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• Single database system

• Automatic adaption

• Improved performance

• Lower cost

• Better maintainability

3
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Information Systems GroupOctopusDB Overview

• One-size-fits-all architecture

• Abstract storage concept: Storage Views(SV)

• Single optimization problem: SV Selection

• Holistic SV optimizer

4
OctopusDB
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Vertically/Horizontally Partitioned SV

Primary Secondary
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• Flight booking system

• Tables: Tickets, Customers

• Tickets: several attributes, frequently updated

• Customers: fewer attributes

• Queries: 
SELECT C.*  
FROM Tickets T, Customers C 
WHERE T.customer_id=C.id AND T.a1=x1 AND T.a2=x2 ... AND T.an=xn

7

* Inspired from Unterbrunner et al. in PVLDB, 2009.

Storage Views
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Log SV Result

tickets.customer_id

π
customer.* ( ))σ

a1=x1 .... an=xn
(

customers.id
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SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 ....  AND T.an=xn

Customers

Tickets

customers, 01, <tom, 25, 
customers, 02, <marc, 23, 
customers 03, <felix, 20, 
customers, 03, <felix, 20, 
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25, tom@abc.com, ...>
customers, 02, <marc, 23, marc@abc.com, ...>
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20, felix@abc.com, ...>
customers, 03, <felix, 20, felix@xyz.com, ...>
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Storage Views
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Log SV Result

σ
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π
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tickets log
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tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 ....  AND T.an=xn
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customers

Storage Views

time>=now-7days
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Isn’t this same as 
Materialized Views?
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Pick right Storage Views to:
create, update, query and drop

Optimizer
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Single Optimization Problem:
“Storage View Selection”
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• Storage totally dynamic: 
Any subset of data in Any storage structure

• Storage View selection

• Storage View update maintenance

• Pick physical execution plan

• Combine results spanning several Storage 
Views

15
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Information Systems GroupResearch Challenges

• Single umbrella for different storage layouts 
- storage layer abstraction  
- still layout specific specialization

• Automatic adaptive bifurcation 
- monolithic system 
- right online algorithms 

• Simplicity vs Optimization 
- only as complex as required 
- mimic several specialized systems

16
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• Materialized Views [Chirkova et. al. VLDBJ 2002] 
- as pointed before different from storage views

• Dynamic materialized views [Zhou et. al. ICDE 2007] 
- horizontal dynamism, storage view still open

• View matching, query containment [A. Y. Halevy VLDBJ 2001] 
- again operate on a higher level

• Cracked databases [Idreos et. al. CIDR 2007] 
- logical partitioning of data, only horizontal

• Rodent store [Cudre-Mauroux et. al. CIDR 2009] 
- still assumes a store

• GMAP [Tsatalos et. al. VLDB 1994] 
- does not adapt the stores 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Symbol Meaning Model

C log
scan(N) Log SV scan cost
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C index
lookup(N) Index lookup cost Crandom · dlogF (N · (colsize(key) + pointerSize)/pageSize)e

Crow cl. index
scan (N, sel) Unclustered Indexed Row SV scan cost C index

lookup(N) + Crow
scan(dsel · Ne)

Ccol. cl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup(N) + Ccol
scan(dsel · Ne, S)

Crow uncl. index
scan (N, sel) Clustered Indexed Row SV scan cost C index

lookup + dsel · Ne · (Crandom + pageSize/BW)

Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
C log

update(Nu) Log SV update cost C log
scan(Nu)

Crow
update(N, Nu) Row SV update cost min
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split (d) Index split cost
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Ccol. cl. index
update (N, Nu, S, d) Cl. Index Col SV update cost C index

lookup(N) + 2 · Ccol
scan(Nu, S) + C index

split (d)

Crow uncl. index
update (N, Nu, d) Uncl. Index Row SV update cost C index

lookup + Nu · (Crandom + pageSize/BW ) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW ) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m

sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +

“
F d+1�1

F�1

”
· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
· Crandom

Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split ). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.
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scan(dsel · Ne)
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Crow uncl. index
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Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
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lookup + Nu · (Crandom + pageSize/BW ) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW ) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF
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N·(colsize(key)+pointerSize)
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sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +
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· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
· Crandom

Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split ). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.
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scan (N, sel) Unclustered Indexed Row SV scan cost C index

lookup(N) + Crow
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Crow uncl. index
scan (N, sel) Clustered Indexed Row SV scan cost C index

lookup + dsel · Ne · (Crandom + pageSize/BW)

Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
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split (d)

Ccol. cl. index
update (N, Nu, S, d) Cl. Index Col SV update cost C index

lookup(N) + 2 · Ccol
scan(Nu, S) + C index

split (d)

Crow uncl. index
update (N, Nu, d) Uncl. Index Row SV update cost C index

lookup + Nu · (Crandom + pageSize/BW ) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW ) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m

sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +

“
F d+1�1

F�1

”
· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
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Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split ). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.
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1.Automatically picking the right layout 
- row, column, partitioned, cracked, more?

2.Storage View compression  
- adaptive compression

3.Storage View maintenance 
- maintaining heterogenous SVs

4.OctopusDB benchmarking and evaluation  
- one-size-fits-all benchmark
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Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

SELECT C.*  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WHERE T.customer_id=C.id 
AND T.a1=x1 ....  AND T.an=xn
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