phrases

Quality
PhrasesFilter Rank GroupClassify

Pipeline

Figure 4.2: Post-processing pipeline schematic

denote the phrase set output from each of these stages as P ′
!, P ′

!,σ, P ′
!,σ,γ , P ′

!,σ,γ,µ and

P ′
!,σ,γ,µ,Γ respectively. We formally specify the post-processing as:

Operation :

post processing : P ′ !−→ P ′
!

σ−→ P ′
!,σ

γ−→ P ′
!,σ,γ

µ−→ P ′
!,σ,γ,µ

Γ−→ P ′
!,σ,γ,µ,Γ

Each of these stages in turn contain a series of methods which are internally pipelined.

We will elaborate each stage more in the following subsections.

4.2.1 Merging

The first stage in the post-processing pipeline is merge where similar phrases are merged

together. The idea is to reduce the set of candidate phrases to really unique ones. Figure

4.3 depicts the merge stage.

MergeCandidate
Phrases

Unique
Phrases

Figure 4.3: Merging stage in the post-processing pipeline

This stage detects phrases to be similar based on overlap, structure, linguistic or other

heuristic based attributes. For example, “those who shall live in sin” and “those who

shall live in sin shall die in sin” are overlapping phrases. Merging aims to try and

combine all such similar phrases by subsuming, prepending, appending, substituting or

inserting them into the most comprehensive phrase. We try to combine together all

supplementary phrases into single phrase. However, still there are complementary or

redundant phrases which we cannot merge together. In such scenarios, we pick the most

representative of all such phrases and consider the rest to be merged within. Formally,

Chapter 4. System Architecture 18

we depict the merge stage as follows:

Operation :

! : P ′ → P ′
!

such that: obs uniqueness(P ′
!) > obs uniqueness(P ′)∣∣P ′

!
∣∣ ≤ ∣∣P ′∣∣

4.2.2 Filtering

The next stage in post-processing pipeline is filter. In this stage phrases which are

almost sure to be uninteresting are filtered out. The idea is to refine the set of candidate

phrases to really meaningful ones. Figure 4.4 depicts the filter stage.

Unique
Phrases

Complete
PhrasesFilter

Figure 4.4: Filtering stage in the post-processing pipeline

The challenge is to detect the phrases which would be uninteresting . For example,

“jennifer lopez in care of” is a broken phrase. In our approach we try to find the broken

or incomplete phrases based on static filtering rules, corpus patterns and heuristics

based feature patterns. Since data cannot substitute prior knowledge, we do not push

formulating such rules to the classification stage. Additionally, we also do aggressive

filtering based on classifier estimates. We filter out the phrases for which the classifier

is almost certain of possessing little or none of the attributes similar to those in other

interesting phrases. These techniques are discussed in detail in Chapter 6. We define

the filter stage formally as follows:

Operation :

σ : P ′
! → P ′

!,σ

such that: obs noise(P ′
!,σ) < obs noise(P ′

!)

obs completeness(P ′
!,σ) > obs completeness(P ′

!)∣∣P ′
!,σ
∣∣ ≤ ∣∣P ′

!
∣∣

Chapter 4. System Architecture 19

4.2.3 Classification

The third stage in post-processing pipeline is classification. In this stage we classify

and label the phrases depending upon their interestingness. The idea is to predict the

interestingness of phrases based on heuristics. Figure 4.5 depicts the classification stage.

Complete
Phrases

Labelled
PhrasesClassify

Figure 4.5: Classification stage in the post-processing pipeline

The recurring patterns of structure, grammar and artifacts in the phrases reveal op-

portunities for machine learning on the phrases. With this we hope to discover the

underlying patterns of the heuristic based features of interesting phrases and exploit

them to predict the interestingness of other phrases. The usage of classification tech-

nique aims to compartmentalize phrases in a coarse granular fashion before handling

each of the classes separately. For example, we should label “gate’s private” with a

lower interestingness than “the country’s espionage chief”. It is important to note here

that the classification alone is not sufficient but serves as a progressive step to pull the

likely interesting phrases to the top. We can express classification formally as:

Operation :

γ : P ′
!,σ → P ′

!,σ,γ

such that: obs artifacts(P ′
!,σ,γ) > obs artifacts(P ′

!,σ)∣∣P ′
!,σ,γ

∣∣ =
∣∣P ′

!,σ
∣∣

We use the classifier labels and their associated probabilities to assign a score to each

phrase and then rank the set of phrases.

4.2.4 Ranking

The ranking stage follows phrase classification. In this stage a ranking function assigns

score to each phrase. The idea is to allow a user to retrieve the top-k phrases. Figure

4.6 illustrates the ranking stage.

This stage does not alter or prune the phrase set but assigns an order to it. The

phrases maintain their state through different stages in the pipeline and so the ranking

Chapter 4. System Architecture 20

Classified
Phrases

Ranked
PhrasesRank

Figure 4.6: Ranking stage in the post-processing pipeline

function can make use of the intermediate processing results. This stage quantifies the

interestingness of a phrase. This allows us to compare phrases amongst each other. We

can formulate ranking stage as:

Operation :

µ : P ′
!,σ,γ → P ′

!,σ,γ,µ

such that: obs order(P ′
!,σ,γ,µ) > obs order(P ′

!,σ,γ)∣∣P ′
!,σ,γ,µ

∣∣ =
∣∣P ′

!,σ,γ
∣∣

4.2.5 Grouping

Finally, the last stage in the post-processing pipeline is grouping. This stage attempts

to create groups of the phrases. Figure 4.7 illustrates the grouping stage.

Ranked
Phrases

Quality
PhrasesGroup

Figure 4.7: Grouping stage in the post-processing pipeline

Though the ranking stage produces phrases in a sorted list fashion, the result listings

tend to be quite large in practical systems. Thus, it becomes difficult for a user to

navigate through all the phrases in the result list. Also, our merging techniques do not

capture the topics of the phrases. Hence, many interesting phrases might be on the same

topic or theme. A user may not be interested in one particular topic. Since our system

does takes into account the interest of each user, it becomes imperative to bring out a

diverse set of interesting phrases. Hence, grouping becomes important for dynamic drill

Chapter 4. System Architecture 21

down by a user. We can model grouping as follows:

Operation :

Γ : P ′
!,σ,γ,µ → P ′

!,σ,γ,µ,Γ

such that: obs diversity(P ′
!,σ,γ,µ,Γ) > obs diversity(P ′

!,σ,γ,µ)∣∣P ′
!,σ,γ,µ,Γ

∣∣ =
∣∣P ′

!,σ,γ,µ
∣∣

4.3 User Interface

Apart from an effective post-processing, the phrase mining system must also have an

intuitive user interface. The evolution of the Internet in the past decade has made the

Google style web interfaces a must for most document related retrieval systems. The

users are able to relate to it better and faster. Such interfaces usually allow users to

enter query keywords as text input and see matching documents ranked by relevance

below. Figure 4.8 shows a screenshot of the phrase mining user interface developed

by Sven Obser and Tobias Leidinger [25, 30]. This interface follows the Google style

convention and additionally displays interesting phrases from the retrieved documents

on the right hand side. By default, the phrase tab displays top-10 interesting phrases

but we can customize it for more phrases or for group-wise display. Similar to document

result pages’ navigation, the next page of the phrase results can be navigated further.

Since the post-processing pipeline has stages like merging and filtering, it makes sense

to take a considerable number of phrases in the candidate set. A large candidate set

of phrases produces better post-processed phrases. This also serves the dual purpose of

caching. When a user requests only top-10 phrases, the remaining phrases are cached

in the main memory. When the user requests next-10, they are readily available.

In addition to single queries, this interface also supports differential queries to compare

document and phrase results from two queries. For example, a user might be interested

in comparing documents and phrases for “George Bush” and “Barack Obama”. The

important thing to note here is that the underlying post-processing pipeline remains

the same, processing phrases for both the queries separately. This, however, causes the

system to respond quite slow. A possible way to alleviate this problem is to present

intermediate results to the user and keep on updating them as phrases pass though the

different stages in the pipeline. The interface presents OLAP style query results on

similar lines.

Chapter 4. System Architecture 22

Figure 4.8: Screenshot of phrase mining user interface

4.4 Conclusion

Interesting phrases are complementary to the document results from a document re-

trieval system. Therefore, a user expects them to be concise and qualitatively rich. Our

system enables this by post-processing the phrases in a series of stages. The phrase

mining system is built on top of a conventional search engine and hence can be easily

added on top of any another document style information retrieval system. Our current

approach to phrase mining is a bit conservative in terms of interestingness decisiveness.

However, the system makes an effort to channel the results though an intuitive user in-

terface. Additionally, the real time systems need to meet the response time constraints

of a few seconds. Therefore, the phrase mining capabilities should not add too much of

latency overhead.

Finally, interestingness also carries quite a bit of subjectivity. The final set of phrases are

still candidate phrases from a user’s perspective but with a higher confidence of being

interesting. Therefore, next step would be to take the user interest into account. The

next level systems should have interactive user interfaces with user sessions capturing

the user intent and interests to refine down the phrases to targeted ones.

Chapter 5

Merge Strategies

This chapter describes the phrase merging stage in the post-processing pipeline. The

merging stage aggregates all similar phrases with a two fold objective: (1) render unique-

ness by discarding complementary phrases and (2) enrich result set by merging supple-

mentary phrases. The first objective cleans the phrase set from near duplicate phrases

while the second objective produces more meaningful phrases. We try to be conservative

in our merge strategies. First we merge the phrases based on a partial or a complete

overlap between them. Next we take the edit distance as a simple yet effective measure

of string similarity and apply it to the phrases to do approximate merging of the phrases.

5.1 Exact Merge

Figure 5.1 depicts the internal pipeline of the merge stage. This stage looks for a prefix or

a suffix overlap between two phrases. The overlap here means a string match. Depending

upon the overlap we consider the following four cases:

1. The two phrases have a complete overlap of words i.e they are exact duplicates.

2. One phrase is the prefix of the other i.e. it is left contained.

3. One phrase is the suffix of the other i.e. it is right contained.

4. The two phrases have an overlapping prefix and suffix respectively.

The first case of exact duplicates is trivial to handle. We describe the second, third and

fourth cases in detail in the following sub-sections. Figure 5.1 indicates them as the first

three sub-stage in the internal pipeline. Currently, we do not consider merging phrases

which are contained in the middle of other phrases.

23

Chapter 5. Merge Strategies 24

Prefix
Merge

Candidate
Phrases

Merged
Phrases

Suffix
Merge

Prefix-Suffix
Merge

Synonym
Merge

Stop-Word
Merge

Exact Merge Approximate Merge

MergeCandidate
Phrases

Quality
PhrasesFilter Rank GroupClassify

Figure 5.1: Merging strategies in the post-processing pipeline

5.1.1 Prefix Merge

The core idea of the prefix merge is to merge phrases which are prefixes of other phrases

in the set of candidate phrases. In other words we detect and ignore phrases which

are subsumed as prefixes in other phrases. We can do so because smaller subsumed

phrases typically tend to be broken. Or, they are incomplete and contain duplicated

information. For example, consider the phrases in Table 5.1.

1 those who shall live in sin
2 those who shall live in sin shall die in sin
3 those who shall live in
4 those who

Table 5.1: Example of prefix merge

The second phrase in the above table is the most complete and hence the most interesting

among the four given phrases. Although the first phrase makes sense, it is more complete

and interesting when merged into the second phrase. The third phrase is broken in the

end and therefore we can safely merge it. Here, the fourth phrase is an example of noise

phrases created as a result of brute force sliding window and simply gets ignored. Hence,

a prefix merge of the four sentences shown in Table 5.1 produces “those who shall live

in sin shall die in sin” as the most comprehensive phrase.

Algorithm Overview: Algorithm 5.1 presents the pseudo code of the prefix merge

illustrated above. It takes candidate set of phrases as input. We first sort the candidate

phrases lexicographically in line 1. Next, we initialize a set of merged phrases to empty

set (line 2). We maintain the largest prefix seen so far and initialize it (line 3). We also

maintain a count of the number of phrases that get merged (line 4). We iterate over

Chapter 5. Merge Strategies 25

Algorithm 5.1: prefixMerge
input : Set of candidate phrases
output: Set of merged phrases

List<Phrase>sortedPhrases←− Sort(phrases,LexicographicComparator);1

Set mergedPhrases←− ∅;2

String prefix←− “”;3

Integer mergeCount←− 0;4

foreach Phrase p in sortedPhrases do5

if startsWith(prefix,p) then6

// case 1: prefix contains the phrase7

mergeCount←− mergeCount+ 1;8

else9

if startsWith(p,prefix) then10

// case 2: phrase contains the prefix11

mergeCount←− mergeCount+ 1;12

else13

// case 3: phrase totally different from the prefix14

mergedPhrases←− mergedPhrases ∪ {prefix};15

end16

prefix←− phrase;17

end18

end19

mergedPhrases←− mergedPhrases ∪ {prefix};20

return mergedPhrases;21

each phrase in the sorted list of phrases (line 5) and ignore it, if it has the same prefix

as seen so far (line 6-9). Otherwise, either the phrase contains the prefix seen so far

(line 10-12) or it is a completely new phrase, in which case we add the prefix seen so far

to the set of merged phrases (line 13-16). In both these cases we set the prefix seen so

far to the new phrase (line 17). Finally, we add the last remaining prefix to the set of

merged phrases (line 20). The algorithm returns the set of merged phrases (line 21).

Analysis: We do the sorting in prefix merge using quick sort and hence it has a time

complexity ofO(nlogn), where n is the number of phrases in the input candidate set. The

merge operation is a single scan operation, wherein we maintain the most comprehensive

phrase seen so far. As soon as we encounter a totally new phrase, we add the previous

most comprehensive phrase to the set of merged phrases. Thus the time complexity of

the prefix merge operation is O(n). The sorting prior to merging helps to avoid the time

complexity getting into quadratic terms.

Chapter 5. Merge Strategies 26

5.1.2 Suffix Merge

Suffix merge is the next merge variant within the merge post-processing stage. Similar

to prefix merge, the basic idea is to merge phrases which are suffixes of other phrases in

the set of candidate phrases i.e. we detect and ignore the phrases which are subsumed

as suffixes in other phrases. The intuition is that the phrases which start in the middle

of a sentence make no sense or contain duplicate information. For example, consider the

phrases in Table 5.2:

1 the iraq clamor
2 bush, blair and the iraq clamor
3 and the iraq clamor
4 blair and the iraq clamor

Table 5.2: Example of suffix merge

Again, the second phrase in the above table is the most complete and hence most

interesting amongst the given four phrases. Though the first phrase also makes sense

but it is more comprehensible and interesting when we merge it into the second phrase.

The third phrase starts in the middle and therefore we can safely merge it. The fourth

phrase looks complete as well as interesting but it carries only one of the two person

named entities in the phrase. Such half information could be unpleasant or undesirable

to various sensitivities. Hence, suffix merge of the four sentences shown in Table 5.2

produces “bush, blair and the iraq clamor” as the most comprehensive phrase.

Algorithm Overview: Algorithm 5.2 details the pseudo code of the suffix merge

algorithm as discussed in the above example. Since here we are merging phrases based

on common suffixes, we need to sort the reverse phrases. Line 1 sorts the input set of

candidate phrases using ReversePhraseComparator. This comparator reverses the two

phrases strings before comparing them lexicographically. Rest of the algorithm is similar

to prefix merge. Only difference is that we maintain the largest suffix seen so far while

iterating over the phrases in the candidate set.

Analysis: The major difference in the suffix merge from the prefix merge algorithm

is the the phrase comparator used while sorting. Additionally, to check for subsuming

phrases we check for endsWith instead of startsWith. Similar to that in the prefix merge,

the suffix merge also sorts the phrases using quick sort and has the time complexity of

O(nlogn), where n is the number of phrases in the input candidate set. Since the length

of each phrase is very small as compared to the number of phrases in the candidate set,

we neglect the time taken to reverse the phrases. The merge operation on sorted lists

is again linear, i.e. O(n), with respect to the number of phrases in the candidate set.

Chapter 5. Merge Strategies 27

Algorithm 5.2: suffixMerge
input : Set of candidate phrases
output: Set of merged phrases

List<Phrase>sortedPhrases←− Sort(phrases,ReversePhraseComparator);1

Set mergedPhrases←− ∅;2

String suffix←− “”;3

Integer mergeCount←− 0;4

foreach Phrase p in sortedPhrases do5

if endsWith(suffix,p) then6

//case 1: suffix contains the phrase7

mergeCount←− mergeCount+ 1;8

else9

if endsWith(p,suffix) then10

// case 2: phrase contains the suffix11

mergeCount←− mergeCount+ 1;12

else13

// case 3: phrase totally different from the suffix14

mergedPhrases←− mergedPhrases ∪ {suffix};15

end16

suffix←− phrase;17

end18

end19

mergedPhrases←− mergedPhrases ∪ {suffix};20

return mergedPhrases;21

Again, sorting before merging helps to scale down the merge complexity from quadratic

to linear.

5.1.3 Prefix-Suffix Merge

The prefix-suffix merge combines ideas from the previous two approaches in the merge

stage. The basic idea here is that two phrases are merged into one if they have a

matching prefix and a matching suffix respectively in them i.e. prefix of one phrase

overlaps with the suffix of another. However, it differs from the previous two approaches

in two respects. First, prefix-suffix merge compares prefixes with suffixes as opposed

to prefix-prefix and suffix-suffix comparisons in the previous two approaches. Second,

prefix-suffix merge allows the system to look for partial match in both the phrases

whereas previous two approaches require complete match for at least one of the phrases.

