
WHEN BUYING FOR AN
7 Things to Know

WHY SHOES?1 2 WHY OUR ELEPHANT NEEDS
DIFFERENT SHOES?

3 4.

5

76

WHAT IS WRONG WITH OLD
SHOES?

WHAT SHOES DO WE PROPOSE?

HOW DO WE DESIGN THE SHOES?

HOW WERE THE FIELD TRIALS? HOW DO WE RIDE OUR ELEPHANT?

MapReduce has been subject of active research in many aspects:
• Analysis and optimization of MapReduce jobs
• High-level query languages
• Efficient execution of MapReduce jobs
• and many others...

However, data layouts have not been explored in depth.

DBMS MapReduce
•Typically deployed over a
small number of nodes

•Usually use 8KB data page
size

•Data is typically replicated
at the table-level

•Typical ly deployed over
thousands of nodes

•Data block size of 64MB by
default (up to 1GB)

•Data is replicated 3 times by
default at the block-level

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30

Da
ta

 A
cc

es
s

Co
st

 [s
ec

]

Number of Referenced Attributes (Out of 30)

Trojan Layout
Row Layout

Column Layout
PAX Layout

Optimal Layout

PAX - Optimal
Row

Column
PAX

OptimalRow-, Column-, and PAX stores:
• Many redundant reads
• High network cost
• Complex data block placement
• High tuple reconstruction cost

• We keep the external-view of a data block intact:
• Data blocks store the same data as before
• Inside a block: any layout e.g. pax, column-group

• We exploit the default data block replication:
• Different layouts for different data block replicas
• Each replica optimized for different query sub-class

Further Information
PAPER: Trojan Data Layouts: Right Shoes for a Running Elephant.
Alekh Jindal, Jorge Quiané, Jens Dittrich. SoCC 2011.

TALK: Big Data Session, Talk 3 (10:30-12:00).
 Friday, 28th October.

HADOOP++ PROJECT: http://infosys.uni-saarland.de/hadoop++.php

OCTOPUSDB PROJECT: http://infosys.uni-saarland.de/octopusdb.php

Shoemakers:
Alekh Jindal, Jorge Quiané, Jens Dittrich

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

SDSS Queries

(d) SDSS PhotoObj

Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ⇠37 times less
redundant attributes than Hadoop-Row and to perform ⇠7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-o↵ between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

Im
pr

ov
em

en
t F

ac
to

r
(D

at
a

A
cc

es
s

Ti
m

e)

TPC-H Queries Accessing LineItem

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations(a) Using 50 virtual nodes.

0

400

800

1200

1600

2000

LineItem

1377
1266

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

76 79 76 77 81 80 85 82

2040 2044 2048 2044 3350 3346 3340 3345.33333333333

1440 1452 1446 1446 1860 1858 1955 1891

0 0 0 0 0 0 0 0

0

900

1800

2700

3600

4500

Customer LineItem LineOrder

1891

3345

82

1446

2044

77

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

Relations

HDFS 1 HDFS 2 HDFS 3 HDFS Average Trojan HDFS 1 Trojan HDFS 2 Trojan HDFS 3 Trojan HDFS Average

Customer

LineItem

LineOrder

PhotoObj

0 0 0 0 0 0 0 0

1265 1263 1271 1266.33333333333 1380 1374 1377 1377

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T
im

e
 (
s
e
c
o

n
d

s
) HDFS Trojan HDFS

(b) Using 10 physical nodes.

Figure 8: Comparison of Data Loading Times in Trojan and standard HDFS.

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Fetch Best-Layout

2nd Best-Layout

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

TPC-H Queries

Best-Layout

Figure 9: Worst-case relative data access performance when
using di↵erent scheduling policies. We observe that the 2nd
Best-Layout policy significantly hurts performance for some
queries, while the Fetch Best-Layout policy has an overhead
of at most 9% over the Best-Layout policy. Therefore, in prac-
tice, one should try to use the best layout to perform queries
even if data blocks has to be copied through the network.

respect to the Best-Layout policy over TPC-H Lineitem table.
We compute the relative performance of a given scheduling pol-
icy as the ratio of the data access time of the given policy to the
Best-Layout policy.

