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Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Example: Flight Tickets

21



Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ( ))"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index 
SV

Index 
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Example: Flight Tickets

21

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id

!
customer.* ( ))"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index 
SV

Index 
SV

$
id,rid

$price,rid

tickets.customer_id

$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row



Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ( ))"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(( ))

!
bag=tickets"

bag,key
recent
# ((

)) tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index 
SV

Index 
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 29

Col SV

Row SV

Log SV

Result 2

!
bag=customers

"
bag,keyrecent

#
(( ))

!
bag=tickets"

bag,key
recent
# (( ))

Result 3

$
price )!

class=E( Result 1

$
email Result 4

tickets.customer_id

$
id ( ))!

class=E, a1=x1(
customer.id

tickets.customer_id$
name ( ))
!
class=E, a2=x2

(
customer.id

Primary
Log Store

(a) Operator Log-Pushdown: before

Col SV

Row SVLog SV

Result 2

Result 3

!
price

Result 1

!
email Result 4

"bag=customers|
(bag=tickets & 
tickets.class=E)

"
bag=customers

#
bag,keyrecent

$ (( ))! name,
email, id

(

"
bag=tickets#

bag,key
recent$ ((

))
!price, 

customer_id
(

tickets.customer_id

!
id ( ))"

a1=x1(
customer.id

tickets.customer_id!
name ( ))
"

a1=x1
(

customer.id

Primary Log Store

(b) Operator Log-Pushdown: after

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

# (( ))

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index 
SV

Index 
SV

$ id,rid

$price,rid

count(*)>=5 customer_id

"
#

(
)

tickets.customer_id
$
customer.* ( ))!

a1=x1..an=xn(
customer.id

Frequent Fliers
(Adaptive Partial Index)

customer.id

tickets.customer_id

(c) Adaptive Partial SVs

Primary
Log Store

!"#
bag=ticketsbag,keyrecent!

time > now-300
(( ))))(#

CHEAPEST
(

!"#
bag=customers

bag,key
recent

!
registered_time > now-600 (( ))))

(
customers.id

tickets.customer_id

Col SV

Index 
SV

Result

New Customers getting 
Cheapest Tickets in last 
5 mins. (Data Stream)

(d) Stream Transformation
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projections down the lattice until the primary log. Similarly, for selections we (1) com-
pute a conjunctive selection, e.g. �bag=customers|(bag=tickets&tickets.class=E) and (2) push it
even beyond the primary log. Figure 2.3(b) shows the resulting SV lattice. This means
that any incoming log record will be checked even before putting it into the Log SV in
the primary log. Tuples not matching will be discarded and thus we save time writing
them to the primary log. Obviously, similarly to a store pushdown, as soon as a new
query comes in, the conjunctive selection may have to be adapted. Otherwise we would
discard too much. However in OLTP or reporting (not OLAP) workloads are often
known [118] and thus a log and pushdown may be an option.

Adaptive Partial SVs. The holistic SV optimizer can inject additional SVs to speed-
up query processing. Those SVs should be created for those parts of the data that is
frequently queried. For instance, it does not make sense to build an index for an entire
relation if only parts of that relation are queries. This observation lead to a technique
called partial indexing [114]. However, that technique can be extended to create a partial
store adapting dynamically to the current workload. Figure 2.2(e) already showed an
example for static SV partitioning. Figure 2.3(c) shows an example for adaptive partial
SVs. In this example a Frequent Fliers Index SV is used. We use a join query
selecting those customers having at least five tickets over the past week. Index SV
Frequent Fliers will only index those customers. As soon as a customer does not

Example: Flight Tickets
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projections down the lattice until the primary log. Similarly, for selections we (1) com-
pute a conjunctive selection, e.g. �bag=customers|(bag=tickets&tickets.class=E) and (2) push it
even beyond the primary log. Figure 2.3(b) shows the resulting SV lattice. This means
that any incoming log record will be checked even before putting it into the Log SV in
the primary log. Tuples not matching will be discarded and thus we save time writing
them to the primary log. Obviously, similarly to a store pushdown, as soon as a new
query comes in, the conjunctive selection may have to be adapted. Otherwise we would
discard too much. However in OLTP or reporting (not OLAP) workloads are often
known [118] and thus a log and pushdown may be an option.