Consequently, this approach merges phrases pair-wise while prefix merge and suffix

merge can do bulk merge of several phrases. Additionally, while the previous merge

strategies considered only one phrase as the most representative one and others as re-

dundant, the prefix-suffix merge considers both the phrases to be equally contributing

Chapter 5. Merge Strategies 28

to create a more meaningful and de-duplicated phrase. However, to avoid over fitting of

totally unrelated phrases into a single phrase, we set a minimum percentage of prefix-

suffix overlap as the threshold. The percentage of words matching for the prefix-suffix

merge should be greater than this threshold for each of the two phrases. As an example,

consider the phrases in Table 5.3 below:

1 new movie is a sleek expensive looking
2 a sleek expensive looking gizmo

Table 5.3: Example of prefix-suffix merge

The first and the second phrases in the above table make sense. But the suffix “a sleek

expensive looking” of the first phrase matches with the prefix of the second phrase. And

indeed, they convey more sense and interest if we combine them together. Hence, we

merge these two phrases into a single phrase “new movie is a sleek expensive looking

gizmo”.

Algorithm 5.3: prefixSuffixMerge
input : Set of candidate phrases, merge threshold
output: Set of merged phrases

List<Phrase>phraseList←− convertToList(phrases);1

Set mergedPhrases←− ∅;2

Map alreadyPaired←− ∅;3

for i ← 1 to len(phraseList) do4

if alreadyPaired.contains(i) then5

continue;6

end7

Phrase phrase1←− phraseList.getElement(i);8

Phrase mergeIdx←− i;9

String match←− “”;10

for j ← i+ 1 to len(phraseList) do11

if alreadyPaired.contains(j) then12

continue;13

end14

Phrase phrase2←− phraseList.getElement(j);15

String newMatch←− getMaxMatch(phrase1, phrase2, threshold);16

if newMatch! = NULL and length(newMatch) > length(match) then17

// a more overlapping phrase found18

match←− newMatch;19

mergeIdx←− j;20

end21

end22

mergedPhrases←− mergedPhrases ∪ {combine(i,mergeIdx,match)};23

alreadyPaired.put(i,true);24

alreadyPaired.put(mergeIdx,true);25

end26

return mergedPhrases;27

Chapter 5. Merge Strategies 29

Algorithm Overview: Algorithm 5.3 sketches the prefix-suffix merge. Input to the

algorithm are a set of candidate phrases and the overlap threshold parameter. Since

we merge the phrases pair-wise, we do not consider the phrases already merged in the

current iteration again. Line 1 converts the set of phrases to a list. Next, we initialize

the set of merged phrases to empty (line 2). We maintain a map to keep track of

the phrases already being paired in the current iteration (line 3). We iterate over all

the indices of the phrases in the phrase list (line 4). The algorithm skips the indices

whose corresponding phrases have already been paired (line 5-7). We fetch the phrase

corresponding to the current index as phrase1 (line 8). MergeIdx maintains the index

of the phrase most overlapping with phrase1 (line 9) and match maintains the overlap

between the two (line 10). Next, we iterate over all remaining phrases in the phrase

list to find the most overlapping phrase with phrase1 (line 11). Again, we skip the

indices whose corresponding phrases have already been paired (line 12-14). Otherwise,

we compute the maximum overlapping match between the current phrase (phrase2 in

line 15) and phrase1 (line 16). We set the maximum overlap as “null” if it is below

the threshold. We update the merge index and match if the maximum overlap thus

computed is bigger than the match seen so far (line 17-21). We merge phrase1 with the

maximum overlapping phrase and add the merged phrase to the set of merged phrases

(line 23). We add the index of phrase1 and mergeIdx to the map of already paired indices

(line 24-25). After merging phrases pair-wise in this fashion, the algorithm returns the

set of merged phrases as output.

In the above algorithm, getMaxMatch() finds the maximum prefix-suffix match between

two phrases. This can be done by first trying to match the maximum prefix of the first

phrase which overlaps with the suffix of the second phrase and then doing the other way

round. It can then return the maximum of the two matches.

Analysis: The sliding window that we use for phrase generation affects the size of the

index. A larger sliding window allows phrases of several lengths and hence produce

many more phrases. For this purpose, we fix the minimum and maximum lengths of the

phrases at the index creation time. But the prefix-suffix merge can create phrases larger

than the maximum phrase length. However, by suitably setting the minimum overlap

parameter (threshold) we can limit the maximum phrase length overshoot. For e.g. the

minimum overlap threshold of 60% can increase the phrase length by at most 40%.

The prefix-suffix merge algorithm merges the phrases pair-wise and hence cannot merge

multiple phrases in one pass. Also, due to the minimum overlap threshold criteria many

phrases may not qualify for merge initially but may qualify later. Therefore we do

multiple passes of the above algorithm as long as the set of merged phrases set keeps

on shrinking. Each recursive call to the prefix-sufix merge tries to find the maximum

Chapter 5. Merge Strategies 30

overlapping phrases satisfying the threshold criteria. Each pass however is a brute force

approach to compare a given phrase with all other phrases. This is unavoidable because

unlike the previous two merge techniques, this technique considers both prefixes and

suffixes at the same time. Consequently, the sorting of phrases is not possible in this

stage. The brute force comparison of every phrase with every other phrase renders the

time complexity as O(n2), where n is the number of phrases. However, we push the

prefix-suffix merge to the end of the internal merge pipeline i.e we apply it as late as

possible. This helps in reducing the size of the set of candidate phrases as much as

possible from the previous stages.

Finally, note that since the prefix-suffix merge procedure merges phrase having par-

tial match, this technique can produce unintended results. It can merge phrases from

different documents and different contexts. The choice of the minimum matching thresh-

old becomes crucial. A lower threshold value may greatly reduce the set of candidate

phrases but runs the risk of unintended merges. A higher threshold value may be too

conservative to have any effect.

5.2 Approximate Merge

So far we have considered subsuming or overlapping phrases and merged them. But many

times phrases have similar, though not exact, words, structure and even information.

This makes them repetitive and hence redundant e.g. “Angela Merkel Chancellor” and

“Angela Merkel the Chancellor”. It is therefore important to merge phrases based on an

approximate match as well. By approximate match we mean that two phrases may not

contain a common continuous sequence of words but rather a sequence of almost similar

words. We describe and discuss edit distance based string similarity techniques below.

Edit distance Measures: Edit distance is defined as the minimum number of editing

operations like insert, delete etc., needed to transform one string into the other. Or,

in other words how many edit operations away is one string from the other. Different

edit distances have been proposed. Hamming distance [21], for example, measures the

number of substitutions required for equal length strings to inter-convert. Naturally,

hamming distance is suited for comparing similarities only between equal length strings.

Extending this, Levenshtein distance [27] considers insert, delete or substitute operations

to measure edit distance. Damerau-Levenshtein distance [17] goes one step further by

including transpose operations while computing the minimum number of edit operations.

However, research literature typically defines these distance measures for character level

edit operations and they are typically used for spell check and similar operations. The

Chapter 5. Merge Strategies 31

character level editing may not be the best approach to find similarities between the

phrases. Below we discuss the application of edit distance to phrases.

Edit distance for Phrases: Phrases are composed of a group words and hence existing

single-word similarity measures need to be extended. In this thesis, we use Levenshtein

distance and consider word level insert, delete and substitute operations. These oper-

ations depend on the type of similarity we are looking for. As an illustration consider

phrases “bill gates microsoft chairman” and “bill gates the billionaire”. Table 5.4 com-

putes Levenshtein distance between them. The table represents the two phrases as the

bill gates microsoft chairman
0 1 2 3 4

bill 1 0 1 2 3
gates 2 1 0 1 2
the 3 2 1 1 2

billionaire 4 3 2 2 2

Table 5.4: Example of levenshtein distance for phrases

first row and the first column respectively with each word present in one cell. For each

cell (i, j) corresponding to the ith row word and the jth column word, we find how many

insert, delete or substitute operations are required to transform the string formed by

words in the cells (3, 1) through (i, 1) into the string formed by words in the cells (1, 3)

through (1, j). For instance, the value 1 in cell (3, 4) indicates that it takes 1 opera-

tion (insert/delete operation) to convert “bill” into “bill gates”. Similarly, we fill all

the entries in the table and finally the right most entry in the last row (2) indicates

the levenshtein distance between “bill gates the billionaire” and “bill gates microsoft

chairman”. We can formulate the entry in each cell as follows:

d[i, j] =

0 if word(i, 1) = word(1, j),

min(d[i− 1, j], d[i, j − 1], d[i− 1, j − 1]) + 1 otherwise.

Here, we have assumed the costs for inserting, deleting and substituting words to be 1.

Our approximate merge approaches based on stop-words and synonyms model these costs

differently. Algorithm 5.4 sketches the generic algorithm used by subsequent techniques.

This algorithm models the word insertion, deletion and substitution costs as functions

and hence they can be modeled dynamically. The algorithm takes two phrases as inputs

and outputs the similarity measure between them. The indices m and n store the number

of words in phrase1 and phrase2 respectively (line 1-2). We create an (m+ 1)× (n+ 1)

distance matrix and initialize its first row and the first column (line 3-9). Thereafter,

we iterate over each of the remaining cells in the matrix (line 10-11) and populate them

Chapter 5. Merge Strategies 32

Algorithm 5.4: approxMerge
input : phrase1, phrase2
output: similarity

Set m←− wordCount(phrase1);1

Set n←− wordCount(phrase2);2

Set d←− matrix[m+ 1, n+ 1];3

for i← 0 to m do4

Set d[i, 0]←− i;5

end6

for j ← 0 to n do7

Set d[0, j]←− j;8

end9

for i← 1 to m do10

for j ← 1 to n do11

Set insertDistance←− d[i− 1, j] + insertCost(getWord(phrase1,i− 1));12

Set deleteDistance←− d[i, j − 1] + deleteCost(getWord(phrase2,j − 1));13

Set substituteDistance←− d[i− 1, j − 1] +14

substituteCost(getWord(phrase1,i− 1), getWord(phrase2,j − 1));
Set d[i, j]←− min(insertDistance, deleteDistance, substituteDistance);15

end16

end17

return d[i, j];18

with the minimum of insertion, deletion and substitution costs (line 12-15). We leave the

definition of these costs for specific implementation. The following sub-sections discuss

two specific implementation of this algorithm.

5.2.1 Stop-Word Merge

The stop-word merge is a variant of Levenshtein distance wherein insertion or deletion

of stop-words have very less cost as compared to other words. Typically, we assign

fractional weights to the stop-word insertion/deletion and integral weights to the inser-

tion/deletion of other words. For instance, we can assign the stop-word insertion/dele-

tion cost to 0.1 if we can ignore up to 10 stop words in a phrase. The cost for substitution

is 0 in case two words are equal and 1 otherwise. We write the insert/delete and the

substitute cost functions as follows:

InsertOrDeleteCost (Word) =

0.1 if Word is stop-word

1 otherwise.

Chapter 5. Merge Strategies 33

SubstituteCost (Word1,Word2) =

0 if Word1 = Word2

1 otherwise.

With such a weight assignment an edit distance less than 1 would indicate at most 10

stop-word insert/delete operations. All bigger edit distances would represent one or

more non-stop word insertions/deletions, greater than 10 stop-word insertions/deletions

or substitution operations. We consider phrases having Levenshtein edit distance be-

tween them smaller than 1.0 as similar. For example, Table 5.5 shows the edit distance

computed between “angela merkel chancellor” and “angela merkel the chancellor”. Since

the phrases differ only in the stop-word “the”, the edit distance between them comes

out to be 0.1 (lower right cell). Hence the two phrases are similar.

angela merkel the chancellor
0 1 2 3 4

angela 1 0 1 1.1 2.1
merkel 2 1 0 0.1 1.1

chancellor 3 2 1 1 0.1

Table 5.5: Example of stop-word merge for phrases

We find the similar phrases in this fashion in our set of candidate phrases and merge

them. Note, that this method finds the pairwise similar phrases. Hence, similar to

prefix-suffix merge in algorithm 5.3 we run nested loops over all the phrases to find the

most similar pair of phrases and merge them. In many cases stop-words are not the

most desirable features, while merging the two phrases we keep the shorter of the two

phrases and discard the other one. For stop-words lookup we use a stop-word list [9]

maintained by the Linguistics Department at the University of Glasgow.

Analysis: The merge operation is pairwise and doubly nested over the set of candidate

phrases, therefore the time complexity is O(n2), similar to prefix-suffix merge. The stop-

words list that we use contains 319 stop-words and ca be looked up using a hash map.

Depending on the maximum number of stop-words which we can tolerate in each phrase,

we adjust the fractional cost assigned to insert/delete of stop-word. Further, instead of

assigning fixed costs to stop-words and non stop-words, we can assign costs inversely

proportional to the individual term frequencies. This would imply that frequent terms,

which are more likely to be stop-words, will have very small insert/delete costs.

5.2.2 Synonym Merge

Synonym merge uses another variant of Levenshtein distance wherein substitution of

synonyms words carries lesser weight compared to substitutions of other words. We

Chapter 5. Merge Strategies 34

assign zero cost to substitution of synonyms and integral weight to all other edit oper-

ations. Effectively, we relax the equality condition for words and consider synonyms as

equal. We represent the insert/delete and substitute cost functions as follows:

InsertOrDeleteCost (Word) = 1

SubstituteCost (Word1,Word2) =

0 if Word1 = Word2 or Word1 synonym of Word2

1 otherwise.

Again, we consider phrases having only synonym substitution operations as similar and

merge them. As an example, Table 5.6 shows the computation of edit distance between

“google announced quarterly results” and “google declared quarterly results” using such

a substitution cost function. The final edit distance between the two phrases is 0 (lower

right cell).

google announced quarterly results
0 1 2 3 4

google 1 0 1 2 3
declared 2 1 0 1 2
quarterly 3 2 1 0 1

results 4 3 2 1 0

Table 5.6: Example of synonym merge for phrases

Similar to the stop-word merge, the synonym merge is a pair-wise merge. Hence we need

to iterate in nested loops over candidate phrases to merge all phrases. Since the similar

phrases differ only in synonymy, in order to merge them we discard one of the phrases

and keep the other one. We use the open source lexical english database WordNet [13]

to lookup the word synonyms. We fetch sets of synonyms, called synsets, for one of the

word and match the other word with each item in the synsets. If we find a match then

we consider the two words as synonyms. Otherwise, we fetch synonym sets of the other

word and match the first word against it. If still we do not find a match then the two

words are not considered as synonyms.

Analysis: Similar to the stop-word merge, the synonym merge being pair-wise, we

need nested loops for all possible merges. The time complexity of the merge operation

is O(n2), where n is the number of candidate phrases. However, synonym lookup is

expensive. WordNet 3.0 contains over 155,000 words with over 117,000 synsets and

hence locating a word in the synsets of the other is an expensive task. Once we detect

two phrases as similar, the question is how to merge them. Currently, we take either

of the two phrases and discard the other. This may not be the best strategy. A better

approach could be to use the term frequencies and retain the phrases having rarer

Chapter 5. Merge Strategies 35

terms. Finally, as opposed to the previous merge strategies, synonym merge works for

a highly selective and rather rare pairs of phrases. Hence, the performance pay off for

the synonym merge is low and its usage should be judicious.

5.2.3 Other Merges

We can extend the approximate merge for phrases as illustrated in algorithm 5.4 to many

other notions of text similarity. One such example could be approximate merge based

on stemming. Many phrases have the same word stem but they differ morphologically.

It could make great sense to merge all such phrases having same word stems. Another

example could be the use of phonetics based similarity depending on the application and

document content type. For example, documents about music (with transliterated song

snippets) could be used for such a merge.

5.3 Conclusion

We merge phrases to unique-ify the candidate set. We presented merge strategies in

this chapter which aim at combining complementary phrases and discarding redundant

supplementary phrases. We can merge phrases by the exact merge or the approximate

merge algorithms. The approximate merge carries the risk of false positives i.e. we

may merge phrases which are not really similar. But our approaches of stop-word

and synonym merges are conservative to weed out really similar phrases. We can take

more fuzzy matches into account depending upon the application requirements and

user preferences. The experiment section in Chapter 10 discusses the merging and

performance effectiveness of each of the merge strategies presented in this chapter.

36

Chapter 6

Filter Strategies

This chapter describes the filtering stage in the post-processing pipeline. The previous

merging stage produces unique phrases but many of them are not meaningful. The

filtering stage attempts to identify and filter out the phrases which could not possibly

make any sense to a user. The strategies presented in this chapter focus on the structural

and grammatical completeness of the phrases. Our phrase mining system filters out all

incomplete phrases broken in this sense.

6.1 Static Rule based filtering

Figure 6.1 depicts the filter stage and its sub-stages. The first three sub-stages are

static filters. Prior to post-processing, the phrases have been generated by the brute

force sliding window method. Hence, they are often cut in the middle at unexpected

positions in a sentence. This make them incomplete and hence incomprehensible to a

user. The large number of such malformed phrases need a filter for screening. Static

filters which are based on some pre-identified rules serve well for this purpose. Rules are

formed by looking at the data and generalizing over recurring patterns in the phrases.