Figure 9 shows the results of these experiments. As expected,
the Best-Layout policy performs better than the other two poli-
cies. However, we observe that the Fetch Best-Layout policy
performs almost as well as the Best-Layout policy. This is not
the case for the 2nd Best-Layout policy, which is slower by a
factor of up to ⇠3.8. This is because map tasks end up reading all
attributes from disk in many cases. Thus, we can conclude that,
when having data block replicas in di↵erent layouts, one should
apply only the Best-Layout and Fetch Best-Layout policies.

5.6 Data Loading
Now we compare and analyze the data load performance of
Trojan HDFS with standard HDFS. On a cluster of 50 virtual
nodes, we consider the data load times of three data sets from
our benchmarks: TPC-H Customer, TPC-H Lineitem, and SSB
LineOrder. For each of these data sets, we load the data files on all
data nodes in parallel, i.e. each of the fifty nodes loads ⇠ 470 MB
of TPC-H Customer data (23.74 GB in total), ⇠15 GB of TPC-H
Lineitem data (759 GB in total), and 12 GB of SSB LineOrder
data (600 GB in total). We use the same command-line utility for
both Trojan as well as standard HDFS.

Figure 8(a) illustrates the results of loading these three data sets
into Trojan and standard HDFS. As expected, standard HDFS is
faster than Trojan HDFS because it simply copies the data from
local hard disks to the distributed file system. On the other hand,

Trojan HDFS parses the data sets into binary representation and
formats them into their Trojan Layout. However, from Figure 8(a),
we see that the di↵erence between the loading times of Trojan
and standard HDFS becomes significantly high for larger tables,
e.g. TPC-H Lineitem table. The reason for this overhead is that
the TrojanHDFS is CPU-intensive due to data parsing and layouts
transformation. However, because of node virtualization more than
60% of the CPU resources are already consumed. Furthermore,
since each physical node of our cluster has a Quad-core processor
(see Section 5.1), each virtual node gets only ⇠ 0.7 core. These
two problems slow down the data loading in Trojan HDFS con-
siderably. Standard HDFS, on the other hand, is I/O intensive and
therefore does not get a↵ected.

To actually verify our claims, we repeated the data loading exper-
iments for Lineitem using only the 10 physical nodes, i.e., with-
out any node virtualization. However, we still keep the amount of
data per data node same. Figure 8(b) shows the loading times of
Trojan and standard HDFS. We observe that Trojan HDFS now
compares very well with standard HDFS. This is because the data
nodes get much better CPU resources by not sharing the Quad-core
processors anymore.

In summary, we can say that with appropriate cluster settings,
the data load time overhead of Trojan HDFS is negligible. Fur-
thermore, the one-time data load cost of Trojan HDFS pays o↵ as
recurring speed-ups over several MapReduce jobs.

5.7 Comparison with HYRISE
In this section, we compare our column grouping algorithm

with recently proposed HYRISE [16] layout selection algorithm.
HYRISE proposes a cost-based divide and conquer technique for
layout selection. It divides the set of candidate column groups
using a k-way partitioner and then applies brute force search for
the best layout per partition. Thereafter, it tries to merge column
groups across partitions, before producing the final layout. This
approach e↵ectively improves upon the complexity of prior col-
umn grouping algorithms, e.g. [17]. However, it has two major
problems: (i) there is little column grouping quality control, and
(ii) query grouping, and hence per-replica layouts, is not possible.

In contrast, our interestingness-based column grouping algo-
rithm takes the quality of column grouping into account. To il-
lustrate this, we implemented HYRISE layout selection algorithm.
Table 2 shows the redundant attributes accessed and tuple recon-
struction joins in HYRISE and Trojan layouts.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HYRISE Layout 2 64
Trojan Layout 14 20

Table 2: Quality Comparison of HYRISE and Trojan Layouts

10

Information Systems Group SAARLAND UNIVERSITY. COPYRIGHT C 2011.