Adaptive Partial SVs. The holistic SV optimizer can inject additional SVs to speed-
up query processing. Those SVs should be created for those parts of the data that is
frequently queried. For instance, it does not make sense to build an index for an entire
relation if only parts of that relation are queries. This observation lead to a technique
called partial indexing [114]. However, that technique can be extended to create a partial
store adapting dynamically to the current workload. Figure 2.2(e) already showed an
example for static SV partitioning. Figure 2.3(c) shows an example for adaptive partial
SVs. In this example a Frequent Fliers Index SV is used. We use a join query
selecting those customers having at least five tickets over the past week. Index SV
Frequent Fliers will only index those customers. As soon as a customer does not
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2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row
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Use-Case Storage view definition
(traditional systems) type example query

row store Row SV any
column store Col SV any
PAX PAX SV any
fractured mirrors Row SV

same query for both
and Col SV

column groups Row SV ⇡
a

1

,...,a

k

and Col SV ⇡
a

k+1

,...,a

m

index Index SV any
indexed row store Index SV(Row SV) any
indexed column store Index SV(Col SV) any
read-optimized in-
dexed column store

Index SV(Col SV) �
t<now()�1day

+ di↵erential write-
optimized row store

Row SV �
t�now()�1day

partial index Index SV �
420a

k

42000

projection index Col SV ⇡
a

k

partial projection in-
dex

Index SV(Col SV) ⇡
a

k

(�
420a

k

42000

)

DSMS Index SV �
t�now()�5min

DSMS Index SV �
t�now()�5min

+ archive and Col SV �
t<now()�5min

snapshot any any
replicated row store Row SV

same query for both
Row SV

query any any
dynamic view any any
materialized view any any

Use-Case Storage view definition
(new system) type example query

OLTP Row SV �
t�now()�1day

+ OLAP Col SV �
t<now()�1day

DSMS Index SV �
t�now()�5min

+ OLTP Row SV �
t<now()�5min

DSMS Index SV �
t�now()�5min

+ archive OLTP Row SV �
now()�1dayt<now()�5min

+ archive OLAP Col SV �
t<now()�1day

other hybrid any combination any
of the above

Table 2.5: Use-Cases of OctopusDB

qualify as a frequent flier anymore, its entry will be dropped from the index. Vice versa,
if customers qualify, they will be added to the index dynamically.

Stream Transformation. In OctopusDB, any incoming log record corresponds to an
event or item in a data stream system. For applications having continuous queries, we
may only select a window of interest over the unbounded stream of log records i.e. the
primary logical log in OctopusDB. This means the “database store” simply consists of
several windows of interest. No other (older) data needs to be kept. OctopusDB can
mimic this as follows: (1) do not use a Log SV for the Primary Log Store. (2) route all
incoming log records to all relevant queries, (3) push possible updates up the SV lattice.
In other words, we are reducing the stream processing problem to a SV maintenance
problem. Figure 2.3(d) shows an example. In the Running Example, suppose the query
workload changes to the following query: find new customers (registered within last 10
minutes) having booked the cheapest tickets in the last 5 minutes. For this we need
to run a join on two windows. Whenever the contents of one of the windows changes,
we may have to update the result to the join. However, this is nothing di↵erent from
SV maintenance. Thus OctopusDB may use any known technique for updating query
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product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.
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Figure 1: Standard and UDF query plans for TPC-H Query 6.

3. QUERYING TROJAN COLUMNS
In the previous section, we described how to create Trojan

Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown
The core idea of querying Trojan Columns is to push a part of the

query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [9] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.
Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical lineitem tuples, and passing them on to the upper part
of the query tree.
Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.
Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates satisfy then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do
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Figure 2: Example UDF query plan for TPC-H query 14.

not satisfy, then the UDF inspects the next selection attribute val-
ues. This continues until either a qualifying tuple if found or end
of data is reached. Pushing down selection to the UDF has two ad-
vantages: (1) the number of UDF output tuples, and consequently
the number of UDF calls are reduced, and (2) we can perform late
materialization by fetching projection attributes only for segments
having at least one tuple qualifying the selection predicates. The
first advantage saves the overhead in each UDF call, while the sec-
ond advantage saves I/O for projection attributes.
Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.
Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the lineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.
Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is
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Figure 1: Standard and UDF query plans for TPC-H Query 6.

3. QUERYING TROJAN COLUMNS
In the previous section, we described how to create Trojan

Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown
The core idea of querying Trojan Columns is to push a part of the

query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [9] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.
Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical lineitem tuples, and passing them on to the upper part
of the query tree.
Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.
Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates satisfy then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do
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Figure 2: Example UDF query plan for TPC-H query 14.

not satisfy, then the UDF inspects the next selection attribute val-
ues. This continues until either a qualifying tuple if found or end
of data is reached. Pushing down selection to the UDF has two ad-
vantages: (1) the number of UDF output tuples, and consequently
the number of UDF calls are reduced, and (2) we can perform late
materialization by fetching projection attributes only for segments
having at least one tuple qualifying the selection predicates. The
first advantage saves the overhead in each UDF call, while the sec-
ond advantage saves I/O for projection attributes.
Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.
Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the lineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.
Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is
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AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