As a consequence of filtering we incorporate all available prior knowledge about the data

and rule out the meaningless phrases. This helps in the classification stage which follows

next. The following sub-sections detail the three static filters based on the corpus, the

prefix-suffix information and parts-of-speech respectively.

6.1.1 Custom filter

The custom filter filters out the phrases based on static rules derived from the corpus. We

use custom the filter to weed out the corpus specific noise like advertisements, obituaries,

37

Chapter 6. Filter Strategies 38

Prefix-Suffix
Filter

Merged
Phrases

Filtered
Phrases

POS
Filter

FussyTree
Filter

Static Filters
Corpus based

Filter

Custom
Filter

MergeCandidate
Phrases

Quality
PhrasesFilter Rank GroupClassify

Figure 6.1: Filtering strategies in the post-processing pipeline

scripts and other stray text which inadvertently creep into the set of candidate phrases.

Ideally, the corpus parser should discard such noisy phrases in the first place. But phrase

index creation being expensive, we still need to handle it during query processing.

We use New York times corpus [5] in our experiments. A recurring noise in the phrases is

that of obituary notices. For example, phrases like “paid notice deaths kramer angela”,

“paid notice memorial nikolas frazer” and “world trade center referred incorrectly” are

cases of corpus noises and hence we filter them out. Table 6.1 lists the static rules which

we use in the custom filter for New York Times corpus. The first column in the table

indicates the condition and the second column lists the substring match. For example,

the rule in the first row would translate as: filter all phrases starting with “paid notice

deaths”.

Condition Matching substring
starts with paid notice deaths
ends with referred incorrectly
starts with notice deaths
starts with paid notice memorials

Table 6.1: Static rules for custom filer

Analysis: It is tedious to survey corpus data at the input source level. On the other

hand, it is convenient to look at the output phrase results and track the recurring

patterns. Once we find a pattern, we look it up back in the documents to ascertain

whether or not it is indeed a corpus noise. Accuracy of filtering rules is critical to

eliminate noise. Inaccurate or non-specific filtering patterns could either be ineffective by

keeping false negatives or could be an overkill by removing false positives. Additionally,

we form rules based on noise introduced by the tokenization of phrase.

Chapter 6. Filter Strategies 39

6.1.2 Prefix/Suffix filter

The prefix/suffix filter matches patterns of prefixes or suffixes and statically removes

the matched ones. The difference here as compared to custom filter above is that the

filtered prefixes or suffixes are not characteristic of the corpus but apply quite in general.

For instance, looking at the candidate phrases over several queries, we noticed a large

number of phrases ending with articles (a, an, the) which do not make sense for the user.

While such phrases may still contain some interesting attributes, they do not make sense

on the whole e.g. “tsunami hit the”. Here note that we are not interested in dissecting

a phrase into smaller parts to extract the information. We treat a phrase as a whole

and do not consider any sub-part of it. Hence, the phrases ending with articles can be

safely filtered out with high confidence. The conjunctions (and, or) appearing in the

end of a phrase are also the indicators of incompleteness. Similarly, many other phrases

are pieces of sentences having broken second or third person speeches. For instance, a

phrase may contain “said” in the end and make little sense to a user. An example of a

prefix pattern is the “s” from possessive terms. Table 6.2 lists the static rules which we

have identified.

Condition Matching pattern
ends with &
ends with and
ends with or
ends with a
ends with an
ends with the
ends with said
starts with s

Table 6.2: Static rules for prefix/suffix filter

Analysis: As in the custom filter, we need to craft the filtering rules carefully after rig-

orous skimming on representative phrases. Also, we should suitably adjust the tradeoff

between effective and over filtering. The single word patterns match a wide group of

phrases. This makes this filtering approach less conservative. Although this seems nec-

essary, we need to substantiate it by studying the drop in precision for a given query. We

present the results analyzing the effectiveness and the cost of these filtering techniques

in Chapter 10.

Chapter 6. Filter Strategies 40

6.1.3 Parts-of-Speech (POS) filter

The Parts-of-Speech (POS) filter makes use of the grammatical structure of a phrase to

decide whether or not to filter it. Certain sequences of parts-of-speech are strong indica-

tors of incomplete sentences. We attempt to identify such parts-of-speech sequences and

discard all the matching phrases. We form static filtering rules based on these sequences

and apply them to the dynamically retrieved phrase set. We could have made the pre-

fix/suffix filter in the previous sub-section redundant by incorporating the prefix/suffix

rules as parts-of-speech sequences. However, note that the parts-of-speech sequences

define a very generic set of rules which encompass a wider group of phrases. Due to this

lack of specificity in the POS filter, we first apply the more specific prefix/suffix filter

followed by a limited and universally applicable set of POS rules. These rules are framed

based on observation on the data over a range of representative queries. Finally, static

rules based filter, like POS filter, allows us to to eliminate the meaningless phrases. This

helps in the classification stage where we can train on better set of training phrases.

For the parts-of-speech tagging we use the Stanford Parts-Of-Speech Tagger [8]. We

tag each word in a phrase by its parts-of-speech. We tag the phrases on the fly during

query processing. However, the phrases being subpart of sentences, the tagger may not

be able to tag them accurately. A more comprehensive approach would be to tag the

phrases and store their tags in the phrase index itself. However, this would slow down

the index creation and inflate the index size. We discuss this idea in more detail in

Chapter 11. The Stanford Parts-Of-Speech Tagger uses the Penn Treebank tag-set [6]

for producing the tag outputs. It produces 36 different tags but we use 32 major ones

to be able to encode it in five bits. Hence, in this way up to six-term phrases could have

their tags encoded into a single integer. The bit packing of the parts-of-speech tag into

an integer helps save memory and disk space (for index level tagging) and also speed up

computation by allowing bitwise operations.

The POS sequences which we identify as patterns for filtering could be prefixes, suffixes

or contained in the phrases. Since the corpus parser tokenizes the phrases, which in our

case replaces all special symbols by a space character, we have to take care of possessive

forms of words. This is to make sure to treat the possessive word and the following

“s” as a single word. For instance, two of our static rules (sno. 9, 10) filters out the

phrases ending with the possessive forms of common or proper nouns. Table 6.3 lists

the rules used in our parts-of-speech filter. The second column in the table indicates

the matching condition (prefix, suffix, possessive ending). The third column contains

the parts-of-speech sequences in the Penn Treebank tag-set notation. The last column

in the table gives relevant examples.

Chapter 6. Filter Strategies 41

SNo. Condition POS pattern tags Example
1 starts with VBZ is the major client
2 ends with NN CC performances by leigh gable and
3 ends with NN IN jennifer lopez in care of
4 ends with NNS IN the graduates of
5 ends with NN WP al hallak who
6 ends with VBD DT lopez birdied the
7 ends with IN DT studio comedies of the
8 ends with DT JJ its protagonist has a great
9 ends possessive with NN my father’s
10 ends possessive with NNP barrack obama’s

Table 6.3: Static rules for parts-of-speech filtering

Table 6.4 lists the description and examples of the tags used in the above rules. The

complete list of description for all tags can be found at [7].

Tag Description Examples
CC conjunction, co-

ordinating
& and both but either et for less minus neither nor or plus
so therefore times v. versus vs. whether yet

DT determiner an another any both each either many much nary neither no
some such that the them these this those ...

IN preposition or
conjunction,
subordinating

astride among uppon whether out inside pro despite on
by throughout below within for towards near behind atop
around if like until below next into if beside ...

JJ adjective or nu-
meral, ordinal

third ill-mannered pre-war regrettable oiled calamitous first
separable ectoplasmic battery-powered participatory fourth
still-to-be-named multilingual multi-disciplinary ...

NN noun, common,
singular or mass

common-carrier cabbage afghan shed thermostat investment
slide humour falloff slick wind hyena override ...

NNP noun, proper, sin-
gular

Motown Venneboeger Czestochwa Ranzer Conchita Trum-
plane Christos Oceanside Escobar Kreisler Sawyer Cougar
Yvette Ervin ODI Darryl CTCA Shannon A.K.C. Meltex ...

NNS noun, common,
plural

undergraduates scotches bric-a-brac products bodyguards
facets coasts divestitures storehouses designs clubs fra-
grances averages subjectivists apprehensions muses ...

VBD verb, past tense dipped pleaded swiped regummed soaked tidied convened
halted registered cushioned exacted snubbed strode aimed
adopted belied figgered speculated wore appreciated ...

VBZ verb, present
tense, 3rd person
singular

bases reconstructs marks mixes displeases seals carps weaves
snatches slumps stretches authorizes smolders pictures
emerges stockpiles seduces fizzes uses bolsters slaps ...

WP WH-pronoun that what whatever whatsoever which who whom whosoever

Table 6.4: Static rules for parts-of-speech filtering

Analysis: As opposed to custom and prefix/suffix filters, the parts-of-speech filter de-

fines the most generic set of static rules. Hence, we need to evaluate the drop in precision

Chapter 6. Filter Strategies 42

across this stage. The POS tagging at post-processing time could be a processing over-

head since the system is constrained with a few seconds of response time. Hence, we

need to consider the time latency and the tagging accuracy requirements of this filter.

Chapter 10 details the evaluation for POS filter. Additionally, by virtue of using POS

tagger, this filter is restricted by the POS tagging capabilities. For instance, it cannot be

applied on multi-lingual corpus or corpus having transliterated text because POS tagger

will not work on these. Also, the POS tagger assumes grammatically well formed text in

the corpus. This may not be the case for many real world data like social network forums

and discussions which are prevalent with abbreviations and other colloquial language.

Finally, the static filtering techniques can be used for index pruning by removing the

phrases which are consistently observed to be filtered out over a period of time. Chapter

11 discusses these optimizations in detail.

6.2 Corpus-based filtering

The filters discussed so far try to formulate rules applicable across all phrases. But

we can also learn from the corpus itself. Recurring patterns in the corpus could be

framed as rules applicable to a particular corpus. Based on the corpus, if we are sure

of a group of words occurring together in a sequence then they can be used to detect

incompleteness. Given a phrase we try to see if it can be extended in its suffix. The

information pieces in sentences are usually in their latter part. Hence, phrases which

are extensible in their suffixes with high confidence could indicate incompleteness. We

can store frequent phrases in the corpus in a tree like data structure (e.g. suffix tree).

We can then use it to deduce whether a given phrase can be safely extended in its suffix

or not. Below, we describe the usage of a variant of suffix tree in our application.

6.2.1 FussyTree filter

Arnab et al. [29] propose a technique for phrase prediction in auto-completion and user

assistive systems. The idea is similar to string suffix trees [28]. Their objective is to

predict and suggest the full phrase suffix as a user starts typing in the first few words.

To do so, they propose a variant of the pruned count suffix tree called FussyTree in which

each node represents a word. Additionally, the FussyTree contains only those phrases

which satisfy the notion of significance. A phrase “AB” is said to be significant if it

satisfies the following conditions:

• frequency : “AB” occurs at least τ times in the corpus.

Chapter 6. Filter Strategies 43

• co-occurence : Observed joint probability of “AB” is higher than that of indepen-

dent occurrences, i.e.

P (“AB”) > P (“A”)× P (“B”)

• comparability : Likelihood occurrence of “AB” is comparable to “A”, i.e. for z ≥ 1

P (“AB”) ≥ 1
z
× P (“A”)

• uniqueness : “AB” is more likely than “ABC” for every choice of “C”, i.e.

P (“AB”) ≥ y × P (“ABC”)

Above four conditions have τ, y and z as tuning parameters. All the phrases satisfying

these conditions are inserted into the FussyTree. Algorithms 6.1-6.4 shows the construc-

tion of FussyTree. The FussyTree method first constructs a pruned n-gram frequency

table and then builds the tree as the second step. The n-gram frequency table contains

frequencies of all phrases of length up to a maximum window size. Algorithm 6.1 out-

lines the frequency table construction. The algorithm parses the corpus (line 1-5) and

updates the frequency table for each phrase found within the sliding window. It then

prunes the overall frequency table based on the minimum threshold frequency.

Algorithm 6.1: buildFrequencyTable
input: maxTrainingWindowSize, threshold

foreach document in corpus do1

foreach sentence in document do2

for i← to maxTrainingWindowSize do3

//slide through with a window of size i4

foreach phrase in slidingWindow(sentence,i) do5

updateFrequencyTable(phrase);6

end7

end8

end9

end10

pruneFrequencyTable(threshold);11

The next step us to built the FussyTree using the frequency table constructed above.

Algorithm 6.2 shows the building stage. Again, the algorithm parses the corpus (line

1-3) and calls addPhrase() method for each phrase of length maxWindowSize. The

algorithm adds the phrase and its sub-phrases recursively in addPhrase().

Algorithm 6.3 shows the addPhrase() method. The algorithm iterates over all prefixes

of the phrase. It adds the prefix if it satisfies the frequency criteria. Each node in

Chapter 6. Filter Strategies 44

Algorithm 6.2: buildFussyTree
input: corpus, maxWindowSize

foreach document in corpus do1

foreach sentence in document do2

foreach phrase in slidingWindow(sentence,maxWindowSize) do3

addPhrase(phrase);4

end5

end6

end7

the suffix tree contains the word and pointers to its parent and children for navigation.

Additionally, the nodes having the last word of a phrase also contain a flag indicating that

this particular access path is a phrase. For better compression and memory optimization,

we use integer term IDs for each term in the phrase to store in the tree nodes. Also, note

that as opposed to single-term suffix trees where each node stores a single character and

hence can have at most 26 children, the suffix tree nodes in our scenario contain words

and hence can have a considerably large fan out.

Algorithm 6.3: addPhrase
input: phrase

while phrase 6= {} do1

if isFrequent(phrase) then2

appendToTree(phrase);3

return ;4

end5

Set phrase←− removeRightmostWord(phrase);6

end7

To check whether a phrase is frequent or not, we look up all its sub-phrases of length

up to maxTrainingWindowSize into the frequency table (Algorithm 6.4). If any of

these sub-phrases is not present in the already pruned frequency table then we consider

the phrase as infrequent. This is in accordance to the definition of significance that we

defined earlier.

The FussyTree construction is CPU intensive. However, since it is based on the corpus,

it changes only when the corpus changes. Hence, we can extract and store the frequent

phrases with their corresponding frequencies in a serialized fashion on the external stor-

age. We load these significant phrases into the tree structure in main memory during

startup. This saves the frequency table construction and phrase significance detection

overheads during startup.

Once we have constructed and loaded the FussyTree into the memory, we can look

up incoming phrases for possible suffix completions. Starting from the root node, for

Chapter 6. Filter Strategies 45

Algorithm 6.4: isFrequent
input : phrase
output: boolean

for i← 1 to maxTrainingWindowSize do1

//slide through with a window of size i2

foreach p in slidingWindow(phrase,i) do3

if not frequencyTableContains(p) then4

return false;5

end6

end7

return true;8

end9

every word in the phrase we traverse down the suffix tree until we locate the node

corresponding to the last word in the phrase. From this node, we do breath first search

through its children to find if there are any descendent nodes marked as phrase. In case

we find at least one such descendent, the phrase is deduced to have a complementing

suffix. However, no suffix extension is possible if we cannot find a corresponding node

at any level in the suffix tree.

Suffix completions to a phrase predicted in this fashion can be used to decide whether

to keep or discard the original phrase. While the original FussyTree paper tries to

find possible completions for auto-suggestion, we find probable completions for effec-

tive filtering. However, we need to adjust the tuning parameters to transform the

acceptability criteria into unacceptability criteria with high confidence. Arnab et al.

[29] deduce maxTrainingWindowSize as 8. But while they are looking for arbitrar-

ily long auto-completions, we are looking at relatively smaller phrases. So we choose

maxTrainingWindowSize as 3 i.e. we consider uni-grams, bi-grams and tri-grams while

constructing the frequency table. Similarly, the original work decides the frequency

threshold value of 4. In our case we are looking at rejection criteria, hence we take

a threshold value of 12. Finally, we also limit the maximum phrase length to 9 while

building the tree. This is done considering our phrase index contains only 2-5 word

phrases.

We use FussyTree constructed in such a manner to find possible suffix completions. In

case we find a completion, the FussyTree filter discards the corresponding phrase from

the set of candidate phrases. An example scenario of such filtering can be a phrase

ending with only a part of a named entity that is truncated in between. For instance,

if we have a text corpus containing documents on world travel then the FussyTree can

detect a phrase ending with “the great wall” to be extending to “the great wall of china”.

Chapter 6. Filter Strategies 46

Analysis: Though the FussyTree stores the phrases as integers, the size of the trie is

a major concern. Arnab et al. [29] experimented with just 53MB of data whereas the

New York Times corpus which we use is 12GB in size. We construct a sparse tree in

our experiments choosing 1 in every 100 documents uniformly. The resulting FussyTree

with the above mentioned significance constraints has 882, 749 phrases and has a size

of around 700MB. This could be a considerable overhead given that the tree needs

to be in memory during post-processing. Another issue could be the effectiveness of

this filtering approach. While the phrases which FussyTree filters out could be justified,

the ones left behind may still be contentious. We need to evaluate the payoff for the

complicated tree construction and maintenance. Finally, the sparsity of the FussyTree

(1 in 100 documents in our case) is a crucial parameter. For larger data sets, as in

our case, there is a trade-off between coverage and size of the FussyTree. Consequently,

many phrases might not find their end node in the FussyTree due to the lack of coverage

and not due to insignificance.