(1) Create the Trojan Layout configuration file in HDFS, e.g.
MyDatasetName Layout-1 Layout-2 Layout-3

(2) Upload input into HDFS as before
(3) Supply referenced attributes in the job configuration
(4) Supply the itemize UDF to transparently read Trojan Layouts
(5) Route map tasks to the best-layouts

Replica 1 Replica 2 Replica 3

17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Monday, October 24, 11
17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Monday, October 24, 11
17

Column groups

Interesting
Column groups

Complete & disjoint
column groups

Columns

Monday, October 24, 11

• Interestingness function: average
normalized mutual information between
any pair of attributes

Columns

Column  
groups

Interesting  
column groups

Complete & disjoint  
column groups

Columns

Column  
groups

Interesting  
column groups

Complete & disjoint  
column groups

Columns

Column  
groups

Interesting  
column groups

Complete & disjoint  
column groups

Now, to estimate the similarity between two attributes A and B
over the range of values of x and y, we measure their mutual de-
pendence using the mutual information [22] between them. We
can compute the mutual information between two attributes using
their relative importances as follows:

MI(A, B) =
⌦

x⌅{0,1}

⌦

y⌅{0,1}
RIA,B(x, y) · log

⇤
RIA,B(x, y)

RIA(x) · RIB(y)

⌅
.

Essentially, MI(A, B) measures the information (data access pat-
terns) that attributes A and B share. We normalize MI(A, B) by
the minimum entropies of the two attributes to normalize its range
between 0 and 1, i.e. nMI(A, B) = MI(A,B)

min(H(A),H(B)) . Here, H(A) and
H(B) denote the entropy of attributes A and B. For an attribute
A, we compute its entropy as: H(A) =

x⌅{0,1} RIA(x) · log

�
1

RIA(x)

⇥
.

Finally, we can define column group interestingness.

Definition 1. Column Group Interestingness of a column
group G is the average normalized mutual information of any given
attribute pair in G. Formally,

Intg(G) =

⇧����⌥
����⌃

1
(|G|2)
·
{A,B}⌅G,A�B

nMI(A, B) |G| > 1,

1
|A|�1 ·

A⌅G,B⌅A\G

1 � nMI(A, B) |G| = 1.

�

Note that for column groups having a single attribute, we take the
inverse of the mutual information with any other attribute in A.
In other words, we measure the benefit of the attribute in the col-
umn group not occurring with any other attribute in A. Intg(G) has
values between 0 and 1. Higher interestingness indicates higher
mutual dependence within a column group.

By default, we would have to consider all column groups
(O(2|A|)) within a data block. In practice, we use the similar prun-
ing method as in [5] in order to reduce the search space. We exper-
imentally determine the threshold interestingness value and discard
all column groups having interestingness below that threshold. A
higher interestingness threshold produces a smaller set of candidate
column groups. This has two consequences: (i) the search space for
finding the best combination of column groups (introduced as col-
umn group packing in Section 3.2) becomes smaller, and (ii) only
the attributes appearing in highly interesting column groups remain
in the candidate set and are thus likely to be grouped. All remaining
attributes which do not appear in any of the highly interesting col-
umn groups will end up in row layout. Apart from threshold based
pruning, we can perform further aggressive pruning, for column
groups having same interestingness value, in two ways: (i) keep the
smallest column group to reduce redundant data read, or (ii) keep
the largest column group to reduce tuple reconstruction costs.
Comparison with CG-Cost [5]. It is important to note that, in
contrast to [5], our definition of interestingness produces superior
interestingness measure, which we illustrate as follows. The al-
gorithm in [5] computes the interestingness (CG-Cost) for column
groups {A,B} and {C,D} in Example 1 as 0.4 and 0.6 respectively.
Our algorithm computes interestingness (Intg) as 1.0 and 0.23 re-
spectively, which makes much more sense since A and B always
occur/not-occur together. Likewise, the algorithm in [5] computes
the interestingness for both column groups {M,N,O} and {M,P} in
Example 2 as 0.2. Our algorithm computes interestingness (Intg) as
0.278 and 0.005 respectively. Again, this makes more sense since
{M,N} and {N,O} are pairwise similar making group {M,N,O}
more interesting.