31



Example: TPC-H Query 6Resultquantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(a)
Standard

plan

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(b)
Scan

pushdow
n

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

scanUDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

selectU
D
F

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

read-UDF

Result

quantity, disco
unt

extendedprice, shipdate

 shipdate B
ET

W
EEN

  
‘1994-01-01’ A

N
D

 ‘1995-01-01’
A

N
D

 disco
unt B

ET
W

EEN
0.05 A

N
D

 0.07 
A

N
D

 quantity <
 24

σπ

agg
(extendedprice * disco

unt)
γlineitem

S
C
A
N

(c)
Selectpushdow

n

Figure
1:

Standard
and

U
D

F
query

plansfor
T

PC
-H

Q
uery

6.

3.
Q

U
E

R
Y

IN
G

T
R

O
JA

N
C

O
L

U
M

N
S

In
the

previous
section,

w
e

described
how

to
create

Trojan
C

olum
ns.

In
this

section,w
e

describe
how

w
e

process
queries

us-
ing

Trojan
C

olum
ns.

Since
Trojan

C
olum

ns
internally

store
data

in
colum

n-oriented
fashion,

w
e

need
to

translate
the

data
back

to
row

layoutbefore
passing

itto
the

query
processor,i.e.use

a
U

D
F

to
scan

the
table.

A
dditionally,

w
e

m
ay

also
push

dow
n

other
operators

to
the

U
D

F
in

order
to

boost
perform

ance.
B

elow
,

w
e

firstdescribe
operator

pushdow
n

as
a

technique
to

process
Trojan

C
olum

ns,and
then

w
e

describe
how

to
rew

rite
userqueries.

3.1
O

perator
Pushdow

n
T

he
core

idea
ofquerying

Trojan
C

olum
ns

is
to

push
a

partofthe
query

tree
dow

n
to

the
U

D
F.T

his
m

eans
thata

partof
the

query
is

processed
by

the
U

D
F

w
hile

the
rem

aining
query

is
stillprocessed

by
the

standard
database

query
executor.

L
et’s

consider
query

6
from

the
T

PC
-H

benchm
ark

[9]
as

a
running

exam
ple

below
.

Fig-
ure

1(a)
show

s
the

logicalquery
plan

for
query

6.
B

elow
,let’s

see
how

w
e

can
push

dow
n

one
orm

ore
operators

in
query

6
to

a
U

D
F.

Scan
Pushdow

n.
First

of
all,

w
e

need
to

push
dow

n
the

scan
operator

to
the

U
D

F.T
his

is
because

w
e

need
to

interpret
Trojan

C
olum

ns
correctly

(and
differently)

atthe
leaf

level.
Suppose

that
l
i
n
e
i
t
e
m

table
in

query
6

is
stored

as
Trojan

C
olum

ns.
Fig-

ure
1(b)show

sthe
query

plan
w

ith
the

U
D

F.A
sshow

n
in

the
figure,

the
U

D
F

now
figures

outw
hich

physicaltable
to

read
(the

blob
and

not
the

row
representation)

for
l
i
n
e
i
t
e
m

table.
A

lso,the
U

D
F

is
responsible

forinterpreting
the

physicaltable,reconstructing
the

logical
l
i
n
e
i
t
e
m

tuples,and
passing

them
on

to
the

upper
part

ofthe
query

tree.
Projection

Pushdow
n.

A
long

w
ith

the
scan,

w
e

can
also

push
dow

n
the

projection
operatorto

the
U

D
F,i.e.pass

the
projected

at-
tributes

as
param

eters
to

the
U

D
F.T

he
U

D
F

now
returns

only
the

projected
attributes.Since

the
U

D
F

return
type

is
stillthe

com
plete

row
,allother

attribute
values

are
setto

N
U

L
L

.A
consequence

of
pushing

projection
dow

n
to

the
U

D
F

is
thatthe

U
D

F
now

needs
to

fetch
the

blobs
of

only
the

projected
attributes.

T
his

saves
consid-

erable
I/O

costand
im

proves
query

perform
ance.

Selection
Pushdow

n.To
push

the
selection

dow
n,w

e
sim

ply
pass

the
selection

predicate
to

the
U

D
F,as

show
n

in
Figure

1(c).
T

he
U

D
F

is
now

responsible
forevaluating

the
selectpredicate

on
each

of
the

incom
ing

tuple.
To

do
so,

the
U

D
F

now
only

fetches
the

selection
attributes

first.T
hen,before

returning
the

tuple,the
U

D
F

evaluates
the

selection
predicate.

If
the

predicates
satisfy

then
the

U
D

F
fetches

the
projection

attribute
blobs,if

needed,and
returns

a
tuple

of
the

projected
attributes.