6.3 Conclusion

Our phrase mining system system uses static rule based, corpus based and dynamic

classification based filtering. Filtering is an effective way to utilize information observ-

able from the data and alleviate the overhead in subsequent stages. The downside,

though, is the tedious inspection of data and the possible risking of loosing the relevant

phrases. While formulating filtering rules, there is a trade-off between too loose (under-

specifying) and too strict (over-specifying) rules. We need to evaluate the trade-off using

experimental study. Chapter 10 presents experimental results on this.

Chapter 7

Phrase Classification

This chapter describes the phrase classification stage in our post-processing pipeline. The

filtering process discussed in the previous chapter is a best effort filter and the subsequent

phrase set still contains a mix of phrases ranging from most the interesting to not at all

meaningful ones. Interesting phrases have an underlying pattern of attributes or features

and we wish to uncover it. For this we first extract all heuristics based attributes or

features characterizing a phrase. Depending upon their features, the phrases are assigned

labels as per their interestingness, evaluated with reference to a pre-labelled data. We

discuss the various steps of phrase classification in this chapter. Later, we aggressively

filter the phrases which are obviously uninteresting based on the classifier probability

estimates for the class labels.

7.1 Feature Extraction

The first step to machine learning based classification is to extract features from the

data items to be classified. A feature is a prominent or a distinctive aspect, quality or

characteristic of the data. To be able to make the decision of assigning a particular label

to a data item, we need to extract all such prominent and distinctive aspects present

in the data item. The quality and accuracy of classification depends on the choice of

features and their effective extraction. The goal is to identify and extract the typical

features that really characterize the data items to be able to do precise classification.

Though a perfect set of features is desirable, getting the right features is a challenging

task. Once extracted, we express the features in numerical terms and arrange them in

the vector form, called the feature vector. This helps us in performing the subsequent

computations. Since the feature vector for every data item has the same number of

47

Chapter 7. Phrase Classification 48

dimensions, many of them could be sparse vectors i.e. many dimensions may have empty

or null values due to the lack of the corresponding feature in the data item.

Feature
Extraction

Filtered
Phrases

Classified
Phrases

Feature
Selection

Label
Prediction

MergeCandidate
Phrases

Quality
PhrasesFilter Rank GroupClassify

Threshold
Filter

Figure 7.1: Classification steps in the post-processing pipeline

Our phrase mining system extracts features and constructs feature vectors for each of

the phrases. These vectors are then used to classify the phrases into labels depending

upon their interestingness levels. We are extracting features on the fly and hence time

level guarantees must be adhered. We face several problems in feature extraction. One

particular problem is their short length of phrases. Another problem is the ad-hoc nature

of phrases as they have been clipped from anywhere in a sentence. This impedes the

extraction of much more rich set of features as many of the artifacts may get split or

terminated unexpectedly. Below we list the phrase features used in our phrase mining

system and we describe their extraction in detail:

1. Number Of Terms: Amongst different phrases, the length of a phrase may be an

indicator of its interestingness. So this feature simply counts the number of single

word terms present in the phrase.

2. First Term: Starting word of a phrase may be another indicator of phrase quality.

Certain standard starting words may be helpful in identifying good or bad phrases

in terms of quality. This features classifies first word in the phrase as a stop-word,

an article, a query term or any other word and assigns it the value of 1,2,3 or 4

respectively.

3. Last Term: This feature finds the type of the last word in the phrase as a stop-

word, an article, a query term or any other word and assigns it the value of 1,2,3

or 4 respectively.

4. Fresh Terms Ratio: By fresh terms we mean terms other than stop-words and those

present in the user query. The fresh terms may indicate additional information in

Chapter 7. Phrase Classification 49

a phrase. This feature value corresponds to the ratio of the number of fresh terms

and the total number of terms in the phrase. We take the ratio to normalize the

value. Since number of terms is a separate feature, normalized values would suit

better.

5. Possessive Terms Ratio: During inspection of the data we observe a lot of pos-

sessive terms like “principal’s”. Apart from indicating a noun or even a named

entity, some information related to that noun may also follow the possessive term.

This feature value corresponds to the ratio of the number of possessive terms and

the number of terms in the phrase.

6. Average Term Length: The lengths of the terms in a phrase is another characteris-

tic of the phrase. While smaller length words tend to be more like stop-words and

irrelevant, larger length words are more likely to be conveying some information.

This feature contains the average length of all terms in a phrase.

7. Maximum Term Length: The average of the term lengths may smooth out a char-

acteristically long word in a long phrase. Hence, we use another feature to capture

this spike in the term length. This feature value is set to the maximum term length

amongst all terms in the phrase.

8. Salutation Terms Ratio: The salutation terms address people and indicate the

subsequent partial or complete presence of named entities. Such phrases may

obviously be of interest. The salutation terms we look for are: “mr”, “mrs”,

“miss”, “master”, “lord”, “excellency”, “highness” and “majesty”. This feature

value contains the number of salutation terms normalized by the total number of

terms in the phrase.

9. Initial Terms Ratio: Many times the names of people, places and organizations

are abbreviated, called initials, to the first alphabets of the terms. Again, this

gives indication about a named entity being discussed. This feature value consists

the ratio of the number of initial terms found in the phrase and total number of

terms present in it.

10. Currency Symbols Ratio: The currency symbols indicate some quantifiable infor-

mation, which could be of interest. This feature value represents the number of

dollar symbols normalized by the number of terms in the phrase.

11. Numeric Terms Ratio: As pointed out in previous feature numerical terms are

significant artifact in a phrase. The numbers may denote time, money, or any

other measurable quantity. This feature represents the ratio of the number of

numerical terms to the total number of terms in a phrase.

Chapter 7. Phrase Classification 50

12. Query Terms Ratio: The presence of query terms indicates relevance. At the same

time phrases being small length texts, too many query terms in a phrase may not

leave the room for any additional information. Nevertheless, number of query

terms is an important feature in a phrase. As in previous features, this number is

normalized.

13. Stop Words Ratio: The phrases inundated with stop-words may have less infor-

mation content and consequently lower interestingness value. However, there are

counter examples like “to be or not to be” where the phrase is interesting despite

most of its words being stop-words. This is an one-off example and stop-words

usually do not add to the information of interest. This feature value corresponds

to the fraction of stop-word terms in a phrase.

14. Articles Ratio: The stop-words cover a wide range of words and hence may not

form patterns in interesting phrases. Articles (“a”, “an”, “the”) on the other hand

is a smaller set and can have some recurring pattern in the data. This feature value

contains the fraction of article terms in the phrase.

15. Named Person Entities: This feature uses a named entity recognizer to extract

the named entities in the phrase. We use the Stanford Named Entity Recognizer

to extract named entities. The entities can have multiple terms within a phrase.

This feature value represents the number of person named entities (for example

“Jim Carrey”) found in the phrase. We do not normalize the value here because

we expect phrases containing more named entities to be more interesting despite

being longer.

16. Named Location Entities: This feature value represents the number of location

named entities (for example “London”) found in the phrase.

17. Named Organization Entities: This feature value represents the number of orga-

nization named entities (for example “Saarland University”) found in the phrase.

18. Parts Of Speech First Term: The parts-of-speech of the terms in the phrase can

help us understand the nature, structure and correctness of the phrase. Addition-

ally, presence of nouns can indicate things of interest. Phrases being of variable

length, it is not possible to capture parts-of-speech of every term in a phrase as a

feature. However, we can capture parts-of-speech for the starting and the ending

terms, which are crucial. We use the parts-of-speech tags from Penn Treebank

tag-set [6] and represent them as integers between 0-31. This feature value is the

integer representation of the parts-of-speech of the first term in the phrase.

19. Parts Of Speech Second Term: This feature value is the integer representation of

the parts-of-speech of the second term in the phrase.

Chapter 7. Phrase Classification 51

20. Parts Of Speech Last Term: This feature represents the parts-of-speech of the last

term in the phrase.

21. Parts Of Speech Second Last Term: This feature represents the parts-of-speech of

the second last term in the phrase.

22. Parts Of Speech Third Last Term: This feature represents the parts-of-speech of

the third last term in the phrase.

23. Inverse Term Frequency First Term: The term frequencies are good indicators of

frequent or rare terms. Rarity is an element of surprise and hence highly likely

to be interesting. Since we compute the frequencies over the full corpus, they do

not have any local effects. Inverse term frequencies are frequencies represented in

inverse order such that frequent terms have smaller numbers and rare terms have

larger number. Again, since we cannot put inverse term frequencies of all terms

in a phrase as features, we consider the inverse term frequencies of starting and

ending terms as features. This feature represents the inverse term frequency of the

first term in the phrase.

24. Inverse Term Frequency Second Term: This feature value represents the inverse

term frequency of the second term in the phrase.

25. Inverse Term Frequency Last Term: This feature value represents the inverse term

frequency of the last term in the phrase.

26. Inverse Term Frequency Second Last Term: This feature value represents the

inverse term frequency of the second last term in the phrase.

27. Inverse Term Frequency Third Last Term: This feature value represents the inverse

term frequency of the third last term in the phrase. Since ending words are more

crucial we take one extra term frequency in the trailing part of the phrase.

28. Average Inverse Term Frequency : The inverse term frequencies of the beginning

and the ending terms in a phrase give term level insight. Similarly, an average

of the term frequencies over all terms can give an idea of the overall rarity of the

phrase. This feature value represents the average of inverse term frequencies of all

terms in the phrase.

29. Maximum Inverse Term Frequency : Sometimes there is only one very rare term

in a phrase, enough to make the whole phrase interesting. This feature captures

such a spike by representing the maximum inverse frequency amongst all terms in

the phrase.

Chapter 7. Phrase Classification 52

30. Minimum Inverse Term Frequency : Converse to the maximum inverse term fre-

quency, this features represents the minimum inverse term frequency among all

terms in the phrase.

As mentioned before, the short phrase length is a hindrance to extracting a much more

rich set of features. However, we can push down some feature extraction techniques to

the indexing stage. For instance, we can do parts-of-speech tagging and store the tags at

the indexing stage itself. This improves the accuracy of tagging as the tagger can work

on full sentences as opposed to an ad-hoc subset of it. Similarly, we can do named entity

extraction at the indexing level as well. These techniques, however, require considerable

pre-processing and storage at index time. We discuss these in more detail in Chapter

11.

More possibilities on extracting phrase features exist. So far we have only considered

statistics local to our corpus. We can also consider global statistics from web search

engines. We can count the occurrences of phrases on such systems and thereby compute

point-wise mutual information style measure. This can be considered as another feature

for the phrases. So far we have characterized desirable aspects in a phrase. We could

also characterize the non-desired facets of the phrases.

Another approach for a more exhaustive set of underlying features could be to first

cluster similar phrases dynamically and then extract features from the whole group of

phrases. The classifier will then assign labels to clusters as a whole. We can extract

much more relevant and quantity of features from such a dynamic cluster of phrases.

The challenge, however, lies first in forming the appropriate clusters and second in

aggregating the features values of all phrases in the same cluster. Additionally, very

small clusters may tend to over-specialize while too big clusters may become generic.

One might also think that in order to create the right clusters we need the right features

and so the problem becomes recursive. Another issue is to aggregate the feature values

for a cluster of phrases. Averaging them could produce a jaded and lesser distinctive

feature set. Still we can explore this idea as part of future work.

7.2 Feature Selection

Not all the features present in a feature set may be relevant for the classifier. Many

features are redundant and add to the noise. Additionally, large number of dimensions

(each feature being a separate dimension) makes classification computationally expen-

sive. Pruning down the feature set to the more relevant features makes the training and

Chapter 7. Phrase Classification 53

application of classifier more efficient. Also, removal of redundant features reduces the

noise and hence increases classifier accuracy.

We can use mutual information (MI) to compute how much information the presence/ab-

sence of a feature contributes in making the correct choice of classification label. χ2 is

another method for feature selection which tries to find how much independent are the

feature and a particular class label. Typical text mining applications such as spam de-

tection consider each term as a feature and consequently have a very large and noisy

vocabulary. Our phrase mining system on the other hand has a handful of carefully

crafted features.

7.3 Training Classifier

We need a set of labeled data to train the classifier in order to predict the class label

for a phrase. We need to label training data manually since the interestingness of a

phrase is a user interpreted aspect. Looking at it another way, if we already had a

system to automatically assign interestingness label to phrases, we would not need the

classification model in the first place. A precisely labeled data improves the effectiveness

of the classification model. Also, we should use data which is representative over the

typical result set for labeling. Table 7.1 lists the labels that we use for training. Labels

0-3 are used in increasing order of interestingness.

Label Descriptor Example
3 Very Interesting lose yourself by eminem
2 Interesting immigration charges in august 2001
1 Not Good that forced american to cancel
0 Poor lopez played the

Table 7.1: Phrase Labels with illustration

Since labeling is a subject to individual interest, it is important to have several people

doing it. In our approach we split the data set randomly and assign each person a

different subset of the data set. Another approach could be to assign the same data set

to multiple persons and then average out the labels for each phrase. Still, labeling is a

painstaking and a diligent activity. Another approach could be to use crowd sourcing

to get uniformly biased labels. The idea here is to leverage the wisdom of the crowd.

People are using commercial platforms like Amazon’s Mechanical Turk [4] for relevance

evaluation. We could also use such platforms to get the labeled data for training.

Chapter 7. Phrase Classification 54

7.4 Label Prediction (Classification)

Once we have the feature set and a training data, we can classify the phrases. Given a

data item, a classifier predicts the most likely class label for it. There is an important

distinction between classification and clustering which we need to clarify. Classification

is a supervised learning where we know the number of class labels before hand whereas

clustering is an unsupervised learning where we determine the number of class labels on

the fly. Consequently, classification requires labeled data as opposed to clustering.

One way to measure interestingness could be to combine the feature values, which are

already in numerical terms, in a linear fashion. The problem then boils down to learning

the weights of the features to be combined in the linear fashion. This is considered a

linear regression problem. A classifier can exploit this and then do the classification

using the regression function. Many other classification techniques exist in literature.

Right choice of classifier depends on data distribution, the training data and the feature

set. Below we mention some of the techniques which we considered for our system:

Linear Regression: It has linear decision boundaries i.e. hyper-planes in higher dimen-

sions. The classifier obtains the hyper-planes by linear combination of feature values.

The problem then reduces to finding the weights to the feature values.

Logistic Regression: It is a generalized linear model which predicts the probability of

occurrence of an event by trying to fit data to a logistic curve.

Perceptron: It finds hyper-plane that correctly classifies data points as much as pos-

sible. It is guaranteed to learn from linearly separable data.

SVM: It finds the hyper-plane that maximizes the margin (largest distance between

two nearest two data points). It is also called large margin classifier.

k-Nearest Neighbor: The idea of this classifier is to find the best matching phrase

from the training set. To classify a phrase, the classifier assigns it the class label of the

most similar phrase from the training data. This is a non-linear classifier.

Naive Bayes: It is a simple classifier method based on Bayes theorem with feature

independence assumption i.e. presence or absence of a feature is independent of presence

or absence of class label.

In our phrase mining system we use the classifier in the post-processing pipeline to

predict the interestingness of a phrase in terms of the predicted label. This coarse

granular indication of interestingness helps in getting chunks of phrases similar to those

produced manually by labeling. We can then compute the actual interestingness measure

Chapter 7. Phrase Classification 55

as a combination of the probability estimates for the class labels. In case of linear

regression the probability estimates are simply the linear combination of feature values.

We can use the interestingness measure or scores to rank and differentiate phrases within

a class. Figure 7.2(a), (b), (c) shows raw, classified and ranked phrases respectively. We

discuss this strategy in more detail in the next chapter.

Phras
e

Phrase

Phrase

Phrase
Phrase

Phrase
Phrase
Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phras
e

Phrase

Phrase

Phrase

Phras
e

Phrase

(a) Raw Phrases

Phras
e

Phrase

Phrase

Phrase
Phrase

Phrase
Phrase
Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phras
e

Phrase

Phrase

Phrase

Phras
e

Phrase

(b) Classified Phrases

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

(c) Ranked Phrases

Figure 7.2: Phrase Classification

7.5 Classifier based filtering

In this filter we use the classifier probability distribution for the class labels to aggres-

sively filter and further prune the set of candidate phrases. Though we can incorporate

classifier estimates into the ranking function but we can still exploit the probability

estimates of the classifier for filtering.

7.5.1 Threshold filter

We assume to have a classifier assigning class labels to phrases based on their interest-

ingness. We also assume to have probability distributions for the class labels i.e. for each

class label we have the probability of a phrase being classified in that label. We can

then use them to set hard coded threshold boundaries for totally uninteresting phrases

i.e. we outright filter phrases labelled as uninteresting with very high probability (or

confidence) or interesting with very low probability (or confidence).

Out of the four class labels (0,1,2,3) used in our phrase mining system, the class label

3 indicates the most interesting phrases while label 0 indicates not at all interesting

phrases. We apply the following static filtering rule to discard the phrases based on

their class label probability distributions:

P (label = 0) ≥ 0.90 ||P (label = 1) ≥ 0.90

Chapter 7. Phrase Classification 56

With this rule we filter out the phrases having at least 90% likelihood for label 0 or 1.

The above rule tries to discard the obviously uninteresting phrases by applying only the

negation test i.e. only those phrases having high probability for labels 0 and 1. We do

not yet discard phrases which have low probability for labels 2 and 3 and hope that this

will be taken care of by scoring function during ranking described in the next chapter.