{A,B}

{A,B} {A,D} {A,B} {C,D}

{A,B}
{C,D} {C}

{A,B}
{C,D} {E}

Bound

Bound

knapsack 1

knapsack 2 knapsack 3

knapsack 4 knapsack 5

Figure 4: Branch and Bound

3.2 Column Group Packing as 0-1 Knapsack
Problem

Once we have the candidate column groups along with their in-
terestingness values, our goal now is to pack these column groups
into a data block such that the total interestingness of all column
groups in the data block is maximized. As mentioned before, this
is an NP-hard problem [30]. Thus, we map it to a 0-1 knapsack
problem, with an extra disjointness constraint, to solve it.

For a given column group G, let id(G) denote the group identifier
(a numeric in binary representation) such that its ith bit is set to 1
if G contains attribute i, it is set to 0 otherwise. Given m column
groups, we have to find 0-1 variables x1, x2, ..., xm — where xi is 1 if
column group Gi is selected and 0 otherwise — such that the total
interestingness is maximized. Additionally, the sum of the group
identifiers should be at most id(A) and each of the groups should
be disjoint. Formally, max

 m
i=1 Intg(Gi) · xi subject to:

m⌦

i=1
id(Gi) · xi ⇤ id(A) (1)

xi + x j ⇤ 1, ⇧i, j s.t. i � j ⌥ Gi ⌃G j � �. (2)

Here, (2) is an extra constraint to the standard 0-1 knapsack
problem. Due to this additional constraint we cannot reduce the
problem to a sub-problem. This is because the solution to the sub-
problem may contain items which are not disjoint in the main prob-
lem. Thus, we cannot use a dynamic programming algorithm to
solve this problem. However, constraint (2) allows us to pre-filter
non-disjoint column groups. Therefore, we can apply a branch and
bound technique. The idea is to consider a column group and its
subsequent combinations with other column groups, only if it is
disjoint with the column groups currently in the knapsack. Fig-
ure 4 illustrates this idea. We observe that column groups {A,D}
and {C} bound any further branching of knapsack iterations. Al-
gorithm 1 shows the pseudo-code of this technique. The algorithm
denotes a column group as a knapsack item, its interestingness as
the benefit, and its group identifier as weight. In case we have ex-
plored all knapsack items, we check if we have a knapsack with
greater benefit than before (Lines 1-10). Else, we recursively call
CG.bbKnapsack in two cases: (i) without taking the current item
into the knapsack (Line 12), and (ii) taking the current item if it
satisfies constraints (1) and (2) (Lines 13–15).

It is worth noting that our interestingness function does not con-
sider the size of the column group. However, for operators such as
joins, the number and sizes of column groups would be quite im-
portant. Thus, we solve the above problem each for the number of
column groups ranging from 1 to |A|, as shown in Algorithm 2. We
first generate the column groups (Line 1) and add them to the item
list (Line 2), then we set the weight (group identifier) and benefit
(interestingness) of each item (Lines 4–8). We set maxWeight to
the maximum item weight and call CG.bbKnapsack, which returns
a column group set each for the number of groups ranging from 1

5

•We consider the column group packing
as 0-1 Knapsack problem

Now, to estimate the similarity between two attributes A and B
over the range of values of x and y, we measure their mutual de-
pendence using the mutual information [22] between them. We
can compute the mutual information between two attributes using
their relative importances as follows:

MI(A, B) =
⌦

x⌅{0,1}

⌦

y⌅{0,1}
RIA,B(x, y) · log

⇤
RIA,B(x, y)

RIA(x) · RIB(y)

⌅
.

Essentially, MI(A, B) measures the information (data access pat-
terns) that attributes A and B share. We normalize MI(A, B) by
the minimum entropies of the two attributes to normalize its range
between 0 and 1, i.e. nMI(A, B) = MI(A,B)

min(H(A),H(B)) . Here, H(A) and
H(B) denote the entropy of attributes A and B. For an attribute
A, we compute its entropy as: H(A) =

x⌅{0,1} RIA(x) · log

�
1

RIA(x)

⇥
.

Finally, we can define column group interestingness.

