
Information Systems Group

The Mimicking Octopus
Towards a one-size-fits-all Architecture for Database Systems

Alekh Jindal
Supervisor: Prof. Dr. Jens Dittrich

VLDB PhD Workshop
September 13, 2010

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupDatabase Landscape

2
Motivation

OLTP

OLAP

Streaming
System

Archival
System

Search
Engine

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupDatabase Landscape

2
Motivation

OLTP

OLAP

Streaming
System

Archival
System

Search
Engine

Company
Information System

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupDatabase Landscape

2
Motivation

OLTP

OLAP

Streaming
System

Archival
System

Search
Engine

Airline Company

Several Applications
Evolving Applications

ETL style data pipelines
Eventual Integration

Licensing Cost

DBA Cost
Maintenance Cost

Engineering Cost

Integration Cost

Hard-coded optimizations
Hard-coded data layouts

Reporting

Cheap Fares

Ticket Booking

Booking
Archives

Flight Search

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupProblem Statement

• Single database system

• Automatic adaption

• Improved performance

• Lower cost

• Better maintainability

3
Motivation

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupOctopusDB Overview

• One-size-fits-all architecture

• Abstract storage concept: Storage Views(SV)

• Single optimization problem: SV Selection

• Holistic SV optimizer

4
OctopusDB

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupSystem Architecture

5

• No hard-coded store

• All operations recorded as logical log entries
in a primary log on stable storage using WAL

OctopusDB

Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupSystem Architecture

5

• No hard-coded store

• All operations recorded as logical log entries
in a primary log on stable storage using WAL

OctopusDB

Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupSystem Architecture

5

• No hard-coded store

• All operations recorded as logical log entries
in a primary log on stable storage using WAL

OctopusDB

Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage Views

• Arbitrary physical representations of data

• Different layouts under a single umbrella

6
Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage Views

• Arbitrary physical representations of data

• Different layouts under a single umbrella

6
Storage Views

Log SV
Row SV
Column SV
Index SV

Primary

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage Views

• Arbitrary physical representations of data

• Different layouts under a single umbrella

6
Storage Views

Log SV
Row SV
Column SV
Index SV

Partial Index SV
Bag-partitioned SV
Key-consolidated SV
Vertically/Horizontally Partitioned SV

Primary Secondary

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage Views

• Arbitrary physical representations of data

• Different layouts under a single umbrella

6
Storage Views

Log SV
Row SV
Column SV
Index SV

Partial Index SV
Bag-partitioned SV
Key-consolidated SV
Vertically/Horizontally Partitioned SV

Primary Secondary

... any hybrid combination of the above

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupUse-case Scenario*

• Flight booking system

• Tables: Tickets, Customers

• Tickets: several attributes, frequently updated

• Customers: fewer attributes

• Queries: 
SELECT C.*  
FROM Tickets T, Customers C 
WHERE T.customer_id=C.id AND T.a1=x1 AND T.a2=x2 ... AND T.an=xn

7

* Inspired from Unterbrunner et al. in PVLDB, 2009.

Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupFlight Booking System

Log SV Result

tickets.customer_id

π
customer.* ())σ

a1=x1 an=xn
(

customers.id

8

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

Customers

Tickets

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25, tom@abc.com, ...>
customers, 02, <marc, 23, marc@abc.com, ...>
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20, felix@abc.com, ...>
customers, 03, <felix, 20, felix@xyz.com, ...>
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupBag-partitioning

Log SV

Log SV

Log SV Result

σ
bag=customers

σ
bag=tickets

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

tickets log

customers log

9

Customers

Tickets

customers, 01, <tom, 25, tom@abc.com, ...>
customers, 02, <marc, 23, marc@abc.com, ...>
customers 03, <felix, 20, felix@abc.com, ...>
customers, 03, <felix, 20, felix@xyz.com, ...>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupKey-consolidation

Log SV

Log SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recent
γ (())

10

Customers

Tickets

customers, 01, <tom, 25, tom@abc.com, ...>
customers, 02, <marc, 23, marc@abc.com, ...>
customers, 03, <felix, 20, felix@xyz.com, ...>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, B,..>
.....

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

customers

Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage View Transformation

Col SV

Row SV

Log SV Result

tickets

customers

11

Customers

Tickets

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

σ
bag=ticketsΓ

bag,key
recent
γ (())

σ
bag=customers

Γ
bag,keyrecent

γ (())

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25, tom@abc.com, ...>
customers, 02, <marc, 23, marc@abc.com, ...>
customers, 03, <felix, 20, felix@xyz.com, ...>
.....