7.6 Conclusion

This chapter discussed the use of machine learning techniques to phrase mining. Phrases

being arbitrary sequence of words, the most crucial challenge is to have the right set

features. Hand crafted set of features and hence limited vocabulary alleviates the need

for dedicated feature selection. We can apply standard classification techniques to pre-

dict and assign labels to phrases. Text classification is in general limited by the quality

of the feature set and the training data. However, we need to experimentally com-

pare the different techniques for their accuracy. Chapter 10 describes such experimental

evaluation.

Chapter 8

Phrase Ranking

This chapter describes the ranking of phrases in our post-processing pipeline. We rank

phrases to get a top-k list of phrases. The previous classification stages produces sets

of interesting phrases but we still need to order them. We need an effective ranking

to pull the most interesting phrases to the top. Also, ranking gives us an idea of the

overall quality of the result set. In this chapter we describe the ranking of phrases across

different classes, identify the important ranking parameters and discuss possible ranking

functions.

8.1 Ranking Within and Across Labels

The previous chapter on classification mentioned the four class labels used by our phrase

mining system. These class labels give a coarse level indication of phrase interestingness.

But since we extract the phrases from ad-hoc document collections, the number of

phrases in each of the classes may be too large for manual inspection. Hence, we need

to add some order in each of the classes of phrases. Figure 8.1(a) depicts the ranking of

phrases within each class.

The phrases, thus ranked internally within each class, still require a user to sample

phrases from each of the classes. This requires us to fetch top-k phrases from each

bucket. If the number of buckets or classes is large then top-k retrieval from each bucket

may be expensive. Also, the result of classification stage depends on the training set of

phrases. We obtained four sets of broadly classified phrases. But it is possible that the

best phrase in “interesting” class can be more interesting than the worst phrase in “very

interesting” class. Hence, we need to create a globally ranked list of phrases as depicted

in 8.1(b).

57

Chapter 8. Phrase Ranking 58

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Phrase

Very
Interesting

Interesting Not Good Poor

(a) Phrases Ranked Within

Phrase
Phrase
Phrase

Phrase
Phrase

Phrase
Phrase

Phrase
Phrase
Phrase

Phrase
Phrase

Phrase
Phrase

Phrase
Phrase

Phrase
Phrase
Phrase
Phrase

(b) Phrases Ranked Across

Figure 8.1: Phrase Ranking

8.2 Ranking Parameters

In this section we discuss the parameters which we can use for phrase ranking. Since

we want to have a final numerical score, we consider only quantitative parameters. We

extracted a lot of numerical features of phrases in the previous chapter for classification

and one might think of using them as well. But those feature values are already consumed

by the classifier to produce the probability distribution for the class labels. We describe

the ranking parameters of interest in the following subsections:

8.2.1 Local and Global Frequency

The frequency of a phrase in the ad-hoc document collection (local frequency) and

in the overall corpus (global frequency) are good indicators of significance as well as

relevance. The forward index, used to store the phrases, preserves the global frequency

and computes the local frequency of each phrase while merging the posting lists. In

[16] the authors use the ratio of local and global frequencies as interestingness. This

makes sense as it gives the relative occurrence of a phrase in the dynamically retrieved

document collection. Additionally, it offsets the frequently occurring irrelevant phrases.

We can therefore combine the local and global frequencies in our ranking function.

Chapter 8. Phrase Ranking 59

8.2.2 Classification Distribution

The classification stage described in the previous chapter estimates the probability of

a phrase being in each of the class labels. Then it selects the label with maximum

probability as the predicted label. Apart from considering the predicted label, we can

also use the probability distributions of the class labels and combine them in an effective

manner. The combination can assign positive weights to the relevant labels (2 and 3)

and negative weights to the irrelevant ones (0 and 1).

8.2.3 Document Relevance

Apart from looking at phrase features, we can also look at the document containing

the phrase. The most obvious measure is the relevance of the document containing the

phrase. This tells us how much is the phrase relevant to the user query and consequently

how much is it likely to be interesting for the user. Search engines typically compute

document scores at query time to rank the documents. We can incorporate the same

scores in our ranking functions.

8.2.4 Size of document collection

Size of document collection is another dynamic measure which we can consider. This

gets especially important when comparing phrases from several queries in an OLAP

style analysis. The queries which fetch a small number of relevant documents could be

highly specific. Hence, a large set of phrases from them could be of interest to the user.

On the other hand, queries which fetch a large number of documents may need to prune

their phrase set more aggressively.

8.2.5 Document Rank

The parameters discussed above use only the dynamic properties of a phrase. We can

also use static measures like the static rank of the document containing the phrase.

This means that we rank the phrases retrieved from more important or authoritative

documents higher as compared to those from less authoritative documents. PageRank

is a widely used document rank and can be incorporated into the ranking function.

Chapter 8. Phrase Ranking 60

8.2.6 Global Statistics

The measurements so far use only the corpus local information. But we can also consider

global statistic from other popular information retrieval systems like web search engines.

Our document corpus being limited and restricted may not truly reflect the universal

appeal or interestingness of a phrase irrespective of the context or query. We can get

frequencies of a phrase and its individual terms and then use them to get a point-wise

mutual information (PMI) style measure. This can give an hint to the global surprise

factor associated with a particular phrase.

8.3 Ranking Functions

Currently, we use the probability distribution of the class labels for ranking and consider

the various ways to combine them. These include linear, logarithmic or exponential

combination of the parameters. However, to arrive at the right ranking function we

need to do relevance evaluation of our results. Below we discuss and describe some of

the ranking functions considered in our phrase mining system. Here p0, p1, p2 and p3

are the probabilities of labels 0,1,2 and 3 respectively:

Linear combination with positive weights: This scoring function simply assigns

the corresponding labels values as weights to the label probabilities. Label 0 gets a

weight of 0 and hence its corresponding probability does not contribute to the scoring

function. We illustrate the function as below:

Score = 3.p3 + 2.p2 + 1.p1 + 0.p0

Linear combination with positive and negative weights: This scoring function is

again a linear combination but allows both positive and negative weights. We consider

labels 3 and 2 as desirable and labels 1 and 0 as undesirable. Hence, probabilities of

label 3 and 2 have positive weights while the probabilities of label 1 and 0 have equally

negative weight. The function is as below:

Score = 2.p3 + 1.p2 − 1.p1 − 2.p0

Exponential combination: Instead of looking at each label individually, we can boost

the ranking score if relevant labels (2 and 3) have higher probabilities and punish if

irrelevant labels (0 and 1) have higher probabilities. This strategy pulls up the phrases

which have high probabilities for labels 2 and 3. Similarly, it pushes down phrases which

Chapter 8. Phrase Ranking 61

have high probabilities for labels 0 and 1.

Score = p3.p2
2.(1− p1).(1−√p0)

Logarithmic combination: Another way to look at scoring could be to find out how

much more likely are relevant labels (2 and 3) as compared to irrelevant labels (0 and

1). The scoring function boosts the phrases which have higher probabilities for label 3

and 2 as opposed to those for labels 0 and 1.

Score = log
2.p3 + p2

p1 + 2.p0

8.4 Conclusion

The set of interesting phrases from an ad-hoc document collection could be arbitrarily

large. Hence, it becomes necessary to rank them in descending order of their interest-

ingness. We can take several dynamic, static and global parameters into account while

ranking. In this chapter we presented ranking functions based on only the class label

probabilities. However, we can consider many more ranking functions incorporating

other ranking parameters. Finally, we need to evaluate the ranking functions for rele-

vance and a user study to substantiate it. We present relevance evaluation in Chapter

10.

62

Chapter 9

Phrase Grouping

This chapter describes the grouping of phrases in the post-processing pipeline. The

ranking stage returns top-k results ranked by interestingness. However, the phrase

result set may still contain a lot of phrases on similar topics or domains. Such phrase

results may get boring for a user. At the same time, slightly lesser interesting phrases

from other domains could provide a better overview. Hence, for a holistic view we need

to diversify the top-k phrases. In this chapter we describe grouping of phrases based on

clustering and similarity. We discuss nouns and cosine similarities as two measures for

grouping.

9.1 Group by Clustering

The previous classification stage groups phrase into four classes. But we may need more

fine granular and dynamically derived groups. We can do this by clustering. A possible

way to do it is to use a subset of the phrase features for clustering. For instance, we

can use the term frequencies of words in the phrase to group phrases having same or

similarly frequent words. We can use popular clustering techniques like Expectation-

Maximization and k-Means. This machine learning based clustering can even precede

the ranking stage. Such a scenario will be akin to a two-stage machine learning. The first

stage creates clusters and the second stage labels phrases within each cluster. However,

the problem with machine learning based clustering is that it is hard to adjust the

clusters such that each cluster represents a separate topic. Hence, the features which we

use for clustering are crucial.

63

Chapter 9. Phrase Grouping 64

9.2 Similarity based Grouping

Apart from machine learning techniques, we can also group phrases based on similarity

between them. The objective is to form groups of most similar phrases. Since we need

grouping to be much more definitive, heuristics based features may not be suitable. We

take more suggestive artifacts such as nouns to group phrases. Once we have a similarity

measure, for a given phrase we find the phrases most similar to it. Next, we look up the

phrases which are most similar to this new phrase. We repeat this process recursively,

as long as we find phrases satisfying the lower threshold for similarity. This approach is

similar to connected components labeling.

Algorithm: Algorithm 9.1 takes a set of phrases and a similarity measure as inputs.

Line 1 initializes a set of groups to empty. Next we iterate over the set of phrases as long

as it contains ungrouped items (line 2). In each iteration, we pick a phrase, called the

root phrase, from the phrase set (line 3) and create a new group with the root phrase as

its element (line 4). Next, we populate the group with similar phrases from the phrase

set (line 5). We add the populated group to the set of groups (line 6). Finally, we return

the set of groups as the output (line 8).

Algorithm 9.2 populates the group with similar phrases. It takes a phrase set, a root

phrase, a similarity measure and a phrase group as inputs. Line 1 removes the root

phrase from the phrase set since it has been already added to the group. Next, we find

the phrase most similar, based on the similarity measure, to the root phrase (line 2).

If such a phrase exists then we add it to the group (line 3-4) and populate the group

recursively, considering the similar phrase as the root now (line 5). Else, we terminate

(line 6).

Algorithm 9.1: phraseGrouping
input : phrases, measure
output: groups

Set groups←− {};1

while phrases 6= {} do2

Set root←− pickOne(phrases);3

Set group←− {phrase};4

populateGroup(phrases, root, measure, group);5

groups←− groups ∪ group;6

end7

return groups;8

Algorithm 9.3 finds the most similar phrase from the set of phrases for a given root

phrase. Line 1 initializes the similar phrase to NULL and line 2 sets the maximum

similarity to 0. Then we iterate over each phrase in the phrase set (line 3) and compute

Chapter 9. Phrase Grouping 65

Algorithm 9.2: populateGroup
input : phrases, root, measure, group

phrases←− phrases \ {root};1

Set similar ←− similarPhrase(root, phrases, measure);2

if similar ! = NULL then3

group←− group ∪ similar;4

populateGroup(phrases, similar, measure, group);5

end6

Algorithm 9.3: similarPhrase
input : root, phrases, measure
output: similar

similar ←− NULL;1

maxSimilarity ←− 0;2

foreach Phrase p in phrases do3

Set currentSimilarity ←− measure(root, p);4

if currentSimilarity > maxSimilarity then5

Set similar ←− p;6

Set maxSimilarity ←− currentSimilarity;7

end8

end9

return similar;10

its similarity with the root phrase (line 4). If the similarity is greater than the maximum

similarity seen so far then we set the similar phrase to the current phrase in the iteration

and maximum similarity to the current similarity (line 5-7). Finally, we return the most

similar phrase found in this fashion (line 10).

Analysis: In terms of complexity, essentially the algorithm has two nested loops of

iteration over the set of phrases. First reaction would be think the time complexity

to be quadratic with the number of phrases. But note that we eliminate the grouped

phrases from the phrase set. Hence, the phrase set keeps on shrinking depending on the

size of the groups. In the worst case, each group contains a single element (i.e. no groups

formed) and the time complexity would be O(n2), where n is the number of phrases in

the input set. Whereas in the best case when we group all phrases into a single group,

the time complexity would be O(n), where n is the number of phrases in the input set.

This is because we need only a single parse over the input set of phrases. However, both

these extremes are unexpected. Below we analyze the time complexity of our grouping

algorithm assuming an average group size p:

Consider a phrase set S with n phrases:

|S| = n

Chapter 9. Phrase Grouping 66

Assume the average size of the groups to be p. Now consider the number of iterations

over the phrase set. For the first parse, on the first phrase, we check all remaining

phrases for similarity, i.e:

#Iteration1 = n− 1

For the second parse only the phrases still left ungrouped are iterated, i.e.:

#Iteration2 = n− 1− p

For groups of average size p, n/p passes would be required. Summing up, the total

number of iterations is:

#Iterations = (n− 1) + (n− 1− p) + (n− 1− 2p) + (n− 1− 3p) + ...+ (n− 1− (
n

p
− 1)p)

=
n

p
(n− 1)− [p+ 2p+ 3p+ ...+ (

n

p
− 1)p]

=
n2

p
− n

p
− p[1 + 2 + 3 + ...+ (

n

p
− 1)]

=
n2

p
− n

p
− p[n

2p
(
n

p
− 1)]

#Iterations =
n2

2p
− n

p
+
n

2

The time complexity of the above algorithm is O(n
2

p −
n
p +n). For p of the order of O(n)

(e.g. p = n/10), the complexity becomes linear i.e. O(n).

9.2.1 Noun Similarity

The previous description of grouping algorithm still leaves the similarity measure as an

abstraction. By inspecting the phrases, we realize that nouns are the most likely indi-

cators of the domain or the topic of the phrases. In this similarity measure we compute

the number of common nouns between two phrases. We consider the phrases having the

maximum number of nouns in common as similar. We expect the interesting phrases

to contain the nouns pertinent only to their domain. With this we can treat nouns as

the keywords for the phrases and use them as grouping parameters. As an example,

query “bill gates” produces all phrases about Microsoft like “Microsoft’s founder bill

gates” and “A microsoft sponsored conference” in a single group. We express the noun

similarity between two phrases as follows:

Simnoun(phrase1, phrase2) = |nouns(phrase1) ∩ nouns(phrase2)|

Chapter 9. Phrase Grouping 67

9.2.2 Cosine Similarity

Instead of just using one attribute, we can use a list of attributes for comparing sim-

ilarity. The attributes can be modeled as a feature vector as explained in Chapter 7.

Consequently, we can compute cosine similarity between the feature vectors as defined

below:

Simcosine(phrase1, phrase2) =
−−−−−−−−−−−−−−−−−→
featureVector(phrase1) ·

−−−−−−−−−−−−−−−−−→
featureVector(phrase2)

|featureVector(phrase1)| × |featureVector(phrase2)|

9.3 Conclusion

Grouping is necessary for better user accessibility and to diversify the phrases across a

variety of topics. We can create groups dynamically using clustering. But this requires

precise feature set. We can also do grouping using noun similarity between phrases. For

this, however, we need a fair number of nouns to be present in the phrases. However,

we have the risk of the groups having too less (over-grouping) or too many (under-

grouping) phrases. The cosine similarity can be used as another measure for similarity.

Finally, getting the right granularity of groups is a challenge and it needs a user study

for evaluation.

68

Chapter 10

Experimental Evaluation and

Results

This chapter discusses the experimental evaluation of our phrase mining system. We

proposed several strategies for processing in the post-processing pipeline in the previous

chapters. We now need to analyze the processing cost versus the quality benefits of

these strategies to be able to justify their use. In this chapter we first describe the

experimental setup, then we present brief results and finally we discuss the evaluation

results.

10.1 Experimental Setup

10.1.1 System Configuration

We developed the phrase mining system and did the experiments on a MacBook Pro

machine running Max OS X Version 10.5.8 on 2.53 GHz Intel Core 2 Duo processor, 4

GB 1067 MHz DDR3 memory and 320 GB of disk storage. We did the development

in Java 1.6.0. We averaged all experimental results over at least 3 trials. We used the

Phrase Forward index, as proposed by Srikanta et al. [16], to store the phrases. We used

the following external software packages: Stanford Parts-Of-Speech Tagger [8] version

1.6, Weka Data Mining Software for Java [11] version 3-6-1 and WordNet [13] version 3.0.

Additionally, we use the stop words lists [9] maintained by the Linguistics Department

at University of Glasgow.

69

Chapter 10. Experimental Results and Evaluation 70

10.1.2 Data set

We used the recently released news archives from New York Times [5] as data set in our

experiments. It contains over 1.8 million annotated news articles written and published

by the New York Times between January, 1987 and June, 2007. The GZIP compressed

data file of the corpus is 2.4 GB in size. The phrase forward index built on this corpus

is 11.9 GB in size. Later we tag the phrase forward index to contain the POS and the

Named Entity tags along with the phrases. The tagged phrase forward index is 18 GB

in size. We discuss the tagging of phrase forward index in more detail in Chapter 11.