Definition 1. Column Group Interestingness of a column
group G is the average normalized mutual information of any given
attribute pair in G. Formally,

Intg(G) =

⇧����⌥
����⌃

1
(|G|2)
·
{A,B}⌅G,A�B

nMI(A, B) |G| > 1,

1
|A|�1 ·

A⌅G,B⌅A\G

1 � nMI(A, B) |G| = 1.

�

Note that for column groups having a single attribute, we take the
inverse of the mutual information with any other attribute in A.
In other words, we measure the benefit of the attribute in the col-
umn group not occurring with any other attribute in A. Intg(G) has
values between 0 and 1. Higher interestingness indicates higher
mutual dependence within a column group.

By default, we would have to consider all column groups
(O(2|A|)) within a data block. In practice, we use the similar prun-
ing method as in [5] in order to reduce the search space. We exper-
imentally determine the threshold interestingness value and discard
all column groups having interestingness below that threshold. A
higher interestingness threshold produces a smaller set of candidate
column groups. This has two consequences: (i) the search space for
finding the best combination of column groups (introduced as col-
umn group packing in Section 3.2) becomes smaller, and (ii) only
the attributes appearing in highly interesting column groups remain
in the candidate set and are thus likely to be grouped. All remaining
attributes which do not appear in any of the highly interesting col-
umn groups will end up in row layout. Apart from threshold based
pruning, we can perform further aggressive pruning, for column
groups having same interestingness value, in two ways: (i) keep the
smallest column group to reduce redundant data read, or (ii) keep
the largest column group to reduce tuple reconstruction costs.
Comparison with CG-Cost [5]. It is important to note that, in
contrast to [5], our definition of interestingness produces superior
interestingness measure, which we illustrate as follows. The al-
gorithm in [5] computes the interestingness (CG-Cost) for column
groups {A,B} and {C,D} in Example 1 as 0.4 and 0.6 respectively.
Our algorithm computes interestingness (Intg) as 1.0 and 0.23 re-
spectively, which makes much more sense since A and B always
occur/not-occur together. Likewise, the algorithm in [5] computes
the interestingness for both column groups {M,N,O} and {M,P} in
Example 2 as 0.2. Our algorithm computes interestingness (Intg) as
0.278 and 0.005 respectively. Again, this makes more sense since
{M,N} and {N,O} are pairwise similar making group {M,N,O}
more interesting.

{A,B}

{A,B} {A,D} {A,B} {C,D}

{A,B}
{C,D} {C}

{A,B}
{C,D} {E}

Bound

Bound

knapsack 1

knapsack 2 knapsack 3

knapsack 4 knapsack 5

Figure 4: Branch and Bound

3.2 Column Group Packing as 0-1 Knapsack
Problem

Once we have the candidate column groups along with their in-
terestingness values, our goal now is to pack these column groups
into a data block such that the total interestingness of all column
groups in the data block is maximized. As mentioned before, this
is an NP-hard problem [30]. Thus, we map it to a 0-1 knapsack
problem, with an extra disjointness constraint, to solve it.

For a given column group G, let id(G) denote the group identifier
(a numeric in binary representation) such that its ith bit is set to 1
if G contains attribute i, it is set to 0 otherwise. Given m column
groups, we have to find 0-1 variables x1, x2, ..., xm — where xi is 1 if
column group Gi is selected and 0 otherwise — such that the total
interestingness is maximized. Additionally, the sum of the group
identifiers should be at most id(A) and each of the groups should
be disjoint. Formally, max

 m
i=1 Intg(Gi) · xi subject to:

m⌦

i=1
id(Gi) · xi ⇤ id(A) (1)

xi + x j ⇤ 1, ⇧i, j s.t. i � j ⌥ Gi ⌃G j � �. (2)