Storage Views

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupHot-Cold Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))
σ

Col SV

σ tim
e<

no
w-7d

ays

ticketsHot

ticketsCold

12

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers

Storage Views

time>=now-7days

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Isn’t this same as
Materialized Views?

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

NO!
Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Isn’t this same as
Materialized Views?

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Materialized View knows what to materialize

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Materialized View knows what to materializeStorage View also knows how to materialize

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems Group

σ
time>=now-7days

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers, 03, <felix, 20,
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
customers 03, <felix, 20,
customers, 03, <felix, 20,
.....

Index Storage Views

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))

Col SV

σtim
e<

no
w-7d

ays

13

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

tickets.customer_id

π
customers.*

())σ
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

tickets, 303, <tokyo, beijing, B,..>
.....

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>.....

Storage Views

tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
tickets, 303, <tokyo, beijing, B,..>
.....

customers, 01, <tom, 25,
customers, 02, <marc, 23,
tickets, 301, <paris, rome, E,...>
tickets, 302, <moscow, berlin, B,...>
tickets, 303, <tokyo, beijing, E,...>
customers 03, <felix, 20,
customers, 03, <felix, 20,
tickets, 303, <tokyo, beijing, B,..>
.....
.....

Materialized View knows what to materializeStorage View also knows how to materialize

A Materialized View still needs a Storage View

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage View Selection

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))
σ

time>=now-7days

Col SV

σtim
e<

no
w-7d

ays

14

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

ticketsCold

Result

Result

ResultResult Result

Optimizer

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage View Selection

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))
σ

time>=now-7days

Col SV

σtim
e<

no
w-7d

ays

14

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

ticketsCold

Result

Result

ResultResult Result

Pick right Storage Views to:
create, update, query and drop

Optimizer

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupStorage View Selection

Customers

Tickets

Col SV

Row SV

Log SV Result

σ
bag=customers

Γ
bag,keyrecent

γ (())

σ
bag=ticketsΓ

bag,key
recentγ ((

))
σ

time>=now-7days

Col SV

σtim
e<

no
w-7d

ays

14

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

Index
SV

Index
SV

ticketsHotIndex

customersIndex

π

π

id,rid

price, rid

ticketsCold

Result

Result

ResultResult Result

Single Optimization Problem:
“Storage View Selection”

Optimizer

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupHolistic Storage View Optimizer

• Storage totally dynamic: 
Any subset of data in Any storage structure

• Storage View selection

• Storage View update maintenance

• Pick physical execution plan

• Combine results spanning several Storage
Views

15
Optimizer

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupResearch Challenges

• Single umbrella for different storage layouts 
- storage layer abstraction  
- still layout specific specialization

• Automatic adaptive bifurcation 
- monolithic system 
- right online algorithms

• Simplicity vs Optimization 
- only as complex as required 
- mimic several specialized systems

16

Challenges & Related

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupRelated Work

• Materialized Views [Chirkova et. al. VLDBJ 2002] 
- as pointed before different from storage views

• Dynamic materialized views [Zhou et. al. ICDE 2007] 
- horizontal dynamism, storage view still open

• View matching, query containment [A. Y. Halevy VLDBJ 2001] 
- again operate on a higher level

• Cracked databases [Idreos et. al. CIDR 2007] 
- logical partitioning of data, only horizontal

• Rodent store [Cudre-Mauroux et. al. CIDR 2009] 
- still assumes a store

• GMAP [Tsatalos et. al. VLDB 1994] 
- does not adapt the stores 

17

Challenges & Related

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupOptimizer Cost Model

18

Symbol Meaning Model

C log
scan(N) Log SV scan cost

‰ PN
i=1 colsize(logi)

m

ı
· Crandom +

‰ PN
i=1 colsize(logi)

pageSize

ı
/BW

Crow
scan(N) Row SV scan cost

‰
N·

P
Ai⇤A colsize(Ai)

m

ı
· Crandom +

‰
N·

P
Ai⇤A colsize(Ai)

pageSize

ı
/BW

Ccol
scan(N, S) Col SV scan cost

P
Ai⇤S

„‰
N·

P
Ai⇤S colsize(Ai)

m

ı
· Crandom +

l
N·colsize(Ai)

pageSize

m
/BW

«

C index
lookup(N) Index lookup cost Crandom · dlogF (N · (colsize(key) + pointerSize)/pageSize)e

Crow cl. index
scan (N, sel) Unclustered Indexed Row SV scan cost C index

lookup(N) + Crow
scan(dsel · Ne)