If
the

selection
predicates

do

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

  
‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
  W

H
EN

 type LIK
E ‘PRO

M
O

%
’

  T
H

EN
 extendedprice*(1-disco

unt)
  ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type, 

partkey
π

partkey

Result

shipdate, disco
unt

extendedprice, partkey

shipdate B
ET

W
EEN

  
‘1995-09-01’ A

N
D

 ‘1995-10-01’
σπ

agg

100 * SU
M

(C
A

SE
  W

H
EN

 type LIK
E ‘PRO

M
O

%
’

  T
H

EN
 extendedprice*(1-disco

unt)
  ELSE 0
EN

D
) / SU

M
(extendedprice*(1-disco

unt))

γ

lineitem

S
C
A
N

part

S
C
A
N type, 

partkey
π

partkey
aggregateU

D
F

Figure
2:

E
xam

ple
U

D
F

query
plan

for
T

PC
-H

query
14.

notsatisfy,then
the

U
D

F
inspects

the
nextselection

attribute
val-

ues.
T

his
continues

untileither
a

qualifying
tuple

if
found

or
end

ofdata
is

reached.Pushing
dow

n
selection

to
the

U
D

F
has

tw
o

ad-
vantages:

(1)
the

num
ber

of
U

D
F

outputtuples,and
consequently

the
num

ber
of

U
D

F
calls

are
reduced,and

(2)
w

e
can

perform
late

m
aterialization

by
fetching

projection
attributes

only
for

segm
ents

having
at

least
one

tuple
qualifying

the
selection

predicates.
T

he
firstadvantage

saves
the

overhead
in

each
U

D
F

call,w
hile

the
sec-

ond
advantage

saves
I/O

forprojection
attributes.

A
ggregation

Pushdow
n.

W
e

can
even

push
dow

n
the

aggregates
(and

group
by)

to
the

U
D

F.T
he

U
D

F
m

ust
now

do
the

grouping
and

aggregation
before

outputting
any

of
the

tuples.
T

his
m

eans
that

the
U

D
F

m
ust

precom
pute

the
results

w
hen

initializing
and

then
sim

ply
return

the
aggregated

resultsubsequently.
T

he
m

ajor
benefit

of
pushing

aggregation
dow

n
the

U
D

F
is

to
dram

atically
reduce

the
num

berofU
D

F
calls.

D
ealing

w
ith

Join
Q

ueries.
So

far
w

e
have

considered
single

ta-
ble

queries,
i.e.no

join
conditions.

N
ow

let
us

see
how

joins
are

processed
in

the
presence

of
Trojan

C
olum

ns.
For

queries
having

join
conditions,w

e
sim

ply
push

dow
n

the
scan,selection,and

pro-
jection

operators
to

the
U

D
F

and
letthe

database
do

the
join.

T
his

w
orks

w
ell

because
the

output
of

U
D

F
can

be
processed

by
the

database
query

executor.
Figure

2
show

s
the

U
D

F
query

plan
for

T
PC

-H
query

14.
From

the
figure

w
e

see
thatthe

l
i
n
e
i
t
e
m

leaf
is

pushed
inside

the
U

D
F,w

hile
the

join
is

stillperform
ed

outside.
A

lso
note

thatthe
query

plan
in

Figure
2

accesses
p
a
r
t

table
us-

ing
the

standard
database

access
m

ethod.
T

his
is

because
p
a
r
t

is
m

uch
sm

aller
table

and
it

does
not

pay
off

to
use

a
U

D
F

for
it.

T
hus,

w
e

see
that

U
D

Fs
can

be
seam

lessly
integrated

into
the

query
pipeline.

T
his

holds
true

even
for

nested
queries,e.g.T

PC
-

H
query

8.
A

lternatively,
instead

of
letting

the
database

executor
process

the
join,one

could
think

of
even

pushing
dow

n
the

join
to

the
U

D
F.T

he
U

D
F

w
ould

then
have

to
access

tw
o

physicaltables
and

join
them

based
on

the
join

condition.
T

he
advantage

w
ould

be
thatw

e
could

have
even

lesseroutputtuples
(depending

on
join

selectivity).
H

ow
ever,the

problem
is

that
w

e
w

ill
need

to
recode

the
physicaljoin

operators
as

w
ellas

the
optim

izerlogic
to

pick
the

physicaljoin
operator.

T
hus,w

e
see

the
pros

and
cons

of
pushing

too
m

any
operators

dow
n

the
U

D
F.E

xploring
these

in
m

ore
detail

w
illbe

partofa
future

w
ork.