10.1.3 Experiments

There are three stages in the experiments on phrase mining system. First, we manually

label representative phrases. Next, we use the labeled data to train the classifier. Finally,

we post-process the candidate phrases, obtained from testing queries, through the post-

processing pipeline. We evaluate the final set of phrases for the following metrics:

1. Overall precision of relevant phrases.

2. The recall of relevant phrases through post-processing pipeline.

3. Precision and recall through the processing stages in the pipeline.

4. Time latency of the stages in the processing pipeline.

5. Filtering effectiveness i.e. number of phrases filtered through each stage.

6. Cross validation to evaluate the classifier.

7. Normalized discounted cumulative gain (NDCG) to evaluate the ranking function.

Queries: We select 5 queries (training queries) and produce over 200 phrases from each

of them (1100 phrases in total). Table 10.1(a) lists the training queries. To reduce the

personal bias, two computer science masters students manually label these 1100 phrases.

We select 6 more representative queries (testing queries) which are different from the

training queries. Table 10.1(b) lists the testing queries. We need to additionally label

the candidate phrases from the testing queries for the evaluations.

Chapter 10. Experimental Results and Evaluation 71

(a) Training Queries

Jennifer Lopez
Osama Bin Laden
Eminem
World Trade Center
American Airlines

(b) Testing Queries

Ronald Reagan
Bill Gates
Iraq War
Brad Pitt
Afghanistan
Google Founder

Table 10.1: Training and testing queries

10.2 Results

10.2.1 Ranked Results

We rank the phrases from each of the training queries using the following linear ranking

function with both positive and negative weights:

RankScore = 2.p3 + 1.p2 − 1.p1 − 2.p0

The above ranking function was observed to be performing good in our experiments.

Here, p3, p2, p1 and p0 are the probabilities of class label 3, 2, 1 and 0 resectively. Table

10.2 shows the top-10 phrases that we obtain for query “Ronald Reagan” and rank by

the above ranking function.

Rank Phrase
1 Lead former president ronald reagan died
2 Comparing the styles and policies
3 The reagan biography
4 Governor reagan his rise to power
5 Loving brother of mary anne stalter
6 The real reagan according to deaver
7 84. died february 18. of white river junction
8 I now begin the journey
9 The statements coming from oliver
10 Former president’s funeral and a related

Table 10.2: Top-10 phrases for “Ronald Reagan”

We can observe that most of the result phrases are unique and do not contain duplicate

information. Additionally, the phrases in the result set are complete i.e. they are more or

less not broken and make some sense. More importantly, many of them contain elements

of interest like Reagan’s death, his styles and policies, his biography, his rise to power,

his funeral etc. However, we still see many phrases from the same topic. For instance,

three to four phrases in the above list are concerning to his demise.

Chapter 10. Experimental Results and Evaluation 72

10.2.2 Grouped Results

We group the post-processed phrases obtained from the testing queries using Noun

Similarity, as discussed in the previous chapter. Table 10.3 shows three groups from the

result set for the query “Ronald Reagan”.

Congress about the iran arms
Iran arms sales and efforts to aid
The arms sales and contra aid
Poindexter is accused of five criminal charges
Poindexter’s chief defense lawyer
He faces five criminal charges
His private diaries to john m. poindexter
Poindexter’s lawyers have
The reagan biography
To the reagan library

Table 10.3: Grouped phrases for “Ronald Reagan”

The three groups shown in the table above pertain to three different topics: arm sales

to Iran, Poindexter and Reagan’s biography. Depending on the user interest, we can

choose the highest ranking phrase from each group which can give a better distribution

of phrases and a wider outlook.

10.3 Evaluation

We need to evaluate the ranked and grouped results for correctness and efficiency. The

following subsections present result evaluation on a number of standard metrics used in

information retrieval.

10.3.1 Precision

Precision measures the accuracy of results i.e. what fraction of phrases in the result set

are relevant. Or, mathematically:

Precision =
#relevant phrases retrieved

#phrases retrieved

Chapter 10. Experimental Results and Evaluation 73

In our setting we label the set of candidate phrases for the testing queries. We define

relevance as follows:

Relevance =

relevant, if label = 3 or label = 2

irrelevant, if label = 1 or label = 0

To measure precision, we scan the final result set from post-processing to find out how

many relevant phrases are retained. However, since post-processing merges the phrases,

full string comparison alone may not work. We also need to look at phrase substrings.

Figure 10.1 shows the precision variation for the six test queries listed in Table 10.1(b).

0

0.2

0.4

0.6

0.8

R
o
n
a
ld

 R
e
a
g
a
n

B
ill

 G
a
te

s

Ir
a
q
 W

a
r

B
ra

d
 P

it
t

A
fg

h
a
n
is

ta
n

G
o
o
g
le

 F
o
u
n
d
e
r

0.71

0.658

0.625
0.605

0.763

0.73

P
re

c
is

io
n

Figure 10.1: Precision variation by query

We can observe precision values between 0.6 and 0.8. We can attribute lower precision

to either of the following two reasons:

1. We still have lots of irrelevant phrases in the result set. This implies that we still

have room for more aggressive filtering.

2. We could be filtering out many of the relevant phrases.

We describe the recall measure in the next subsection to understand this better.

Chapter 10. Experimental Results and Evaluation 74

10.3.2 Recall

Recall measures the fraction of the relevant phrases present in the result set. In phrase

mining it is difficult to estimate the total number of relevant phrases in the whole index.

To simplify things, we assume that the initial set of candidate phrases obtained from the

Forward Index contains all the relevant phrases. In other words we measure the recall

of relevant phrases through the post-processing pipeline only. We can express the recall

of relevant phrases as:

Recall =
#relevant phrases retrieved

#relevant phrases

Again, we use the labeled set of phrases for the test queries and compare how many of

the relevant phrases persist in the output set of phrases. Figure 10.2 shows the recall of

relevant phrases for six different testing queries.

0.6

0.7

0.8

0.9

1

R
o
n
a
ld

 R
e
a
g
a
n

B
ill

 G
a
te

s

Ir
a
q
 W

a
r

B
ra

d
 P

it
t

A
fg

h
a
n
is

ta
n

G
o
o
g
le

 F
o
u
n
d
e
r

0.88

0.903

0.845

0.757

0.851

0.914

R
e

c
a

ll

Figure 10.2: Recall variation by query

We can see that the recall values lie between 0.75 and around 0.9. Apart from the query

“Brad Pitt” all other queries have recall better than 0.8. The recall value for the query

“Brad Pitt” is unusually low and this could be because of the lesser range of interesting

things about him in the corpus.

Chapter 10. Experimental Results and Evaluation 75

10.3.3 Precision/Recall Variation in Post-Processing

So far we have evaluated precision and recall across the post-processing pipeline. But

we also need to evaluate them within the pipeline to see which stages impact the most.

Figure 10.3 shows the variation of the precision values across different stages in the

pipeline.

0

0.2

0.4

0.6

0.8

C
u
st

o
m

E
d
ito

r

S
to

p
W

o
rd

sM
er

g
e

S
yn

o
n
ym

M
er

g
e

P
re

fix
S

u
ff
ix

F
ilt

er

P
O

S
F
ilt

er

F
u
ss

yS
u
ff
ix

F
ilt

er

S
im

p
le

H
eu

ri
st

ic
s

C
la

ss
ifi

ca
tio

n
F
ilt

er

M
L
C

lu
st

er

Precision Variation (by query)

Ronald Reagan Bill Gates Iraq War
Brad Pitt Afghanistan Google FounderP

re
c

is
io

n

Figure 10.3: Precision variation in the post-processing pipeline

As we can see, initially the precision value is between 0.4 and 0.6 and gradually it

gets better as phrases are processed through the pipeline and finally the precision value

ranges between 0.6 and 0.8. Similarly, Figure 10.4 shows the variation of the recall

values through the post-processing pipeline.

Here, we can see that the recall values start from 1 and diminishing through the pipeline.

The final recall values lie in the range of 0.75 to 0.9.

10.3.4 Filtering Effectiveness

Similar to measuring precision and recall across different stages in the pipeline, we would

also like to measure the number of phrases filtered (called the filtering effectiveness) in

each stage in the pipeline. We measure filtering effectiveness as the reduction in the

cardinality of the candidate set across a stage.

Filtering Effectiveness = #input phrases−#output phrases

Chapter 10. Experimental Results and Evaluation 76

0

0.25

0.5

0.75

1

C
u
st

o
m

E
d
ito

r

S
to

p
W

o
rd

sM
er

g
e

S
yn

o
n
ym

M
er

g
e

P
re

fix
S

u
ff
ix

F
ilt

er

P
O

S
F
ilt

er

F
u
ss

yS
u
ff
ix

F
ilt

er

S
im

p
le

H
eu

ri
st

ic
s

C
la

ss
ifi

ca
tio

n
F
ilt

er

M
L
C

lu
st

er

Recall Variation (by query)

Ronald Reagan Bill Gates Iraq War
Brad Pitt Afghanistan Google Founder

R
e

c
a

ll

Figure 10.4: Recall variation in the post-processing pipeline

0

75

150

225

300

C
u
s
to

m
F
ilt

e
r

E
x
a
c
tM

e
rg

e

C
u
s
to

m
E

d
it
o
r

S
to

p
W

o
rd

s
M

e
rg

e

S
yn

o
n
ym

M
e
rg

e

P
re

fi
x
S

u
ff

ix
F
ilt

e
r

P
O

S
F
ilt

e
r

F
u
s
s
yS

u
ff

ix
F
ilt

e
r

S
im

p
le

H
e
u
ri

s
ti
c
s

C
la

s
s
if
ic

a
ti
o
n
F
ilt

e
r

M
L
C

lu
s
te

r

0

23.833

00.167

39.333

18.667

0
9.333

0

259.333

2.833

N
u

m
b

e
r

(A
v
g

)
o

f
fi

lt
e

re
d

 p
h

ra
s
e

s

Figure 10.5: Filtering effectiveness of stages in the post-processing pipeline

Chapter 10. Experimental Results and Evaluation 77

0

125

250

375

500

100 200 300 400 500

Filtering Vs Number of Input Phrases

Ronald Reagan Bill Gates Iraq War
Brad Pitt Afghanistan Google Founder

N
u

m
b

e
r

o
f

F
il
te

re
d

 P
h

ra
s
e

s

Figure 10.6: Filter scalability with candidate set size

Figure 10.5 shows the decrease in the size of the candidate set of phrases after each stage.

Initial set of phrases contain 500 phrases and we have averaged the numbers shown over

the 6 testing queries.

As shown in the figure, exact merge which includes prefix, suffix and prefix-suffix merge,

is the most effective stage in the post-processing pipeline. The merge operation depends

on the number of input phrases. Hence, a large candidate set may have more phrases

pruned out. Figure 10.6 shows the variation in filtering effectiveness by varying the size

of the initial candidate set from 100 to 500. Not surprisingly, filtering scales linearly with

the size of the initial phrase set. However, a large number of input phrases can be merged

and therefore add more meaning to the broken or incomplete phrases. Consequently, we

observe the quality of results to be higher with a larger number of input phrases. Hence,

size of the candidate set of phrases is an important consideration.

10.3.5 Processing Latencies

In the last subsection we discussed how larger phrase sets could produce better quality

results. This, however, comes with the price of processing latencies. The post-processing

of phrases is expensive and at query time. The system must therefore have an acceptable

response time. We need to analyze the time taken by each stage in the post-processing

pipeline and then see how much we gain at the price of this latency. We measure latencies

Chapter 10. Experimental Results and Evaluation 78

by noting the time difference between the start and the end of processing in a stage.

TimeLatency = End Time− Start Time

Figure 10.7 shows the time latencies (in secs) for different stages in the post-processing

pipeline. Again, we average the values over the 6 test queries.

0

3.75

7.5

11.25

15

C
u
s
to

m
F
ilt

e
r

E
x
a
c
tM

e
rg

e

C
u
s
to

m
E

d
it
o
r

S
to

p
W

o
rd

s
M

e
rg

e

S
yn

o
n
ym

M
e
rg

e

P
re

fi
x
S

u
ff

ix
F
ilt

e
r

P
O

S
F
ilt

e
r

F
u
s
s
yS

u
ff

ix
F
ilt

e
r

S
im

p
le

H
e
u
ri

s
ti
c
s

C
la

s
s
if
ic

a
ti
o
n
F
ilt

e
r

M
L
C

lu
s
te

r

0.0030
0.583

0.002

3.649

0.001

13.401

0.2520.009
0.324

0.009

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Figure 10.7: Post-processing stage-wise latencies

As we see from the figure, synonym merge has the maximum time latency. This is

because it has to look up the synsets for each word in the WordNet database. Another

bottleneck is the parts-of-speech filter (POS Filter). The POS filter has to identify the

parts-of-speech of the terms in the phrase and hence the delay.

10.3.6 Cross Validation

An n-fold cross validation is the standard technique to evaluate the accuracy of the

classifier. The idea is that the training set is divided into n sets and one set is chosen for

testing while the remaining sets are used to train the classifier. This way the percentage

of correctly classified instances are measured and it is averaged over all sets of testing

phrases.

In our experiments we perform 4-fold cross validation to measure the accuracy of the

classifier. We have used multilayer perceptron for classification, but we compare the

accuracy of several classifiers on our training data set. Figure 10.8 shows the percentage

accuracy i.e. the percentage of correctly classified items, for several classifiers.

Chapter 10. Experimental Results and Evaluation 79

0

15

30

45

60

M
u
lti

la
ye

r
P

er
ce

p
tr
o
n

N
ai

ve
 B

ay
es

 M
u
lti

n
o
m

ia
l

S
u
p
p
o
rt

 V
ec

to
r
M

ac
h
in

e

L
o
g
is

tic

C
la

ss
ifi

ca
tio

n
 V

ia
 R

eg
re

ss
io

n

N
ea

re
st

 N
ei

g
h
b
o
r

44.8

48.648.7
50.9

32.9

43.9

C
o

rr
e

c
tl

y
 C

la
s
s
if

ie
d

 (
%

)

Figure 10.8: 4-fold cross validation

As we observe from the figure, cross validation accuracy is around 50%. However, note

that this accuracy is for an individual label (3,2,1 or 0) whereas for relevance we take

two labels together (3,2 and 1,0).

10.3.7 Normalized Discounted Cumulative Gain (NDCG)

We use Normalized Cumulative Discounted Gain (NDCG) to evaluate the ranking func-

tion and the relevance based ordering of phrases. The basic idea of discounted cumulative

gain is that highly relevant phrases appearing lower in the ranked list of phrases should

be penalized. For a list of p phrases having relevance reli (3,2,1 or 0), we can express

DCG as:

DCG =
p∑
i=1

2reli − 1
log2(1 + i)

To compute DCG, we need to label (3,2,1 and 0) the testing phrases. We then normalize

it by the DCG of the ideal ranking (IDCG) to get NDCG. In the ideal ranking each

phrase appears before any lesser relevant phrase in the list. We can express NDCG as

follows:

NDCG =
DCG

IDCG

Chapter 10. Experimental Results and Evaluation 80

0.83

0.855

0.88

0.905

0.93

R
o
n
a
ld

 R
e
a
g
a
n

B
ill

 G
a
te

s

Ir
a
q
 W

a
r

B
ra

d
 P

it
t

A
fg

h
a
n
is

ta
n

G
o
o
g
le

 F
o
u
n
d
e
r

0.925

0.869

0.841
0.845

0.894

0.901
N

D
C

G

Figure 10.9: Normalized Discounted Cumulative Gain (NDCG)

Figure 10.9 shows the NDCG values for the testing queries. As observed, NDCG values

ranges between 0.84 and 0.93.

10.4 Discussion

Our experiments show a significant improvement of phrase quality in the result set

compared to the candidate set. We observe the precision and recall measures to be

quite good, indicating a good and a relatively promising set of phrases. The NDCG

measure, evaluating the ranking of phrases, looks reasonable as well.

We observe phrase filtering as a key operation. We do it explicitly in the filtering stage

but also implicitly in the merge stage by discarding or merging phrases. The filtering is

rather conservative yet it greatly reduces the set of candidate phrases to be presented

to the user. Since the merging stage compares phrase with each other, the size of the

candidate set phrases is crucial. A large set of phrases, however, has the additional cost

of processing latency.

Time latency of all stages in the pipeline is reasonable except for Synonym merge and

POS filter. Synonym merge has very less filtering effectiveness and hence very small

pay off for the huge processing time. It should either be dropped or better synonym

lookup strategies should to be investigated. POS filter has the problem of finding the

Chapter 10. Experimental Results and Evaluation 81

parts-of-speech at query time. This can be avoided by doing parts-of-speech tagging at

index level itself. This idea and implementation is elaborated in more detail in Chapter

11.

The final results presented to the user can be organized in many ways. We produce the

best effort result set which is likely to be interesting. However, the phrases presented

to a user may still be too broad. Thus, we may need user personalization to cater to

specific user interests.

10.5 Conclusion

Experiments are a crucial part of any scientific study. In our experiments we use news

archive data from New York Times. However, one can use data corpus from other

domains like blogs, emails and other user generated content to run similar experiments

and draw the parallels. We used several measures from information retrieval literature

to evaluate the system. The experimental results obtained in this thesis underscore the

potential of phrase mining and encourage the possibility of future work.

82

Chapter 11

Further Optimizations

This chapter describes further optimization in our phrase mining system. The exper-

imental evaluations in the previous chapter show some stages in the post-processing

pipeline to be computationally expensive. These slow straggler stages must be opti-

mized. To avoid query time latencies, we need to push post-processing down the pro-

cessing pipeline and indexing levels as much as possible. Additionally, the size of the

phrase index is a concern. We can understand the merging and filtering patterns over

time and embed the intelligence into the system to prune the phrase index. We discuss

parts-of-speech tagging, named entity tagging and phrase index pruning in this chapter.