Ccol. cl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup(N) + Ccol
scan(dsel · Ne, S)

Crow uncl. index
scan (N, sel) Clustered Indexed Row SV scan cost C index

lookup + dsel · Ne · (Crandom + pageSize/BW)

Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
C log

update(Nu) Log SV update cost C log
scan(Nu)

Crow
update(N, Nu) Row SV update cost min

“
Crandom +

l
N
Nc

m
· Crow

scan(2 · Nc),
l

N
Nc

m
· Crow

scan(Nc) + Nu · (Crandom + pageSize/BW)
”

Ccol
update(N, Nu, S) Col SV update cost min

“
Crandom +

l
N
Nc

m
· Ccol

scan(2 · Nc),
l

N
Nc

m
· Ccol

scan(Nc) + Nu · |S| · (Crandom + pageSize/BW
”

C index
split (d) Index split cost

“Pd
i=1 (psplit)

i
”

· Crandom

Crow cl. index
update (N, Nu, d) Cl. Index Row SV update cost C index

lookup(N) + 2 · Crow
scan(Nu) + C index

split (d)

Ccol. cl. index
update (N, Nu, S, d) Cl. Index Col SV update cost C index

lookup(N) + 2 · Ccol
scan(Nu, S) + C index

split (d)

Crow uncl. index
update (N, Nu, d) Uncl. Index Row SV update cost C index

lookup + Nu · (Crandom + pageSize/BW) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m

sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +

“
F d+1�1

F�1

”
· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
· Crandom

Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.

5

Symbol Meaning Model

C log
scan(N) Log SV scan cost

‰ PN
i=1 colsize(logi)

m

ı
· Crandom +

‰ PN
i=1 colsize(logi)

pageSize

ı
/BW

Crow
scan(N) Row SV scan cost

‰
N·

P
Ai⇤A colsize(Ai)

m

ı
· Crandom +

‰
N·

P
Ai⇤A colsize(Ai)

pageSize

ı
/BW

Ccol
scan(N, S) Col SV scan cost

P
Ai⇤S

„‰
N·

P
Ai⇤S colsize(Ai)

m

ı
· Crandom +

l
N·colsize(Ai)

pageSize

m
/BW

«

C index
lookup(N) Index lookup cost Crandom · dlogF (N · (colsize(key) + pointerSize)/pageSize)e

Crow cl. index
scan (N, sel) Unclustered Indexed Row SV scan cost C index

lookup(N) + Crow
scan(dsel · Ne)

Ccol. cl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup(N) + Ccol
scan(dsel · Ne, S)

Crow uncl. index
scan (N, sel) Clustered Indexed Row SV scan cost C index

lookup + dsel · Ne · (Crandom + pageSize/BW)

Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
C log

update(Nu) Log SV update cost C log
scan(Nu)

Crow
update(N, Nu) Row SV update cost min

“
Crandom +

l
N
Nc

m
· Crow

scan(2 · Nc),
l

N
Nc

m
· Crow

scan(Nc) + Nu · (Crandom + pageSize/BW)
”

Ccol
update(N, Nu, S) Col SV update cost min

“
Crandom +

l
N
Nc

m
· Ccol

scan(2 · Nc),
l

N
Nc

m
· Ccol

scan(Nc) + Nu · |S| · (Crandom + pageSize/BW
”

C index
split (d) Index split cost

“Pd
i=1 (psplit)

i
”

· Crandom

Crow cl. index
update (N, Nu, d) Cl. Index Row SV update cost C index

lookup(N) + 2 · Crow
scan(Nu) + C index

split (d)

Ccol. cl. index
update (N, Nu, S, d) Cl. Index Col SV update cost C index

lookup(N) + 2 · Ccol
scan(Nu, S) + C index

split (d)

Crow uncl. index
update (N, Nu, d) Uncl. Index Row SV update cost C index

lookup + Nu · (Crandom + pageSize/BW) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m

sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +

“
F d+1�1

F�1

”
· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
· Crandom

Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.