W
here

doesoperator
pushdow

n
lead

to?
In

the
extrem

e
case,w

e
can

push
dow

n
the

entire
SQ

L
query,i.e.allquery

operators,dow
n

to
the

U
D

F.H
ow

ever,this
m

eans
thatthe

U
D

F
is

now
responsible

fordeciding
how

to
execute

a
given

query.In
otherw

ords,the
U

D
F

m
usttake

care
of

query
optim

ization
as

w
ellas

execution,m
aking

ita
m

icro-kernelfor
processing

SQ
L

queries.
T

he
consequence

is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(a) Standard plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re

ad
-U

D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(b) Scan pushdown

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07 
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN  
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Figure 1: Standard and UDF query plans for TPC-H Query 6.

3. QUERYING TROJAN COLUMNS
In the previous section, we described how to create Trojan

Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown
The core idea of querying Trojan Columns is to push a part of the

query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [9] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.
Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical lineitem tuples, and passing them on to the upper part
of the query tree.
Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.
Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates satisfy then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do
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Figure 2: Example UDF query plan for TPC-H query 14.

not satisfy, then the UDF inspects the next selection attribute val-
ues. This continues until either a qualifying tuple if found or end
of data is reached. Pushing down selection to the UDF has two ad-
vantages: (1) the number of UDF output tuples, and consequently
the number of UDF calls are reduced, and (2) we can perform late
materialization by fetching projection attributes only for segments
having at least one tuple qualifying the selection predicates. The
first advantage saves the overhead in each UDF call, while the sec-
ond advantage saves I/O for projection attributes.
Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.
Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the lineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.
Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is
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#Q Row UDF SP CTables
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229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
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201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
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87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986
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84.98788 11.73531 1.870134
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53.78619 17.77678 5635.36
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58.82072 26.09723 51910.05
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Q1
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Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
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Q6
Q7
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(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e 

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e 

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e 

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e 

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset
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(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 4
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06
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Figure 4: Trojan Columns improvement factor in DBMS X.

From the figure, we see that Trojan Columns has a maximum im-
provement factor of over 17 (lower left region). Also, we see that
for low selectivities (� 0.1) Trojan Columns performs worse than
standard row. To investigate this, we break down the query runtime
into data access, data processing (decompression, operator evalua-
tion etc.), and data output costs. Our results showed that data output
costs dominate (as high as 60�80%) the query runtime for low se-
lectivity queries. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. These function call overheads overshadow
the performance improvements of Trojan Columns for low selectiv-
ities. In principal, this overhead could be removed if the database
storage interface were available in LLVM bitcode. Then the UDF
query could at runtime be dynamically recompiled together with
the DBMS storage layer to remove that boundary and bake the UDF
into the kernel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a
Materialized View perfectly matching the query expression.

Figure 5(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a full blown column store. To do so, we run un-
modified TPC-H queries on Trojan Columns as well as on a top
notch commercial column-oriented database system DBMS-Y.

Figure 5(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by a factor
of 1.3 and 1.4 respectively), Trojan Columns are in fact faster than
DBMS-Y for Q1 and Q6 (by a factor of 1.6 and 3 respectively).
This is because Trojan Column push down even the aggregation
operator to the data access layer for Q1 and Q6. Overall, we see
that Trojan Columns are quite competitive to a full blown column-
oriented database system and can achieve comparable query per-
formance in the same row-oriented database system.

5. DISCUSSION
Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical
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Figure 5: Unmodified TPC-H query Set 1 runtimes.

standard row over all queries in query Set 1. The maximum im-
provement is by factor 9 for Q6, followed by factor 4 for Q1, factor
2.6 for Q14, and factor 2.5 for Q12. All this in the same database
system (DBMS X) and without touching the source code.

Next, let us see the query times for TPC-H query Sets 2 and 3.
Tables 5 and 6 show the results. We can see that, apart from Q19,
Trojan Columns does not perform very well with low selectivity
queries of Set 3. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. In principal, this overhead could be re-
moved if the database storage interface were available in LLVM
bitcode. Then the UDF query could at runtime be dynamically
recompiled together with the DBMS storage layer to remove that
boundary and bake the UDF into the kernel. This remains an inter-
esting avenue for future work.

Query Standard Row Trojan Columns
Q3 111.88 809.38
Q5 99.73 169.34
Q10 110.94 119.46
Q19 79.14 43.12

Table 5: TPC-H query Set 2 runtimes (in seconds).

Query Standard Row Trojan Columns
Q2 - -
Q4 110.76 -
Q8 97.38 97.66
Q15 80.51 66.91

Table 6: TPC-H query Set 3 runtimes (in seconds).