Here, (2) is an extra constraint to the standard 0-1 knapsack
problem. Due to this additional constraint we cannot reduce the
problem to a sub-problem. This is because the solution to the sub-
problem may contain items which are not disjoint in the main prob-
lem. Thus, we cannot use a dynamic programming algorithm to
solve this problem. However, constraint (2) allows us to pre-filter
non-disjoint column groups. Therefore, we can apply a branch and
bound technique. The idea is to consider a column group and its
subsequent combinations with other column groups, only if it is
disjoint with the column groups currently in the knapsack. Fig-
ure 4 illustrates this idea. We observe that column groups {A,D}
and {C} bound any further branching of knapsack iterations. Al-
gorithm 1 shows the pseudo-code of this technique. The algorithm
denotes a column group as a knapsack item, its interestingness as
the benefit, and its group identifier as weight. In case we have ex-
plored all knapsack items, we check if we have a knapsack with
greater benefit than before (Lines 1-10). Else, we recursively call
CG.bbKnapsack in two cases: (i) without taking the current item
into the knapsack (Line 12), and (ii) taking the current item if it
satisfies constraints (1) and (2) (Lines 13–15).

It is worth noting that our interestingness function does not con-
sider the size of the column group. However, for operators such as
joins, the number and sizes of column groups would be quite im-
portant. Thus, we solve the above problem each for the number of
column groups ranging from 1 to |A|, as shown in Algorithm 2. We
first generate the column groups (Line 1) and add them to the item
list (Line 2), then we set the weight (group identifier) and benefit
(interestingness) of each item (Lines 4–8). We set maxWeight to
the maximum item weight and call CG.bbKnapsack, which returns
a column group set each for the number of groups ranging from 1

5

, subject to:

Replica 2Replica 1 Replica 3

Query groups

Interesting
Query groups

Complete & disjoint
query groups

Queries

Now, to estimate the similarity between two attributes A and B
over the range of values of x and y, we measure their mutual de-
pendence using the mutual information [21] between them. We
can compute the mutual information between two attributes using
their relative importances as follows:

MI(A, B) =
X

x2{0,1}

X

y2{0,1}
RIA,B(x, y) · log

RIA,B(x, y)

RIA(x) · RIB(y)

!
.

Essentially, MI(A, B) measures the information (data access pat-
terns) that attributes A and B share. We normalize MI(A, B) by
the minimum entropies of the two attributes to normalize its range
between 0 and 1, i.e. nMI(A, B) = MI(A,B)

min(H(A),H(B)) . Here, H(A) and
H(B) denote the entropy of attributes A and B. For an attribute
A, we compute its entropy as: H(A) =

P
x2{0,1} RIA(x) · log

⇣
1

RIA(x)

⌘
.

Finally, we can define column group interestingness.

Definition 1. Column Group Interestingness of a column
group G is the average normalized mutual information of any given
attribute pair in G. Formally,

Intg(G) =

8>>>><
>>>>:

1
(|G|2)
· P
{A,B}2G,A,B

nMI(A, B) |G| > 1,

1
|A|�1 ·

P
A2G,B2A\G

1 � nMI(A, B) |G| = 1.

⌅

Note that for column groups having a single attribute, we take the
inverse of the mutual information with any other attribute in A.
In other words, we measure the benefit of the attribute in the col-
umn group not occurring with any other attribute in A. Intg(G) has
values between 0 and 1. Higher interestingness indicates higher
mutual dependence within a column group.

By default, we would have to consider all column groups
(O(2|A|)) within a data block. In practice, we use the similar prun-
ing method as in [5] in order to reduce the search space. We exper-
imentally determine the threshold interestingness value and discard
all column groups having interestingness below that threshold. A
higher interestingness threshold produces a smaller set of candidate
column groups. This has two consequences: (i) the search space for
finding the best combination of column groups (introduced as col-
umn group packing in Section 3.2) becomes smaller, and (ii) only
the attributes appearing in highly interesting column groups remain
in the candidate set and are thus likely to be grouped. All remaining
attributes which do not appear in any of the highly interesting col-
umn groups will end up in row layout. Apart from threshold based
pruning, we can perform further aggressive pruning, for column
groups having same interestingness value, in two ways: (i) keep the
smallest column group to reduce redundant data read, or (ii) keep
the largest column group to reduce tuple reconstruction costs.
Comparison with CG-Cost [5]. It is important to note that, in
contrast to [5], our definition of interestingness produces superior
interestingness measure, which we illustrate as follows. The al-
gorithm in [5] computes the interestingness (CG-Cost) for column
groups {A,B} and {C,D} in Example 1 as 0.4 and 0.6 respectively.
Our algorithm computes interestingness (Intg) as 1.0 and 0.23 re-
spectively, which makes much more sense since A and B always
occur/not-occur together. Likewise, the algorithm in [5] computes
the interestingness for both column groups {M,N,O} and {M,P} in
Example 2 as 0.2. Our algorithm computes interestingness (Intg) as
0.278 and 0.005 respectively. Again, this makes more sense since
{M,N} and {N,O} are pairwise similar making group {M,N,O}
more interesting.