5

Symbol Meaning Model

C log
scan(N) Log SV scan cost

‰ PN
i=1 colsize(logi)

m

ı
· Crandom +

‰ PN
i=1 colsize(logi)

pageSize

ı
/BW

Crow
scan(N) Row SV scan cost

‰
N·

P
Ai⇤A colsize(Ai)

m

ı
· Crandom +

‰
N·

P
Ai⇤A colsize(Ai)

pageSize

ı
/BW

Ccol
scan(N, S) Col SV scan cost

P
Ai⇤S

„‰
N·

P
Ai⇤S colsize(Ai)

m

ı
· Crandom +

l
N·colsize(Ai)

pageSize

m
/BW

«

C index
lookup(N) Index lookup cost Crandom · dlogF (N · (colsize(key) + pointerSize)/pageSize)e

Crow cl. index
scan (N, sel) Unclustered Indexed Row SV scan cost C index

lookup(N) + Crow
scan(dsel · Ne)

Ccol. cl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup(N) + Ccol
scan(dsel · Ne, S)

Crow uncl. index
scan (N, sel) Clustered Indexed Row SV scan cost C index

lookup + dsel · Ne · (Crandom + pageSize/BW)

Ccol. uncl. index
scan (N, S, sel) Unclustered Indexed Col SV scan cost C index

lookup + dsel · Ne · |S| · (Crandom + pageSize/BW)

Table 1: SV Query Cost model
Symbol Meaning Model
C log

update(Nu) Log SV update cost C log
scan(Nu)

Crow
update(N, Nu) Row SV update cost min

“
Crandom +

l
N
Nc

m
· Crow

scan(2 · Nc),
l

N
Nc

m
· Crow

scan(Nc) + Nu · (Crandom + pageSize/BW)
”

Ccol
update(N, Nu, S) Col SV update cost min

“
Crandom +

l
N
Nc

m
· Ccol

scan(2 · Nc),
l

N
Nc

m
· Ccol

scan(Nc) + Nu · |S| · (Crandom + pageSize/BW
”

C index
split (d) Index split cost

“Pd
i=1 (psplit)

i
”

· Crandom

Crow cl. index
update (N, Nu, d) Cl. Index Row SV update cost C index

lookup(N) + 2 · Crow
scan(Nu) + C index

split (d)

Ccol. cl. index
update (N, Nu, S, d) Cl. Index Col SV update cost C index

lookup(N) + 2 · Ccol
scan(Nu, S) + C index

split (d)

Crow uncl. index
update (N, Nu, d) Uncl. Index Row SV update cost C index

lookup + Nu · (Crandom + pageSize/BW) + C index
split (d)

Ccol. uncl. index
update (N, Nu, S, d) Uncl. Index Col SV update cost C index

lookup + Nu · |S| · (Crandom + pageSize/BW) + C index
split (d)

Table 2: SV Update Cost model

transformation below. We consider Log, Row, Col, and Index SV.
Table 3 describes the symbols used in our cost models.
Query Cost. Table 1 shows the query cost models for Log, Row,
Col, and Index SVs. We express each of the cost functions as a
summation of random and sequential I/O costs. We consider the
scan operation to be I/O-bound and hence neglect CPU costs. No-
tice that the scan operations for Row and Col SVs are buffered
reads, i.e. OctopusDB reads as many tuples from a SV as can fit
in the memory assigned to it. We need buffered reading for Col SV,
because we need to join individual attributes to re-construct the tu-
ple; for Row SV we also consider the additional random I/O costs
when reading multiple relations competing for the same hard disk,
e.g. for join processing.

Symbol Meaning Unit
N number of rows in table
Nc number of rows in a table chunk
BW sequential bandwidth of hard disk Pages/sec
Crandom costs for a random access sec
pageSize size of a page Byte
pointerSize size of a pointer in an index Byte
F fan-out of index node

= 1 +
j

pageSize�2·pointerSize
2·colsize(key)

k

d depth of an index tree
=

l
logF

“l
N·(colsize(key)+pointerSize)

pageSize

m”m

sel query selectivity
m available main memory Byte
A set of all attributes in table
key indexed attribute
colsize(Ai) size of a value of attribute i Byte
S set of selected attributes
psplit probability of a leaf split

Table 3: Symbols used in cost models

SV Transformation Cost
Log SV! Row SV C log

scan(N) + Crow
scan(N)

Log SV! Col SV C log
scan(N) + Ccol

scan(N, A)
Row SV$ Col SV Crow

scan(N) + Ccol
scan(N, A)

Row SV! Index SV Crow
scan(N) +

“
F d+1�1

F�1

”
· Crandom

Col SV! Index SV Ccol
scan(N, {key,rowID}) +

“
F d+1�1

F�1

”
· Crandom

Table 4: SV Transformation Cost model
Update Cost. All updates to OctopusDB are done in the Primary

Log and OctopusDB later propagates them recursively to the sub-
sequent SVs using any appropriate maintenance algorithm. There-
fore, update costs are a crucial factor when determining which SVs
to keep. Table 2 shows our update cost model for Log, Row, Col,
and Index SVs. For Row and Col SVs, we assume that either the
tuples are scanned and updated in chunks of Nc; or each update
triggers a random-I/O. We take the minimum cost among these two
options as the update cost (as done by a cost-based optimizer). For
updates in Index SVs, we also consider the costs to split leaves or
nodes in the index structure (C index

split). We model the probability of
having a node/leaf split at a level as exponentially proportional to
the depth of the level in the index tree.