Trojan Columns performs similar or better than standard row for
query Set 3 (nested and high selectivity), as shown in Table 6. How-
ever, query nesting reduces the benefits of using Trojan Columns.
This is because Trojan Columns only improves the I/O costs, which
is just a fraction of the overall query costs. Apart from I/O, the re-
maining query processing costs are still the same as those for stan-
dard row. Note that standard row does not terminate for query Q2,
since we do not consider indexes in our experiments. Likewise,
Trojan Columns does not terminate for both queries Q2 and Q4.
This is because the optimizer cannot correctly estimate the costs of
UDFs. DBMS X allows for providing UDF cost estimate hints to
the optimizer. However, in the current version, the optimizer still
chooses nested loop joins instead of hash joins in the query plan —
we consider this a bug in DBMS X’s optimizer.

6.4.3 Experiment 3: read-UDF costs
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned in the previous section, I/O is just
a fraction of the total query costs. Since the database system is un-
aware of the column store inside, the query processing costs remain
the same outside the read-UDF. To better understand the impact of
Trojan Columns, let us now see the query times inside the subquery.
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Trojan 
Columns

Table

Q1
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77.589033799 21.787439044 8.6532381493 8.9664738749 2.5178365218 232.7671014 65.36232 25.959714448 lineitem

76.73051647 26.582446376 16.504629093 4.6490300412 1.610605499 230.19154941 79.747339128 49.513887278 lineitem
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0 0 0 order
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Figure 6: Query processing costs of TPC-H query Set 1 for
read-UDFs. Trojan Columns versus Materialized Views.

To do so, we measure the time to compute the subquery computed
by the read-UDF using (1) Standard Row, (2) Trojan Columns, and
(3) reading a Materialized View perfectly matching the query ex-
pression.

Figure 6 shows the results. We can see that Trojan Columns is
significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) in
query Set 1, and therefore Trojan Columns does not perform as
well as Materialized Views. This is a very good result considering
that Materialized Views require 12GB of storage in this experiment,
whereas Trojan Columns only requires 5GB. Still, the performance
of Trojan Columns is very close to Materialized Views for Q14.
Thus, we conclude that Trojan Columns provides considerable im-
provements in terms of I/O costs.

6.5 Trojan Columns on micro-benchmarks
In this section, we evaluate Trojan Columns on two micro-

benchmarks. The idea is to see the impact of Trojan Columns on
simpler queries. These type of queries have been used in previous
studies [10, 6, 1, 2].

6.5.1 Experiment 4: Varying selections and projec-
tions over a single table.

Our first micro-benchmark consists of queries of the following
form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 7
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
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qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0
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11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
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7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
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Figure 7: Trojan Columns improvement factor in DBMS X.

Figure 7 shows that Trojan Columns has the maximum improve-
ment factor of over 17 (lower left region). Also, we see that for low
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versus Column Stores
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(a) Trojan Columns versus Materialized Views

ROW TROJAN VECTORWISE VERTICA (other machine) Factor
Q1
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Q14

76.730296 19.293983 31.276143 41.7 1.6
77.589034 8.6532381 25.845965 11.4 3.0
92.486038 37.331905 29.785149 15.3 1.3
81.207649 30.788114 22.291128 13.9 1.4
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(b) Trojan Columns versus Column Store
Figure 5: Comparing TPC-H Query Runtimes with Materialized Views and Column Stores.

partitioning or other schema level approaches. The main advantage
of Trojan Columns comes from improved I/O performance: we ac-
cess only the referenced attributes. In addition, we apply light-
weight column-oriented compression schemes. Furthermore, we
push one or more SQL operators down to the UDF and evaluate
them directly on BLOB data.

In contrast, C-Tables work only for up to 3 attributes, unless the
input datasets are pre-joined. For a higher number of referenced
attributes, the tuple reconstruction joins kill the C-Table perfor-
mance. This is not the case for Trojan Columns. In fact, as we
saw in the experiments, Trojan Columns is not at all affected by the
number of referenced attributes.

Trojan Column Limitations. We found that the major per-
formance problem in using table UDFs, for accessing Trojan
Columns, is the additional overhead of UDF-function calls. These
function calls lead to a significant decrease in performance if many
rows are returned. For each row that is returned to the outside,
DBMS-X invokes one call of the UDF and passes a large number of
arguments to it. For a table like lineitem with 16 attributes, this
means passing already 32 return variables (16 return variables + 16
indicators ) to the function in each call, additional to the arguments
passed by the user. Thus low selectivity queries are a problem for
Trojan Columns.

The UDFs which perform only projection and selection are very
flexible and need only the table schema to be generated. For exam-
ple, we have one UDF for lineitem, and it can perform all kinds
of projections and selections on the table. This is possible since
the result schema of the query is always a subset of the lineitem
schema. However, for queries which also perform grouping and ag-
gregation, we need to generate the UDFs for each individual query.
This is because the schema of the query result might not be a subset
of the original table schema. Though manual, these adaptations can
still be done easily and quickly.