{A,B}

{A,B} {A,D} {A,B} {C,D}

{A,B}
{C,D} {C}

{A,B}
{C,D} {E}

Bound

Bound

knapsack 1

knapsack 2 knapsack 3

knapsack 4 knapsack 5

Figure 4: Branch and Bound

3.2 Column Group Packing as 0-1 Knapsack
Problem

Once we have the candidate column groups along with their in-
terestingness values, our goal now is to pack these column groups
into a data block such that the total interestingness of all column
groups in the data block is maximized. As mentioned before, this
is an NP-hard problem [29]. Thus, we map it to a 0-1 knapsack
problem, with an extra disjointness constraint, to solve it.

For a given column group G, let id(G) denote the group identifier
(a numeric in binary representation) such that its ith bit is set to 1
if G contains attribute i, it is set to 0 otherwise. Given m column
groups, we have to find 0-1 variables x1, x2, ..., xm — where xi is 1 if
column group Gi is selected and 0 otherwise — such that the total
interestingness is maximized. Additionally, the sum of the group
identifiers should be at most id(A) and each of the groups should
be disjoint. Formally, max

Pm
i=1 Intg(Gi) · xi subject to:

mX

i=1
id(Gi) · xi id(A) (1)

xi + x j 1, 8i, j s.t. i , j ^ Gi \G j , ?. (2)

Here, (2) is an extra constraint to the standard 0-1 knapsack
problem. Due to this additional constraint we cannot reduce the
problem to a sub-problem. This is because the solution to the sub-
problem may contain items which are not disjoint in the main prob-
lem. Thus, we cannot use a dynamic programming algorithm to
solve this problem. However, constraint (2) allows us to pre-filter
non-disjoint column groups. Therefore, we can apply a branch and
bound technique. The idea is to consider a column group and its
subsequent combinations with other column groups, only if it is
disjoint with the column groups currently in the knapsack. Fig-
ure 4 illustrates this idea. We observe that column groups {A,D}
and {C} bound any further branching of knapsack iterations. Al-
gorithm 1 shows the pseudo-code of this technique. The algorithm
denotes a column group as a knapsack item, its interestingness as
the benefit, and its group identifier as weight. In case we have ex-
plored all knapsack items, we check if we have a knapsack with
greater benefit than before (Lines 1-10). Else, we recursively call
CG.bbKnapsack in two cases: (i) without taking the current item
into the knapsack (Line 12), and (ii) taking the current item if it
satisfies constraints (1) and (2) (Lines 13–15).

It is worth noting that our interestingness function does not con-
sider the size of the column group. However, for operators such as
joins, the number and sizes of column groups would be quite im-
portant. Thus, we solve the above problem each for the number of
column groups ranging from 1 to |A|, as shown in Algorithm 2. We
first generate the column groups (Line 1) and add them to the item
list (Line 2), then we set the weight (group identifier) and benefit
(interestingness) of each item (Lines 4–8). We set maxWeight to
the maximum item weight and call CG.bbKnapsack, which returns
a column group set each for the number of groups ranging from 1

5

#Redundant Attributes Read #Joins in Tuple Reconstruction
HADOOP-ROW 525 0
HADOOP-PAX 0 139

HYRISE* Layout 2 64
Trojan Layout 14 20

Upload Time

http://infosys.uni-saarland.de/hadoop++.php
http://infosys.uni-saarland.de/hadoop++.php