For each call to registerSV or registerQuery, OctopusDB stores
the reference to output SV or Query in the SV or Query Catalog
respectively. Again, the holistic SV optimizer is responsible for
propagating updates from the primary log to all SVs recursively.
There are several ways, e.g. lazy updates, to do such SV main-
tenance. We believe that existing works from materialized views
could be adapted in OctopusDB for SV maintenance. However,
OctopusDB poses several new challenges, e.g. how to compute the
optimal number of stores. This also has to consider the amount
of overlap among stores, i.e. to avoid extensive update costs for
redundant data representations.
Transformation Cost. Finally, we also model the costs to trans-
form one type of SV to another in Table 4. We consider transfor-
mation as a query scan on the input SV followed by a update scan
on the output SV. For Index SV, only the index attributes and rowID
need to be read; the index tree needs to be built on those attributes
only. The transformation cost model can be used by the holistic SV
optimizer when considering to transform one SV to another, e.g.
whether to transform a Row SV into a Col SV. Transformation cost
is the price that OctopusDB has to pay while the benefit could be
the reduced scan costs i.e. the difference between the iteration costs
of the old and new SVs, or reduced update cost. As SVs are fully
optional, OctopusDB may balance the two cost factors based on a
given workload.

The three cost models discussed above form the backbone of the
holistic SV optimizer. Based on these cost models the holistic SV
optimizer can create, maintain, scan, transform, or delete any SV.

5

Query Cost
Model

Update
Cost Model

Transform
Cost Model

Further Directions

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupComparing Different Stores

19
Further Directions

 0

 0.2

 0.4

 0.6

 0.8

 1

Row Store

Column Store

Indexed Row Store

Indexed Column Store

Fractured Mirrors

Indexed Fractured Mirrors

OctopusDB

w
o
rk

lo
a
d
 t
im

e

[s

e
c
o
n
d
s
]

Query Costs Update Costs

Tickets Customers

Tuples 100,000 20,000

Selectivity 0.9 0.1

Attributes
Referenced 4/20 20/20

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupNext Steps

1.Automatically picking the right layout 
- row, column, partitioned, cracked, more?

2.Storage View compression  
- adaptive compression

3.Storage View maintenance 
- maintaining heterogenous SVs

4.OctopusDB benchmarking and evaluation  
- one-size-fits-all benchmark

20
Further Directions

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupSummary

Storage View StorePrimary Log Store

Log SV

Storage View Catalog

API

Purging & Checkpointing

Recovery Manager

Holistic SV Optimizer

Transaction Manager

Result

Query Catalog

SELECT C.*  
FROM Tickets T , Customers C 
WHERE T.customer_id=C.id 
AND T.a1=x1 AND T.an=xn

Customers

Tickets

Col SV

Row SV

Log SV Result

!
bag=customers

!
bag,keyrecent

" (())

!
bag=tickets!

bag,key
recent" ((

))
!

time>=now-7days

Col SV

!tim
e<

no
w-7d

ays

tickets.customer_id

"
customers.*

())!
a1=x1 ... an=xn(customer.id

Index
SV

Index
SV

ticketsHotIndex

customersIndex

"

"

id,rid

price, rid

customers

ticketsCold

Thanks!

 0

 0.2

 0.4

 0.6

 0.8

 1

Row Store

Column Store

Indexed Row Store

Indexed Column Store

Fractured Mirrors

Indexed Fractured Mirrors

OctopusDB

w
o

rk
lo

a
d

 t
im

e

[s
e

c
o

n
d

s
]

Query Costs Update Costs

September 13, 2010 Towards a one-size-fits-all Database Architecture - Alekh Jindal

Information Systems GroupDatabase Landscape

2

Motivation

OLTP

OLAP

Streaming
System

Archival
System

Search
Engine

Airline Company

Several Applications
Evolving Applications

ETL style data pipelines
Eventual Integration

Licensing Cost

DBA Cost
Maintenance Cost

Engineering Cost

Integration Cost

Hard-coded optimizations
Hard-coded data layouts

Reporting

Cheap Fares

Ticket Booking

Booking
Archives

Flight Search

Friday, September 10, 2010