11.1 Forward Index Translation

A forward index is used to store the phrases as described in Chapter 2. By default

the forward index stores the global frequencies of phrases and computes local frequency

dynamically at query time. However, we can store other things such as parts-of-speech

along with the global frequency and save significant computation time during the query

processing. This could even increase the accuracy because the phrase properties ex-

tracted at the indexing time have full view of the corpus. We must pack the properties

extracted in such a manner into the forward index. We call this operation as forward

index translation i.e. translating forward index to stuff additional information.

Two such properties are the parts-of-speech of the terms in a phrase and the named

entities contained in a phrase. We have used these two features in the post-processing

and they have considerable latency when extracted at query time. Additionally, the

parts-of-speech and the named entities being natural language artifacts, they need at

least full sentences if not full documents to be effectively accurate. Below we describe

their extraction and the corresponding forward index translation.

83

Chapter 11. Further Optimizations 84

Figure 11.1 depicts the process of forward index translation. We are given a text cor-

pus and a forward index created previously (denoted by hashed line). We now want

to add to it the parts-of-speech and the named entities information for each phrase.

We parse the documents corresponding to each of the document identifiers (did) in the

text corpus. We tokenize each of the documents using a tokenizer. We then send the

the tokenized document to a parts-of-speech tagger and a named entity recognizer to

extract the parts-of-speech and the named entities respectively. The index translator

then queries the phrase index by the document identifier (did) and gets the correspond-

ing phrase list. It adds the parts-of-speech and the named entities information to each

phrase in the phrase list. Finally, we store the tagged phrases into a translated forward

index.

Text
Corpus

Forward
Index

Tokenize
Parts-Of-Speech

Tagger

Named Entity
Recognizer

Translate
Translated
Forward

Index

did
document

POS Tags

Named
Entities

did

< phrase >

Figure 11.1: Forward Index Translation

In the above design we tokenize and tag the whole document. We need to locate each

phrase back in the corpus to add the parts-of-speech and the named entities information

to it. It can be very hard to trace back the phrases in the corpus since they are arbitrary

subset of words in a document . Fortunately, the forward index stores posting lists for

each document and hence the document can be easily traced. Within a document,

however, we still need to locate the phrase. We do this by running a sliding window over

the content of the document.

Implementation wise, we can pack the parts-of-speech tag and the named entity tag into

the posting lists in two ways. Since the forward index already stores the phrases as a

list of integer term identifiers, we can add the integer encoded tags as extra terms into

the phrase as shown in Figure 11.2(a). Second way to pack the tags is to put them

next to the phrase separately without touching the phrase as shown in Figure 11.2(b).

The second way is cleaner and provides a concrete segregation between the phrase and

Chapter 11. Further Optimizations 85

the tags. This makes the use of tags optional and we can safely skip them, without

modifying phrase processing, in case they are not required.

Phrase POS Named
Entities

(a) Implicit Phrase Layout

Phrase POS Named
Entities

(b) Explicit Phrase Layout

Figure 11.2: Phrase Layout options

Next, we describe the encoding of the parts-of-speech and the named entity tags into

integer representations. The parts-of-speech tag contains the part-of-speech for each

word in the phrase. We use 32 major tags from the Penn Treebank tag-set [6]. Hence,

we can encode each POS with 5 bits and pack up to 6 terms in one 4-byte integer as

shown in Figure 11.3.

0 5 10 15 20 25 30

POS 1 POS 2 POS 3 POS 4 POS 5 POS 6
32

Figure 11.3: POS tag encoding

The named entity tag contains the start index, the end index and the type of the named

entity in a phrase. For phrases having up to 8 terms, 3 bits are sufficient for start and

end indices. The named entities can be of type person, location or organization. We

need one bit for each because the same terms can be multiple named entities in different

parts of the document. Thus each named entity takes 9 bits and for each phrase we can

pack 3 named entities in one 4-byte integer as shown in Figure 11.4.

11.2 Forward Index Pruning

The previous section described how by pushing things down to indexing level we can

save processing time while querying. Another class of optimization is to reduce the set

Chapter 11. Further Optimizations 86

start end

person location
organization

0 9 18 27 32
Named Entity 1 Named Entity 2 Named Entity 3

Figure 11.4: Named entity tag encoding

of input data itself. In our case we have too many phrases and hence a large phrase

forward index. Reducing the size of the forward index can greatly simply things apart

from reducing the storage space requirements and minimizing the I/O costs. Following

subsections discuss some of the strategies to do so.

11.2.1 Pushing Merge down to Indexing

The merge stage identifies and merges broken phrases into more meaningful an de-

duplicated ones. The phrases which get repeatedly merged over several queries have little

chance of being useful or interesting in isolation. Hence, it would be better to merge them

in the forward index itself and avoid the recurring overhead of post-processing. Doing

the merge at index level is particularly important because we observed a cardinality

reduction of up to 50% from merge operations in our experiment. Since the forward

index maintains all phrases in one document in the same posting list, it would make

sense to update the postings with phrases which get merged within the same document.

Such an index level merging should be done after carefully inspecting the recurring

patterns over a period of time. This requires logging during post-processing and tools to

analyze the logs thereafter. However, the payoff will be a phrase index with much more

meaningful phrases. Also, note that updating the phrase forward index could be quite

tedious and expensive on a regular basis but the reduced index size will significantly

improve its performance and maintainability.

11.2.2 Pushing Filter down to Indexing

The filtering stage is another operation from the post-processing pipeline which could be

analyzed and the knowledge gathered about the phrase structures can be used to prune

the phrase forward index. Similar to the merge stage, the intuition is that many phrases

get consistently filtered out over a period of time and across representative queries. We

Chapter 11. Further Optimizations 87

can infer such phrases as junk or spam and hence discarded them permanently from the

forward index.

11.3 Conclusion

We can optimize several stages in the post-processing pipeline or push them down to the

indexing level. The forward index translation with tags stored along with their phrases

can avoid doing the parts-of-speech and the named entity tagging at query time. We

can push the merging and filtering stages down to indexing level in order to prune the

forward index to a much smaller size. The ideal scenario would be to apply the merge,

filter and classify stages at the forward index building time. We should need only the

ranking and the grouping stages at query time.

88

Chapter 12

Conclusion and Future Work

In today’s world there is a ubiquity of textual data. Ideally, the data should be struc-

tured but majority of the data is unstructured. Text analytics on such data is a highly

specialized task, but spans broad reaching topics having applications in life sciences,

financial services, legal, retail, government, media, and entertainment, to name a few.

Phrase mining, as a special case of text analytics, produces interesting phrases to un-

derstand and analyze the potentially valuable data. However, several aspects of phrase

mining need to be considered.

Understanding interestingness: A major challenge in mining phrases of interest is

to understand the interest itself. Usually we ask the end users to distinguish between

interesting and uninteresting phrases. But the set of candidate phrases, for a given user

query, is too big and noisy. This gave the need to statically define the interestingness

of phrases. Prior works proposed a single statistics based definition of interestingness.

However, this is not sufficient to characterize and capture the potentially interesting

phrases. In this work we tried to define and generalize some static properties of interest-

ingness. Consequently, we suggested an elaborate post-processing of phrases to surface

the ones having these properties.

Interestingness, however, can be a far more reaching property. Apart from structural

sanctity, interestingness can also mean a very wide range of other things in a general

sense. The most common being the presence of factual content in the phrases. We can

extract these factual mappings from ontology databases. Temporal events are another

set of things which could be of interest but are more difficult to extract. The author

sentiment could also be of great interest especially when the tone is strongly opinionated.

The cultural connotation connect better to some users and hence could be of interest.

Finally, result personalization based on end user preferences could be a great boost.

89

Chapter 12. Conclusion and Future Work 90

The same set of “interesting” phrases can be hot interesting for one user and lukewarm

interesting for another. We need to discern the interestingness in the two cases.

Our System: This work attempts to put an elaborate and in depth approach to phrase

mining. We presented an end to end phrase mining system integrable with any docu-

ment style information retrieval system. We started by analyzing different aspects of

interestingness and the challenges to it. Our aim was to evaluate the phrases on each of

these aspects of interestingness and extract them in the form of features. The idea was

to generate a feature set which characterizes the phrases to the greatest possible extent.

The features arranged in the form of the feature vectors were then used to predict the

interestingness of the phrases using a supervised machine learning technique. Subse-

quently, we ranked and grouped the predicted phrases for a listed view and a diversified

result set respectively. We evaluated the phrase mining system using a range of experi-

ments and analyzed the results. The results from the experiments are encouraging and

strengthen the potential of phrase mining on an ad-hoc document collection. We can

do many optimizations throughout the post-processing pipeline and we have discussed

some of them in detail. Additionally, we proposed methods to prune the size of the

phrase forward index.

The major stumbling block faced in this work was the concrete and precise definition of

interestingness. Other challenges include choosing the threshold confidence factors for

merging and filtering operations, defining and extracting a truly characterizing feature

set, labeling the training data, choosing the appropriate classifier, arriving at the most

suitable ranking function and choosing the right similarity measure for creating groups

of phrases.

Managing the expectations: An important thing about phrase mining is to set

the expectations properly. Users might argue the presence of some highly interesting

phrases in the corpus but these phrases may not be frequent enough to be present in the

phrase forward index. The concerned persons should understand the design decisions and

constraints of the phrase mining system to be able to make better use of the technology.

Coming of an age: Search engines need to incorporate more phrase mining style text

analytics. Though phrase mining resembles information retrieval systems like web search

engines more than business intelligence systems, it strikes the middle ground between

the two. A couple of decades ago, web search was considered to be experts’, called

“professional searchers”, prerogative. Advances in search technology and the advent of

better user interfaces have resulted the web search engines to come of an age. In similar

spirit, we expect the horizons of phrase mining to go well beyond just trained analytics

and hope that an amalgam of search engine and phrase mining will become a natural

choice in the future.

Chapter 12. Conclusion and Future Work 91

12.1 Future Work

Alternate Techniques: Several strategies and methods employed in the various stages

of the post-processing pipeline use standard textbook techniques from the domains of

algorithms, information retrieval and natural language processing. They have a con-

siderable scope for improvement. The merging and grouping stages, for instance, make

use of similarity measures which have been extensively researched over the past several

years. The applicable ideas from many such research and development could be studied

and applied in our setting. Similarly, more ideas for classification and ranking could be

inspired from IR literature whereas parts-of-speech and named entity tagging from NLP

literature.

Post-processing Pipeline Pruning: As discussed in Chapter 11, we can push many

stages in the post-processing pipeline down to the indexing level. This is on similar

lines as query optimization in database community where operators are pushed down

the query processing as much as possible. The advantage of doing this in phrase mining,

same as in databases, is to have lesser data and lesser computations as we move through

the post-processing. Additionally, in our case the entire set of phrases is not really

mandatory to maintain. It was created in brute force fashion by considering only a

lower threshold frequency to decide whether or not to keep a phrase. While this suits

well at index creation time, we can use the phrase related knowledge gathered from the

post-processing over a period of time and apply it to the phrase index. Hence, we can

enrich the quality of phrases inherently and transform the phrase index into an index of

interesting phrases. The goal should be to have as few stages in the post-processing as

possible.

Text Granularity: Currently there are two extremes of text mining: the document

granular search engines and the word granular keyword analysis tools. While in this

work we present a case for interesting phrases, several times single word keywords are

interesting as well. Conversely in many other scenarios phrases seem to be too short

to be expressive and full sentences, summary snippets or even the whole document is

needed to make it interesting. Thus, interestingness should only be based on the static

properties and the user taste and not on the length of the text. To this end a flexible

granularity approach for text mining could be taken which considers words, phrases,

sentences and documents for interestingness. This could be a hybrid of existing systems

for each granularity level or it could be a completely new system redefining the text

mining altogether.

Semantic Sense: Our phrase mining system proposed in this work relies more or less

on three essentials: 1) statistics (frequencies and other heuristics) 2) linguistics (parts

Chapter 12. Conclusion and Future Work 92

of speech and sentence construction) and 3) dictionary (stop-words, synonyms, named

entities). While these may well the suit the purpose so far, we now need to look into the

semantic aspect. This will take phrase mining to the next level. We can back reference

the original document to get the context. Or, we can look up an underlying ontology

engine to get the semantic information. Additionally, we can complement the extracted

phrases with information stored in rich data source such as Wikipedia.

Appendix A

Ranked Phrases

Query: Ronald Reagan

Score Phrase
1.88 Lead former president ronald reagan died
1.785 Comparing the styles and policies
1.768 The reagan biography
1.767 Governor reagan his rise to power
1.741 Loving brother of mary anne stalter
1.67 The real reagan according to deaver
1.648 84. died february 18. of white river junction
1.637 I now begin the journey
1.63 The statements coming from oliver
1.582 Former president’s funeral and a related
1.465 A president or former president
1.344 Known as ron is formally ronald prescott reagan
1.341 R.i. july 14 1937. died manhattan feb
1.307 154 questions
1.301 14 1999. studied music at the boston
1.278 Deaths madieros ronald richard
1.248 Malcolm s. 84. died february
1.239 Rear admiral served as mr
1.202 Ronald reagan today
1.11 Mourning reagan and weighing his legacy
1.105 Devoted husband to dorothea
1.104 Iran arms sales and efforts to aid
1.099 Campaign of ronald reagan
1.097 He faces five criminal charges
1.096 Excerpts of his private diaries
1.095 His onetime national security
1.092 Reagan legacy project
1.051 Article that day about his burial
1.026 Government assistance to the rebels

Table A.1

93

Appendix A. Ranked Phrases 94

Query: Bill Gates

Score Phrase
1.981 That bill gates s
1.977 About bill gates s
1.973 The carnegie corporation the bill and melinda
1.959 A microsoft sponsored conference
1.947 The gates cost
1.947 Robert m. gates op ed
1.935 The engineer ricky
1.926 Slanted or politicized
1.925 Gates the world’s richest
1.924 Gates’s willingness to
1.911 Billion in microsoft
1.864 Melinda gates foundation gave
1.847 Microsoft’s founder bill gates
1.825 Including the bill and melinda
1.802 The gates learning foundation
1.793 A charge microsoft
1.78 Purchased the bettmann archive
1.772 Bill gates the billionaire
1.753 Gates goes to washington
1.728 Robert m. gates as deputy director
1.726 Gates the microsoft corporation
1.709 Gates foundation has given
1.684 Warner $30 . the chairman of microsoft
1.664 Past is haunted by a dark secret
1.62 Chief gates to resign
1.618 Cascade investment the investment
1.598 Operations threaten human life
1.564 Microsoft executives including
1.45 Microsoft and its chairman bill gates
1.428 Rockefeller and bill gates
1.38 The information highway cd rom
1.358 Gates spent
1.332 Gates’s nomination as director
1.313 Microsoft from the inside
1.307 Executives bill gates may
1.282 Bill gates can t
1.282 Melinda gates foundation which is
1.28 By bob gates
1.261 Gates to stay
1.248 L. glaudemans

Table A.2

Appendix A. Ranked Phrases 95

Query: Iraq War

Score Phrase
1.961 W. 20 pfc
1.956 Suzy t. kane
1.955 Killed 27 captured or missing
1.952 Destruction of iraq’s most
1.947 23 second lt
1.941 D. 21 lance cpl
1.939 Iraq’s military programs
1.908 Week of decision on iraq
1.886 The iraq war in kerry’s view
1.86 S fateful vote on iraq
1.686 Army new york city
1.659 By william rivers pitt
1.653 Death of the following americans this weekend
1.652 C. 22 sgt
1.641 Department of defense yesterday confirmed the death
1.625 Yesterday confirmed the death of the following
1.576 Days of high drama making a choice
1.563 44 sgt
1.562 The freezing desert
1.555 Drama making a choice on iraq
1.549 Resolution that ended the gulf
1.507 Choices in iraq
1.203 Bush blair and the iraq clamor
1.184 Iraq insists it
1.167 President to seek congress’s assent over iraq
1.139 Iraq news article april
1.136 To reopen the shatt al arab
1.131 Dhahran high 72
1.104 War with iraq front page
1.101 Iraq would violate
1.1 Minister said iraq

1.099 With iraq column
1.099 From iraq jordan
1.093 To war editorial march
1.071 Iraq killed n.a. captured or missing 23
1.016 The quagmire called
0.989 Army knoxville tenn
0.88 Hanlon and philip h. gordon
0.861 Boundary with kuwait
0.825 N.c. first infantry division

Table A.3

Appendix A. Ranked Phrases 96

Query: Brad Pitt

Score Phrase
1.979 A sleek expensive looking gizmo
1.976 And spoofiness in spectacular fashion
1.95 The pitt county
1.915 Of ice with uncountable casualties including life
1.911 By friedrich drrenmatt reunites him
1.884 A shaggy dog story mitchell
1.857 The renowned explorer heinrich
1.83 That the titular figure unleashes mitchell
1.821 An austrian mountain climber
1.803 An agent and who now
1.754 And witty young actors working
1.696 The hectic murky action sequences
1.616 New movie is a sleek expensive looking
1.477 They seem rather to get
1.466 The supporting cast especially mr
1.395 And serial killer who serves
1.315 The x men movies plays
1.255 The barbra streisand role scott
1.237 The brad pitt jennifer aniston
1.146 With bad amnesia
1.134 That gave pitt
1.13 In the film are always
1.12 By william rivers pitt
1.115 The effort is hyper real and he
1.099 In pitt stadium
1.098 To henry tuten
1.096 In distress screen persona scott
1.023 Of sitting around and consuming
1.015 New film about a pair
0.889 With second sight who becomes
0.868 Of good one act plays
0.864 In movies today and ms
0.858 By sam raimi r 112
0.849 By numbers starring sandra bullock
0.833 But spy game does offer
0.815 With none of the wired gravitas that
0.759 By guy ritchie r 105
0.706 By jim jarmusch r 96
0.544 And ice you don t
0.511 Who seems genuinely worried is