As future work, a main goal is to increase the flexibility of the
approach. We are planning to build generators and compilers (also
in the form of UDFs), which create and install all necessary func-
tions for a given query or table and database product. This is pos-
sible since only small adaptations are needed to tweak a function
towards a query. Another main problem we face at the moment
is the additional overhead at the leaf level caused by too many re-
sult rows. We could eliminate this problem in many cases, if we
could push the join operator into the UDF. This would also allow
for performing grouping/aggregation after the join and would lead
to a significant decrease of function call overhead.

Query Optimization Considerations
(a) Selectivity. At the moment, we decide whether or not to use
Trojan Columns manually. Ideally, however, we would like to hide
this decision using a view, which is then used in the query invoked
by the user. The view should be able to switch between Trojan
Columns and the standard row store, depending on the query selec-

tivity. Note that the view needs to pass the projection and selection
operators down to the UDF, in case it chooses Trojan Columns.
(b) UDF cost estimates. DBMS-X supports a mechanism to adjust
the estimated cost of a UDF in terms of the expected cardinality,
i.e. it is possible to specify the number of rows that the UDF might
return. Unfortunately, this cardinality is static and has to be set for
each individual query. This cardinality information is then used in
the access plan calculation to find the best plan.
(c) Intermediate results. If a query materializes intermediate results
on disk, then the optimizer could consider using Trojan Columns
for them, thus improving performance higher up in the query tree.

6. CONCLUSION
In this paper, we presented Trojan Columns, a radically dif-

ferent approach for supporting analytical workloads efficiently in
a closed source commercial row-oriented database system. Tro-
jan Columns does not make any changes to the source code of
the database system, but rather use UDFs as a pluggable storage
layer for data read and write. Trojan Columns can be easily inte-
grated into an existing database system environment (without even
restarting the DBMS). As a result, Trojan Columns is transparent
to the user, i.e. the user continues using his existing database prod-
uct with minimal changes to his queries. We implemented Tro-
jan Columns in DBMS-X and show query runtimes from unmodi-
fied TPC-H benchmark, simplified TPC-H queries (as proposed by
other researchers), as well as from single table micro-benchmarks.
Our results show that Trojan Columns improves the performance
of DBMS-X by up to a factor 9 on the unmodified TPC-H bench-
mark, by up to a factor 13 on simplified TPC-H queries, and by up
to a factor 17 on single table micro-benchmarks. All this without
touching the source code of the database system.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R
determines the number of reducer subplans ( ).

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

40

HDFS Blocks



Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R
determines the number of reducer subplans ( ).

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 
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map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.
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map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R
determines the number of reducer subplans ( ).

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R
determines the number of reducer subplans ( ).

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.
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discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.
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fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L ( ) and P subplans H1–H4 ( ) which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans ( ), whereas R
determines the number of reducer subplans ( ).

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Trojan Index Access

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ⇥1

...

R2

T ⇥2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

u⇤
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 4: Co-partitioned Data Layout
tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.
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Figure 6: Benchmark Results related to Indexing and Join Processing

ever, Hadoop++ significantly outperforms HadoopDB. This is be-
cause HadoopDB sometimes pushes tasks to straggler nodes rather
than replica nodes. This slows down its speculative execution.

6. DISCUSSION & CONCLUSION
This paper has proposed new index and join techniques: Tro-

jan Index and Trojan Join, to improve runtimes of MapReduce
jobs. Our techniques are non-invasive, i.e. they do to require us
to change the underlying Hadoop framework. We simply need to
provide appropriate user-defined functions (and not only the two
functions map and reduce). The beauty of this approach is that we
can incorporate such techniques to any Hadoop version with no ef-
fort. We exploited this during our experiments when moving from
Hadoop 0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness
reasons. We implemented our Trojan techniques on top of Hadoop
and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outper-
forms Hadoop. Furthermore, for tasks related to indexing and join
processing Hadoop++ outperforms HadoopDB – without requir-
ing a DBMS or deep changes in Hadoop’s execution framework
or interface. We also observe that as we increase the split size,
Hadoop++ further improves for both selection and join tasks. This
is because the index coverage also increases. Performance of fault-
tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeo⇥ between
runtime and fault tolerance of MapReduce jobs.

An important lesson learned from this paper is that most of the
performance benefits stem from exploiting schema knowledge on
the dataset and anticipating the query workload at data load time.
Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there
is no need to use a DBMS for this. Schema knowledge and an-
ticipated query workload may be exploited in any data processing
system.