Table A.4

Appendix A. Ranked Phrases 97

Query: Afghanistan

Score Phrase
1.967 Of the pakistan based guerrilla
1.966 The gardez area
1.952 The saudi multimillionaire
1.952 Southern afghanistan he
1.947 4 000 afghan
1.944 A 10 month withdrawal
1.896 The commanders inside afghanistan
1.893 The seven major guerrilla
1.764 150 afghans
1.762 Mission in afghanistan which
1.761 The shomali plain
1.722 The afghan national police
1.655 Near shkin
1.643 Attack in southern afghanistan the taliban
1.627 Military intelligence agency the inter services
1.625 Inside afghanistan the forgotten
1.625 Afghanistan’s future lost in the shuffle
1.607 David richards the british commander
1.595 Armed opposition to the taliban
1.519 Government of president burnahuddin rabbani
1.477 Year for afghanistan
1.47 The helmand valley
1.465 Time afghan
1.458 Which the taliban had
1.45 The rival afghan
1.417 Afghanistan in december 1979 to
1.353 The interior minister ali ahmad
1.315 It is afghanistan
1.287 Book taliban
1.281 Out of afghanistan on may
1.276 Eastern khost
1.264 A taliban force
1.245 Be in kabul collapsed
1.228 Security of afghanistan
1.226 Kill taliban
1.205 The seven rebel parties
1.198 The pakistani frontier city
1.192 To convene a loya jirga
1.185 A taliban insurgency
1.156 Diego cordovez an ecuadorean

Table A.5

Appendix A. Ranked Phrases 98

Query: Google Founder

Score Phrase
1.95 Inside google
1.939 Regular google
1.918 Thanks to google
1.896 The google service
1.888 The google auction
1.884 Idea that google
1.875 The google library
1.87 The google book search
1.865 Google to buy
1.852 Term google
1.84 Book about google
1.834 An early google investor
1.813 A google employee
1.812 Available through google
1.801 Addition to google
1.799 Response to google
1.791 A google engineer
1.753 China google
1.742 Basis google
1.713 New google service
1.7 President of google

1.618 A web based word
1.599 Efficient frontier a search
1.481 Steve langdon a google spokesman
1.452 Trading google
1.443 On a google map
1.438 Partners a small investment bank in san
1.404 The youtube community
1.347 Like google and yahoo to
1.299 October google
1.217 Thursday google
1.215 Just as google
1.205 On wednesday google
1.201 So far google
1.161 Said of google’s revenue
1.136 Advertising google
1.135 Web 2.0
1.104 On search pages
1.102 Own web search
1.101 Up google’s software

Table A.6

Appendix B

Grouped Phrases

Query: Ronald Reagan

Saturday about the former president
The nation pauses to remember a president
A president or former president
Former president’s funeral and a related
Former president authorized
Congress about the iran arms
Iran arms sales and efforts to aid
The arms sales and contra aid
Poindexter is accused of five criminal charges
Poindexter’s chief defense lawyer
He faces five criminal charges
His private diaries to john m. poindexter
Poindexter’s lawyers have
Reagan’s videotaped testimony
Governor reagan his rise to power
Reagan legacy project
Known as ron is formally ronald prescott reagan
Mourning reagan and weighing his legacy
Reagan’s kitchen cabinet
Reagan’s biographer
The real reagan according to deaver
Reagan’s politics
Reagan’s coffin
Reagan represents
Reagan was born
Reagan’s testimony was
I now begin the journey
The journey that will lead me
The reagan biography
To the reagan library

Table B.1

99

Appendix B. Grouped Phrases 100

Query: Bill Gates

Barbarians led by bill gates the chairman
Microsoft executives including
Microsoft from the inside
Microsoft and its chairman bill gates
Gates the microsoft corporation
Year the bill and melinda
Bill gates the billionaire
Gates foundation in seattle
Gates foundation and george soros
Bill gates and microsoft
Like bill gates microsoft
Melinda gates foundation gave
Gates foundation has given
The gates learning foundation
Gates a founder of microsoft
A microsoft sponsored conference
Where bill gates and his wife
Microsoft compared
Microsoft’s founder bill gates
Microsoft’s image
The carnegie corporation the bill and melinda
Gates broke
That the gates foundation
Gates’s software
Gates’s fortune
Melinda gates foundation and george soros s
The chairman of microsoft bill gates
Including the bill and melinda
Of his $44 billion fortune
Wife susan thompson buffett
Gates and buffett
Gates spent
Gates the world’s richest
The information highway cd rom
On the information highway cd rom included
Gates is right
Gates’s retirement
Gates’s investment
Gates’s management
Operations threaten human life
Woman contends with a man who brutally attacked
Man whose diamond mining operations threaten

Table B.2

Appendix B. Grouped Phrases 101

Query: Iraq War

Iraq killed n.a. captured or missing 23
Iraq would violate
War with iraq front page
In iraq front page sept
List of american dead page
War on iraq the clock is ticking
The iraq deal war averted or just delayed
Re the real meaning of iraq editorial feb
A checkpoint in iraq the horror of war
Preventive war success or failure
To war editorial march
Re summons to war editorial aug
War zone as of 5 p.m. eastern time
War zone as of 4 p.m. eastern time
States and its gulf war allies
Resolution that ended the gulf
For lessons in the war
The grunts in the war
Army knoxville tenn
Army new york city
The iraq war in kerry’s view
Path to war retracing our steps
Boundary with kuwait
Recognize kuwait’s borders
With iraq column
From iraq jordan
Minister said iraq
Choices in iraq
Signpost fateful choices ahead
Days of high drama making a choice
Drama making a choice on iraq
Sources u.s. department of defense british defense ministry
Department of defense yesterday confirmed the death
Death of the following americans this weekend
Yesterday confirmed the death of the following

Table B.3

Appendix B. Grouped Phrases 102

Query: Brad Pitt

The hectic murky action sequences
To a sprawling oddly lighthearted action
In movies today and ms
Of this film takes place
S grimly powerful third film
With such feeling and intelligence
A pair of california homicide detectives ms
New film about a pair
His 1995 film the crossing
And intelligence that you forgive the film
His movies from the 1970
And cigarettes starring cate blanchett
The gift starring cate blanchett
In various degrees of midnight
New movie is a sleek expensive looking
The movie a rare touch
A movie that glows in various degrees
A movie for the whole
The lambs is a movie
A centuries old monster fighter
The title character a centuries
As routine and familiar as the title
From a book by friedrich drrenmatt
By friedrich drrenmatt reunites him
The supporting cast especially mr
A cast that includes ray liotta gary
Who serves up a cast
That the titular figure unleashes mitchell
A shaggy dog story mitchell

Table B.4

Appendix B. Grouped Phrases 103

Query: Afghanistan

With taliban and qaeda
A taliban commander mullah
When the taliban ruled
Out taliban and al qaeda
A taliban force
Months the taliban pushed
Leader mullah muhammad omar is
The taliban who were ousted
The whereabouts of mullah
Which the taliban had
The taliban may be
To convene a loya jirga
By a loya jirga
Major afghan guerrilla
Of the pakistan based guerrilla
The seven rebel parties
The seven major guerrilla
Based guerrilla parties
India iran and russia
The northern alliance delegation
Make up the northern alliance gen
The so called northern alliance
The alliance of seven
In eastern kunar province
Capital of kunar province
Capital of oruzgan province
Of parwan province
The northern province of kunduz
Reaching pakistan
Afghanistan the associated press
Intelligence officials in pakistan
For refugees in pakistan
The afghan press agency
Military intelligence agency the inter services
Million afghan refugees who have
With zahir shah
Of king mohammad zahir shah
Said the former king
Diego cordovez an ecuadorean
United nations mediator diego cordovez

Table B.5

Appendix B. Grouped Phrases 104

Query: Google Founder

At google in mountain view
Co founder larry page
To search engine
With google maps
Waiting for google mr
How google and its rivals
On its google print
By google last year
Of what google does
By google and other internet
An early google investor
A google engineer
On a google map
Google’s co founders
Larry page a co founder
Google’s search technology
Google’s strategy
Google’s biggest
Google’s latest
Google’s index
Google’s list
With the search engine giant
Google that it
If google is
To acquire youtube
Content on youtube
Billion acquisition of youtube
The youtube community
To sell radio ads
Ads with graphics
Displays ads
Sites that display its ads
The founders larry
The pay per click model
Acquired overture
Advertising supported web services
And overture services
The adsense

Table B.6

Bibliography

[1] Google traffic stats on alexa. http://www.alexa.com/siteinfo/google.com. Last

accessed, November 2009.

[2] Facebook lexicon. http://www.facebook.com/lexicon. Last accessed, November

2009.

[3] Google search options. http://www.google.com/support/websearch/bin/

answer.py?hl=en&answer=142143. Last accessed, November 2009.

[4] Mechanical turk. https://www.mturk.com. Last accessed, November 2009.

[5] New york times annotated corpus. http://corpus.nytimes.com. Last accessed,

April 2009.

[6] Penn treebank tag-set. http://www.cis.upenn.edu/~treebank. Last accessed,

November 2009.

[7] Penn treebank tag-set examples. http://www.comp.leeds.ac.uk/amalgam/

tagsets/upenn.html. Last accessed, November 2009.

[8] Stanford parts-of-speech tagger. http://nlp.stanford.edu/software/tagger.

shtml. Last accessed, November 2009.

[9] University of glasgow stop-word list. http://www.dcs.gla.ac.uk/idom/ir_

resources/linguistic_utils/stop_words. Last accessed, July 2009.

[10] Website optimization. http://www.websiteoptimization.com. Last accessed, Oc-

tober 2009.

[11] Weka 3: Data mining software in java. http://www.cs.waikato.ac.nz/ml/weka.

Last accessed, November 2009.

[12] Wordle. http://www.wordle.net, . Last accessed, November 2009.

[13] Wordnet lexical database. http://wordnet.princeton.edu, . Last accessed,

November 2009.

105

http://www.alexa.com/siteinfo/google.com
http://www.facebook.com/lexicon
http://www.google.com/support/websearch/bin/answer.py?hl=en&answer=142143
http://www.google.com/support/websearch/bin/answer.py?hl=en&answer=142143
https://www.mturk.com
http://corpus.nytimes.com
http://www.cis.upenn.edu/~treebank
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://www.websiteoptimization.com
http://www.cs.waikato.ac.nz/ml/weka
http://www.wordle.net
http://wordnet.princeton.edu

Bibliography 106

[14] Helena Ahonen. Knowledge discovery in documents by extracting frequent word

sequences. Library Trends, 48(1), 1999.

[15] Nilesh Bansal and Nick Koudas. Blogscope: a system for online analysis of high

volume text streams. Proceedings of the 33rd international conference on Very large

data bases, pages 1410–1413, 2007.

[16] Srikanta Bedathur, Klaus Berberich, Jens Dittrich, Nikos Mamoulis, and Gerhard

Weikum. Interesting-phrase mining for ad-hoc text analytics. PVLDB, 2010 (to

appear).

[17] F. J. Damerau. A technique for computer detection and correction of spelling errors.

Communications of the ACM, 7(3):171–176, 1964.

[18] John J. Darragh, Ian H. Witten, and Mark L. James. The reactive keyboard: A

predictive typing aid. Computer, 23(11):41–49, November 1990.

[19] Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak, Prabhakar Ragha-

van, and Andrew Tomkins. Visualizing tags over time. International World Wide

Web Conference, 1(2):193–202, August 2007.

[20] Ronald Fagin, R. Guha, Ravi Kumar, Jasmine Novak, D. Sivakumar, and An-

drew Tomkins. Multi-structural databases. Proceedings of the twenty-fourth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages

184–295, 2005.

[21] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical

Journal, 29(2):147–16, 1950.

[22] Akihiro Inokuchi and Koichi Takeda. A method for online analytical processing of

text data. Conference on Information and Knowledge Management archive, pages

455–464, 2007.

[23] Steven Keith, Owen Kaser, and Daniel Lemire. Analyzing large collections of elec-

tronic text using olap. Technical Report TR-05-001, UNBSJ CSAS, June 2005. URL

http://www.daniel-lemire.com/fr/documents/publications/tr05-001.pdf.

[24] Jon Kleinberg. Bursty and hierarchical structure in streams. International Confer-

ence on Knowledge Discovery and Data Mining, pages 91–101, August 2002.

[25] Tobias Leidinger. Entwicklung von back-end und testkonsole für “phrase search

and analytics”, 2009.

[26] Brian Lent, Rakesh Agrawal, and Ramakrishnan Srikant. Discovering trends in text

databases. Knowledge Discovery and Data Mining, KDD, pages 227–230, 1997.

http://www.daniel-lemire.com/fr/documents/publications/tr05-001.pdf

Bibliography 107

[27] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[28] Edward M. McCreight. A space-economical suffix tree construction algorithm. IEEE

Transactions on Knowledge and Data Engineering archive, 23(2):262–272, April

1976.

[29] Arnab Nandi and H. V. Jagadish. Effective phrase prediction. Proceedings of the

33rd international conference on Very large data bases, pages 219–230, 2007.

[30] Sven Obser. Entwicklung eines web-frontends für “phrase search and analytics”,

2009.

[31] Alkis Simitsis, Akanksha Baid, Yannis Sismanis, and Berthold Reinwald. Multidi-

mensional content exploration. PVLDB, 1(1):660–671, March 2008.

[32] Ian H. Witten, Gordon Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-

Manning. Kea: Practical automatic keyphrase extraction. Proceedings of Digital

Libraries, November 1999.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Need for Phrase Mining
	1.3 Need for Quality in Phrase Mining
	1.4 Contributions
	1.5 Outline of the Thesis

	2 Related Work
	2.1 Term level analysis
	2.2 Term level multi-dimensional view
	2.3 Phrase level analysis
	2.3.1 KeyPhrases
	2.3.2 Auto-completion Systems
	2.3.3 Multidimensional Content eXploration (MCX)
	2.3.4 Phrase Forward Index

	3 Domain Model and Interestingness
	3.1 Domain Model
	3.2 Interesting Phrases

	4 System Architecture
	4.1 System Overview
	4.2 Post Processing
	4.2.1 Merging
	4.2.2 Filtering
	4.2.3 Classification
	4.2.4 Ranking
	4.2.5 Grouping

	4.3 User Interface
	4.4 Conclusion

	5 Merge Strategies
	5.1 Exact Merge
	5.1.1 Prefix Merge
	5.1.2 Suffix Merge
	5.1.3 Prefix-Suffix Merge

	5.2 Approximate Merge
	5.2.1 Stop-Word Merge
	5.2.2 Synonym Merge
	5.2.3 Other Merges

	5.3 Conclusion

	6 Filter Strategies
	6.1 Static Rule based filtering
	6.1.1 Custom filter
	6.1.2 Prefix/Suffix filter
	6.1.3 Parts-of-Speech (POS) filter

	6.2 Corpus-based filtering
	6.2.1 FussyTree filter

	6.3 Conclusion

	7 Phrase Classification
	7.1 Feature Extraction
	7.2 Feature Selection
	7.3 Training Classifier
	7.4 Label Prediction (Classification)
	7.5 Classifier based filtering
	7.5.1 Threshold filter

	7.6 Conclusion

	8 Phrase Ranking
	8.1 Ranking Within and Across Labels
	8.2 Ranking Parameters
	8.2.1 Local and Global Frequency
	8.2.2 Classification Distribution
	8.2.3 Document Relevance
	8.2.4 Size of document collection
	8.2.5 Document Rank
	8.2.6 Global Statistics

	8.3 Ranking Functions
	8.4 Conclusion

	9 Phrase Grouping
	9.1 Group by Clustering
	9.2 Similarity based Grouping
	9.2.1 Noun Similarity
	9.2.2 Cosine Similarity

	9.3 Conclusion

	10 Experimental Evaluation and Results
	10.1 Experimental Setup
	10.1.1 System Configuration
	10.1.2 Data set
	10.1.3 Experiments

	10.2 Results
	10.2.1 Ranked Results
	10.2.2 Grouped Results

	10.3 Evaluation
	10.3.1 Precision
	10.3.2 Recall
	10.3.3 Precision/Recall Variation in Post-Processing
	10.3.4 Filtering Effectiveness
	10.3.5 Processing Latencies
	10.3.6 Cross Validation
	10.3.7 Normalized Discounted Cumulative Gain (NDCG)

	10.4 Discussion
	10.5 Conclusion

	11 Further Optimizations
	11.1 Forward Index Translation
	11.2 Forward Index Pruning
	11.2.1 Pushing Merge down to Indexing
	11.2.2 Pushing Filter down to Indexing

	11.3 Conclusion

	12 Conclusion and Future Work
	12.1 Future Work

	A Ranked Phrases
	B Grouped Phrases
	Bibliography