In terms of Hadoop++’s interface we believe that we do not have
to change the programming interface to SQL: standard MapReduce
jobs — unaware of possible indexes and join conditions — may be
analyzed [6] and then rewritten to use the Trojan techniques pro-
posed in this paper.
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Trojan Index Advantages

• Each HDFS block sorted

• Each block contains an index

• Index access in UDF

• Scan + Index data accesses

• Parallel index lookups

• Non-invasive system changes

• Much better performance
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Trojan Join

• Each HDFS block co-
partitioning over two relations

• Join relations are co-located

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN
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In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan
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is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.
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As mentioned above Hadoop implements a hard-coded data pro-
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Figure 4: Co-partitioned Data Layout
tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.
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• Each HDFS block co-
partitioning over two relations

• Join relations are co-located

• Co-partitioned join in UDF

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan
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Figure 4: Co-partitioned Data Layout
tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan
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duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two
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tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan
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duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
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Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.
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Figure 4: Co-partitioned Data Layout
tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S ) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S ) � 

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal. 45
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Figure 6: Benchmark Results related to Indexing and Join Processing

ever, Hadoop++ significantly outperforms HadoopDB. This is be-
cause HadoopDB sometimes pushes tasks to straggler nodes rather
than replica nodes. This slows down its speculative execution.

6. DISCUSSION & CONCLUSION
This paper has proposed new index and join techniques: Tro-

jan Index and Trojan Join, to improve runtimes of MapReduce
jobs. Our techniques are non-invasive, i.e. they do to require us
to change the underlying Hadoop framework. We simply need to
provide appropriate user-defined functions (and not only the two
functions map and reduce). The beauty of this approach is that we
can incorporate such techniques to any Hadoop version with no ef-
fort. We exploited this during our experiments when moving from
Hadoop 0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness
reasons. We implemented our Trojan techniques on top of Hadoop
and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outper-
forms Hadoop. Furthermore, for tasks related to indexing and join
processing Hadoop++ outperforms HadoopDB – without requir-
ing a DBMS or deep changes in Hadoop’s execution framework
or interface. We also observe that as we increase the split size,
Hadoop++ further improves for both selection and join tasks. This
is because the index coverage also increases. Performance of fault-
tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeo⇥ between
runtime and fault tolerance of MapReduce jobs.

An important lesson learned from this paper is that most of the
performance benefits stem from exploiting schema knowledge on
the dataset and anticipating the query workload at data load time.
Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there
is no need to use a DBMS for this. Schema knowledge and an-
ticipated query workload may be exploited in any data processing
system.

In terms of Hadoop++’s interface we believe that we do not have
to change the programming interface to SQL: standard MapReduce
jobs — unaware of possible indexes and join conditions — may be
analyzed [6] and then rewritten to use the Trojan techniques pro-
posed in this paper.
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Trojan Join Advantages

• Re- + Co- partitioned join

• Parallel join processing

• Non-invasive system changes

• Much better performance
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• Each HDFS block co-
partitioning over two relations

• Join relations are co-located

• Co-partitioned join in UDF



Trojan Layouts

• Each HDFS block in row or column

• Each block replica in different layout

• Pick right layout in UDF
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Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ⇠37 times less
redundant attributes than Hadoop-Row and to perform ⇠7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-o↵ between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

Projection Analytical Task
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Trojan Layouts Advantages

• Each HDFS block in row or column

• Each block replica in different layout

• Pick right layout in UDF

• Row, PAX, Column-group layouts

• Several layouts at the same time

• Non-invasive system changes

• Much better performance

50
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• Automatically rewriting user queries

• Avoiding UDF call overheads for low selectivity

• Putting all Trojan Techniques together in a single system 

• What to store, How to store, Where to store

• Trojan Techniques: one way of approaching OctopusDB

• Trojan Techniques: first step towards OctopusDB

• Storage View optimization: selection, transformation, 
update propagation

Open Issues
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• Flexible data storage layer

• Adapt layout to workload

• Logical journal of data operations

• Arbitrary physical representations

• ‘Mimic’ several systems

• No  ‘zoo’ overheads

• One-size-fits-all

OctopusDB

24

• Flexible data storage layer

• Adapt layout to workload

• Logical journal of data operations

• Arbitrary physical representations

• New concept: Storage Views

[VLDB PhD Workshop, 2010] 
[CIDR, 2011]

Trojan Techniques

• Existing system

• Inject additional layouts

• Source-code not required

• Good use of Trojans

• No heavy changes

• Affect from inside

• Similar to PAX, fpB+tree

28
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Use Case 1: 
OLAP in Row-stores

Use Case 2: 
Big Data Analytics

59

[CIDR, 2013]
(Under Submission)

[VLDB, 2010]
[SOCC, 2011]


